
1

Renewing Foundations

past and future of foundations of mathematics

Andrei Rodin



2

Contents:

Introduction: progress of science and renewal of its foundations

A) Philosophy as a pre-science

B) Architectural and biological metaphors of science; educational and conceptual foundations

C) Systematic foundations; change and identity of scientific theories through time

D) Consensus in science and philosophy

E) Philosophy as art of foundations

F) Plan of this book

Part I. The Past: a brief history of foundations

I.1. Episode One: Euclid’s Elements

Section 1.1. Plato’s philosophy of mathematics

A) Basics

B) Intermediate status of mathematics

C) Quadrivium

D) Mathematical physics

Section 1.2. Aristotle’s philosophy of mathematics

A) Nature of things and their form

B) Mathematical abstraction

C) Mathematics, physics and logic: the Classical Model of Science

Section 1.3. Euclid via Plato

A) Definitions

B) Postulates and Axioms

C) Propositions: Problems and Theorems

----C1) Problem

----C2) Theorem

----C3) Problems and Theorems in Arithmetic

----C4) Conclusion on Problems and Theorems

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE



3

Section 1.4. Euclid via Aristotle

A) Definitions

B) Postulates

C) Axioms

D) Propositions

E) Proportion, Metabasis and Universal Mathematics

Conclusion of Episode 1

Endnotes

Bibliography

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE

INVITE



4

Introduction: progress of science and renewal of its foundations

A) Philosophy as pre-science

Tracing back the history of a theoretical discipline one often discovers that at certain point in

the past this discipline used to be a branch of philosophy. Aristotle's Physics is hardly even

recognised by today's physicists as belonging to their discipline but it is still widely read at

philosophy departments; psychology, political sciences and cosmology separated themselves

from philosophy and constituted themselves as independent disciplines only in 20-th century

(Note 1). This observation suggests a view on philosophy as an immature science aiming at

but never achieving the genuine scientific rigour. Many philosophers would contest this view

arguing that common standards of scientific rigour shouldn't be applied for their discipline

and that for this reason philosophers don't need to pursue anything like scientific rigour at all;

some other would argue that philosophy already got a rigorous scientific method, to which

every philosopher should now adhere.

Actually intellectual enterprises of quite different sorts are found presently on the market

under the label of philosophy, and I don't feel myself in a position to judge which of them

really deserve this name and which don't. These introductory remarks serve another purpose:

to explain the reader what kind of enterprise I'm purporting in this book. Unlike

aforementioned philosophers I am happy with the notion of philosophy as a pre-scientific

theoretic activity closely linked to science itself; by science I mean here all branches of

science without any exception. However to make my notion of philosophy more precise I

need the following two reservations.

First, I disagree with the view that once a branch of science is well constituted as an

autonomous discipline the preparatory activity which made this possible can be stopped or

transformed into something else like popularisation of science. This is simply not how science

works. Kuhn's picture of development of science, however imprecise, makes this point clear

(see Kuhn1962). Kuhn distinguishes between normal  science which develops sticking to

well-established epistemic standards he calls paradigms and scientific revolutions consisting

of drastic changes of the paradigms. The phenomenon of scientific revolutions shows that

scientific disciplines are not established once and for all. They need to be re-established from

time to time. Moreover, I believe that in case of a mature science this re-establishing activity

is permanent and continuous rather than discreet and concentrated only in specific short

periods, which Kuhn calls revolutions. The continuity of the re-establishing doesn't preclude
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science from a cumulative growth as we shall shortly see. Philosophy (or rather the kind of

philosophy I'm talking about here) is a technique or art of such re-establishing.

Second, I am certainly not happy with the notion of philosophy as a room for all kind of

disputable conjectures and revisionary proposals about scientific matters. Such a room cannot

be anything like a theoretical discipline, and in spite of my liberal attitude I do count

philosophy as a theoretical discipline. This is the reason why I adopt a further restriction,

which delimits philosophical competence by foundations of science and doesn't allow

philosophical arguments in other scientific contexts. To make a sense of it I need now to

explain what I mean by foundations, and why taking care about foundations makes

philosophy into a pre-science rather than into a particular branch of science.

B) Architectural and biological metaphors of science; educational and conceptual

foundations

The term "foundations" makes one to think about construction of a building. To construct a

building one should prepare its foundation first. The rest of the construction crucially depends

on this first step. The rest can be remade in case: a badly painted wall can be cleaned and

painted anew. But a defect in the foundation may cause a crash of the whole building making

it unrepairable. Looking for "firm foundations" for science (or any particular branch of

science) people usually think about science as such an edifice. But in fact the architectural

metaphor of science is very misleading when one looks at science in a wider historical

perspective. Foundations of science unlike the foundation of a building don't remain

untouched by later developments. At the same time significant changes in foundations don't

necessarily cause drastic changes of the rest of a given discipline, as one might probably

expect. In particular, significant changes of common views on foundations of mathematics

occurring during the long history of this discipline didn't make any harm to the Pythagorean

theorem which remains unchallenged since its early discovery. Although these foundational

changes modified the precise sense of this theorem they didn't brake its identity. In many

cases foundational changes in science (or at least efforts aiming at such changes) are even

completely disregarded by working scientists as a matter of "philosophical interpretation"

irrelevant to their work. Some philosophers may be happy with this situation which allows

them to isolate foundations of discipline X  from this discipline itself and exercise in their

domain whatever they want without any danger of being ridiculed by specialists in X. I am

not. The idea to detach foundations from what they are foundations of is, in my opinion, just

as wrong as the view suggested by the architectural metaphor of science, according to which
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philosophy is in a position to disprove any scientific result through a revision of its

foundations.

As far as metaphors are concerned science can be better compared with a complex ecological

system, which involves populations of different species and develops through continuous

reproduction of organisms and underlying evolutionary change. This is slightly more than a

mere metaphor because we humans indeed form a biological population living in its natural

(and partly artificial) environment, and science is our human affair. Any individual knower

starts learning science with its basics, that is, with foundations. So the need to "restart"

science over and over again follows from the basic biological feature shared by humans with

most of other animals, namely the fact that human populations endure through a continuous

reproduction of mortal individuals. This educational aspect of foundations is essential and

should be never completely forgotten even when one deals with more theoretical aspects of

foundations. Thus the first  notion of foundations I shall deal with in this book is the

educational foundations by which I mean a first introduction into a given discipline. In this

case it is particularly clear why philosophy qualifies as a pre-science: to begin doing science

one should learn its foundations first. It is equally clear that educational foundations is a

subject of permanent renewal, and that a renewal of educational foundations doesn't

necessarily imply a renewal of the whole given discipline. However the educational aspect of

foundations is not the only one I would like to take into consideration.

There is actually a sense in which any part of scientific knowledge undergoes repeated

renewals also outside of educational contexts. I mean the fact that any theoretical

construction, any idea and any established scientific fact endures through series of mental acts

of retention. Such acts can be attributed both to individual minds and to scientific

communities of various scales including the global one. (Note 2) Only in simplest cases such

a series of retentions reduces to a mechanical repetition of a given pattern;  typically it has the

character of progressive understanding which involves quite a complicated dynamics. (Note

3) However important for the business of science are written texts, which help fixing identity

of various scientific contents, scientific knowledge is not copied in individual minds in

anything like the same way in which one may copy texts. The idea that the bulk of existing

knowledge can be written into a big book and then transferred to any interested reader stems

from archaic practices having little to do with science. Science never canonised its texts in

anything like the same way in which religions typically did this. In the individual mind

retention is combined with what I shall call proceeding just like at higher levels of

organisation of science the renewal of foundations is combined with accumulation of
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knowledge. This can be clearly seen at the example of a mathematical theorem (or any

justified proposition in any branch of science). The standard proof theory conceives of a

theorem T as a proposition obtained from set of propositions P1,...,  Pn called premises as a

result of an operation called proof. So we have this picture:

 P1,...,  Pn       --------->    T (1)

This analysis takes proceeding into account but leaves the retention out. Notice that unlike

what the above picture suggests theorems are usually first announced and only then proved. In

particular in Euclid's Elements each theorem is stated twice: just before and just after its

proof. So Euclid makes explicit what is always involved in the usual practice of theorem-

proving: one starts with a meaningful proposition T (Note 4) then performs an appropriate

reasoning (which typically involves other propositions P1,...,  Pn as premises), and finally

concludes (again) with T . This circular process shown at the below diagram preserves T's

identity but changes its epistemic status:

  (P1,...,  Pn)

(2)

T

This latter diagram makes retention explicit.  But the retention of what? Euclid repeats his

propositions twice word by word or nearly so. Thus a textual analysis misleads us showing

only a trivial retention, i.e. a literal repetition of written symbols. Propositions or thoughts in

Frege's sense are eternal things to which the notion of retention doesn't apply. So we cannot

count on them either. The notion appropriate for our analysis seems to be that of concept. The

claim that concepts undergo retention amounts to saying that they are not built once and for

all but just like proofs are performed repeatedly in individual minds and in scientific

communities of various scales. This recurrent process also typically involves a linear

(cumulative) part: higher-order concepts are built on the basis of simpler ones. But since this

linear process is supposed to be recurrent it always requires a "point of restart", which I shall
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call conceptual foundations. Conceptual foundations is the second notion of foundations,

which will be of my concern in this book.

Both notions of foundations just described - educational and conceptual - are equally derived

from the observation that science develops in two principal ways: the progress and the

renewal. This scheme applies not only to large historical scales where one may point to

scientific revolutions as examples of the renewal but also to micro-scales as in the above

example of a mathematical theorem where the renewal is called retention and the progress is

called proceeding. The general notion of foundations as distinguished from the rest of

scientific knowledge helps for making the progress and the renewal mutually compatible: one

may think of foundations is the subject of renewal while the rest is the subject of progress.

There is a derived sense in which the renewal of foundations implies the renewal of the rest,

and in which the progress of the rest implies the progress of foundations. But in order to make

the distinction sharper it is helpful to forget about this derived sense and assume that the

principal bulk of scientific knowledge is a subject of pure progress (without any renewal)

while foundations is a subject of pure renewal (without any progress). Although in the real

history the progress and the renewal are always intertwined the suggested model provides a

suitable general framework for relationships between philosophy and sciences. Clearly the

renewal and the progress require efforts of different sorts. This justifies the notion of

philosophy as an art of renewal. This also explains why philosophy cannot avoid to be

parasitic on other sciences and why these other sciences cannot perform a sustainable progress

without a philosophical ingredient.

C) Systematic foundations; change and identity of scientific theories through time

Having in mind the "recurrent" model of science described above we can now more

accurately interpret the traditional static picture, which presents science as a timeless system

of disciplines, sub-disciplines and particular theories. This abstract notion of science reveals a

feature of foundations which we have already mentioned talking about the architectural

metaphor of science: unlike other parts of a given theory (or of a given discipline) foundations

have a bearing on the whole of it.  (A building having a defective foundation is wholly

defective). This feature of foundations survives even when the metaphor is rejected. What is

to be rejected is the view according to which one cannot possibly exchange foundations

without destroying the rest. But even if one no longer thinks of science as an edifice one still

observes that foundations matter for every part of what they found. One also observes that

foundations typically determine how exactly a given theory (discipline) is divided into parts
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(sub-disciplines), how these parts relate to each other, and what binds them into a whole. This

is the sense in which foundations organise, unify and identify what they found. I shall refer to

foundations conceived of in this latter sense as systematic foundations. This is the third notion

of foundations, which will be studied in this book.

What the integrating function of systematic foundations has to do with renewal and retention

as opposed to progress and proceeding? Before I explain this in general terms let me show

that educational and conceptual foundations also perform this integrating role. Take

mathematics as an example.  All working mathematicians share a bulk of basic mathematical

knowledge albeit none of them can today possess the whole  bulk of mathematical knowledge.

This core bulk of knowledge, which can be identified with educational foundations of

mathematics, mathematicians learn at early stages of their professional education. This basic

knowledge is not only indispensable for making research in any specific domain of

mathematics but it also serves for communication between people working in different

domains of mathematics.  Thus (educational) foundations of mathematics integrate all

working mathematicians into a single community and at the same time make mathematics

distinguishable from other scientific disciplines. One can identify mathematics as such, i.e. as

a whole, by pointing to its foundations. So foundations of mathematics make this discipline

into a whole and determine its identity as a discipline. The fact that boundaries between

mathematics and some other neighbouring disciplines are often vague and involve further

distinctions like that between the pure and the applied mathematics doesn't change the

principle point just made.  Without a common background shared by all working

mathematicians mathematics would split into a variety of practices having no systematic

relation to each other and called by the common name only on the basis of a historical kinship

and an apparent similarity. Mathematics would be then as disorganised as philosophy (Note

5).

A similar point can be made about conceptual foundations. Retention of mathematical

concepts begins with fundamental concepts and then proceeds to more complex and more

specific concepts. When people talk about building of concepts they refer to the latter aspect

of this process. The fundamental concepts themselves are retended rather than rebuilt. The

retention of fundamental concept is the point of restart, from which one can proceed in many

different directions. This is, for example, how the concepts of set and structure are used in

Bourbaki's Elements.  In Bourbaki's setting mathematics is a science of structural sets.

Different types of structures are studied by different branches of mathematics. The concepts

of set and structure make mathematics into a single whole. So the fundamental concepts of set
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and structure organise and unify mathematics in a particular way. Fundamental concepts of

Euclid's mathematics work similarly but the way in which they organise and unify

mathematics is different.

Systematic foundations are most closely related to the traditional architectural image of

foundations, so in order to understand them in the context of foundational renewal we need a

special effort. This effort concerns some general metaphysical issues, which I shall mention

only briefly here postponing a more detailed discussion until the second part of this book. A

traditional notion of change stemming from Aristotle assumes that a changing entity has a

unchangeable core called its substance. The substance provides the identity of changing

entity, which survives through the change. This notion allows one to think of development of

science in terms of the architectural metaphor: while science grows and changes its identity is

preserved with its unchangeable foundations. Another traditional metaphysical theory

explains the notion of change away in terms of timeless momentary states. On this latter

account the history of science reduces to a series of images, which are put together for some

arbitrary reasons. This view is equally compatible with the architectural metaphor provided

that this metaphor is applied to the timeless images of science one-by-one. None of these

accounts suits my present purpose since each of them requires a timeless notion of

foundations in some form. So my metaphysical choice will be different. First, I shall assume a

notion of transformation, which is more general than the aforementioned traditional notion of

change since it doesn't imply any preserved identity. Think of a dividing amoeba: it passes

away when its two babies get born. This is a transformation but not a mere change. For it

doesn't preserve the identity of the old amoeba. Second, I shall consider identity as a specific

kind of transformation, which can be informally described as a repetition or renewal. The

survival of an amoeba just like its division is a process, it is not given for free by a

metaphysical necessity. But it is a process of a different sort, which I shall describe in what

follows. On this proposed metaphysical view foundations of science don't change. My

account shares this feature with the traditional accounts. But on my account the lack of

change – in the precise sense of the term specified above – doesn’t imply rigidity.

Foundations, on my account, undergo a permanent transformation, which constitutes the

identity of science or a particular branch of science. So renewing systematic foundations

make (a branch of) science into an enduring whole. A knowledgeable reader can see that the

proposed notion of identity as a transformation stems from the Category theory. However I

have also an independent  epistemological reason to put it forward.
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The way in which science constitutes its identity and preserves its through time and through

its own evolution appears me fundamental for distinguishing science from various kinds of

different science-like activities. As I have already stressed above there is a big difference

between reproduction of a ungrounded belief in individual minds through repetition and

dissemination of linguistic patterns expressing this belief and retention of mathematical

theorem through its competent understanding, which always requires from an individual some

critical attitude and an independent effort aiming at proof (or eventual disproof) of the given

theorem. But theorems and particular beliefs are very simple epistemic entities which can

reproduce but cannot change. (When one changes his or her beliefs this is the identity of the

person's mind which is preserved while beliefs themselves don't change but are exchanged

one for another. Theorems may change their appearance quite dramatically - I shall elaborate

on this in the second part of this book - but this phenomenon I qualify as reproduction, not as

a change in the precise sense explained above.) On the contrary, scientific theories and

disciplines, on the one hand, as well as various non-scientific doctrines, in particular religious

doctrines, on the other hand, do change and are usually supposed to do so: they are supposed

to be progressively developed. The preserved identity underlying this change (development)

is the identity of foundations of a given doctrine or scientific theory (Note 6). Older

epistemological accounts took it for granted that proper foundations must be "firm" and

rigidly fixed. They identified the lack of change with some form of rigidity, eternity or

timelessness. But so they missed the crucial point concerning how identities of foundations

(and hence identities of doctrines and theories dependent on these foundations) are

constituted. What I told above about beliefs and theorems applies to foundations: foundations

preserve their identity differently dependently of what they are foundations of. If we are

talking about foundations of a religious doctrine then a word-by -word reproduction of chosen

sacred texts usually counts as an appropriate way of preserving the identity of this doctrine.

But science, on the contrary, preserves its identity through a continuous revision of its

foundations. To perform such revision is the principle job of philosophy.

D) Consensus in science and philosophy

When I talk about the revision and renewal of foundations of science I don't assume that this

job is done by the global community of thinkers working as a single mind in the universal

historical time.  Just like the very distinction between the past, the present and the future

doesn't require any notion of universal cosmological or historical time but can be best made

with the appeal to the individual experience, my talk of past, present and future foundations
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doesn't refer to the global historical time either. Nevertheless I am not going to take a

Cartesian line and describe my proposed revision of foundations as a strictly individual

project. For it appears me too obvious that philosophy and science alike are collective affairs.

There are however important differences between the two cases. Although science certainly

encourages discussions between proponents of conflicting approaches and opinions any

controversy about scientific matters is supposed to be finally resolved by achieving a

consensus solution. Only consensus solutions gain the status of ready-made scientific

knowledge, which is worth to be transmitted through education to further generations. If the

scientific community doesn't manage to achieve consensus on some issue this issue can be

finally disqualified as non-scientific. This is why the global scientific community can be

described as the community of people sharing consensus views about the core scientific

knowledge. (Note 7) So at least at the first approximation it is not unreasonable to think about

science as a product of a single collective mind.

However this view is obviously inappropriate for philosophy. It is a historical fact that

philosophers never achieved consensus during the long history of their discipline; they even

hardly ever reached an agreement about what falls under the scope of their discipline and

what doesn't. (I'm sure that many philosophers will disagree with my views on this matter.)

Were a global philosophical consensus ever occur philosophy would change its usual profile

dramatically. But I don't think that this is something to be desired let alone realistically

expected. Philosophical communities are unified by shared problems rather than shared

solutions. This does not mean that philosophical problems are never solved but this means

that they are never solved finally, once and for all. Philosophers produce multiple conflicting

solutions, which never become the matter of global consensus and always leave a room for

revision. Although consensus plays a role in the life of philosophical community too this role

is less important for constituting the identity of such community. Although there is a sense in

which a philosophical community can be called a collective mind this collective mind is not

built through a consensus.

One may argue that a solution of a given problem which is not final doesn't deserve to be

called a solution at all. I don't think that this severe restriction is justified. One reason to take

philosophical problems and their tentative solutions seriously is that such solutions contribute

to foundations of science (including pure mathematics). As I have argued the lack of

philosophical consensus about foundations of science doesn't prevent scientists from

achieving consensus about scientific matters proper. In fact the situation is more involved

because foundations concern both philosophy and science, and so at this point the two models



13

of intellectual activities - one appropriate for science and the other for philosophy - clash. On

the philosophical side the issue of foundations remains as ever open. But on the scientific side

certain foundations get widely accepted while some alternative proposals are left out of the

mainstream. We can see this at the example of foundations of mathematics in the beginning of

20th century: while Hilbert's Grundlagen der Geometrie provided a widely accepted model of

how a mathematical theory should look like and what kind of rigour it has to achieve,

Brouwer's work on foundations of mathematics survived philosophically but didn't have any

comparable effect on the mainstream mathematical research (see Episode 3). In order to treat

this clash between science proper and philosophy one could distinguish between scientific and

philosophical foundations. Although this distinction suggests itself in most of relevant

contexts I don’t think that it is really useful. For the differences between science and

philosophy, which I stressed above, anyway keep these two kinds of intellectual activities

apart while foundations of science as a borderline between the two domains allows them for

fruitful interactions. So I don't see any advantage in dividing the border line between the two

parties once again. Like in the case of political borders between countries it is more

appropriate to think of foundations as a subject of joint responsibility of philosophy and

science without trying to ignore further differences between them.

E) Philosophy as art of foundations

Let me resume. Science is a subject of progress, that is, of a permanent growth. The progress

requires a transmission of the ready-made scientific knowledge through generations; this is

the way in which scientific knowledge endures through time. The transmission of scientific

knowledge doesn't reduce to repetition of pre-existing patterns but has a character of

permanent reconstruction, revision and renewal. So the talk of ready-made knowledge must

be always taken with a pinch of salt. Like any other human institution science either develops

or degenerates or both but cannot be simply preserved for long in a frozen condition.

The progress and the renewal are two basic modes of development of any science.  Although

they are much interwoven the notion of foundations helps to keep them distinct: ideally,

foundations are a subject of renewal but not of progress while the rest is a subject of progress

but not of renewal. Saying that there is no progress in foundations doesn't mean that

foundations remain rigidly fixed. A continuous renewal of foundations constitutes their

identity; the specific character of this renewal (which can be described as radical ) determines

our notion of science.  The renewal of foundations of science is the principle business of a

theoretical discipline called philosophy.
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The above remarks explain why philosophy doesn't perform any visible progress during its

history.  Let me now explain why in spite of this fact philosophy contributes to the progress of

science.  Having no notion of foundations in hands and no special discipline taking care about

foundations people would develop the whole of science through a continuous renewal rather

than progress: new views would permanently replace older views,  innovative trends would

struggle with conservative ones like in any other domain of public opinion, but there would be

no neutral background for measuring possible progress. But since one introduces the notion of

foundations as a "point of renewal" the situation changes. Then the "mainstream science"

deliberately leaves philosophical disagreements about its foundations out of its scope and

achieves in its proper domain a reasonable consensus allowing one to describe the overall

development of science as a continuing progress. The philosophical neutrality of science

doesn't mean that scientists shouldn't care about philosophical issues but it means that they

should very carefully distinguish between general philosophical and specific scientific

arguments in each particular context. Although I promote a strong cooperation between

philosophy and science I wholly approve on this requirement. Although this present book

contains some mathematical material I definitely qualify it as philosophical, not as

mathematical. Nevertheless I hope it can be useful for people studying mathematics, and

particularly for those studying mathematical subjects treated in this book.

Foundations present themselves in three well-distinguishable aspects: educational, conceptual

and systematic. From the educational viewpoint foundations are basic contents of a given

discipline from which one starts its learning. From the point of view of conceptual analysis

foundations are primitive blocks out which develop all further theoretical constructions.

Finally, from the systematic viewpoint foundations are specific contents binding other

relevant contents into a whole (i.e. into a system) and thus providing scientific theories and

disciplines with their proper identities. As we have seen these three aspects are closely

related, so there is good reason to consider them together rather then apart.

F) Plan of this book

The principle purpose of this book is to present and discuss foundations of mathematics using

the notion of recurrent foundations described above. Since recurrent foundations are

essentially dynamic and historically-laden I begin with a Brief History of the subject. The first

historical part of the book is organised around four mathematical texts, which I use for

dividing the history of mathematical foundations into four major Episodes. These texts are the

following: Euclid's Elements written (or better to say composed) about 300 B.C., Nouveaux
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Elements de Geometrie by Antoine Arnauld first published in 1667 ,  Grundlagen der

Geometrie by David Hilbert first published in 1899, and the first volume of the Elements of

Mathematic (sic!) by Nicolas Bourbaki first published in 1939. All the four works qualify as

Foundations in the sense explained in this Introduction. There is a very simple historical

connection between them: the latter three are written after the example of the first and in this

sense belong to "Euclidean tradition" broadly conceived. However in all these cases following

Euclid's example involves a radical departure from it, which stands in a sharp contrast with

various attempts to "improve" or "correct" Euclid, which continued until the end of 19th

century. This common feature of Arnauld's, Hilbert's and Bourbaki’s works explains why I

have chosen them for my story: they best show how foundations undergo and survive radical

revision, which according to my view is the very essence of foundations. Since all the three

works are purely mathematical while my task is mostly philosophical I shall provide in each

case appropriate philosophical contexts. By "appropriate contexts" I mean here historically

relevant contexts, which make explicit philosophical (i.e. pre-scientific) thinking behind each

of the four versions of mathematical foundations. In the case of Nouveaux Elements by

Arnauld, who was a Cartesian looking for application of Cartesian "method" in sciences, the

identification of the wanted philosophical context is obvious; in the other two cases the task is

more problematic but also realisable, as we shall see. Even if Euclid, Hilbert and Bourbaki

unlike Arnauld didn't have any precise philosophical agenda in their minds their writings were

involved in contemporary philosophical discussions, which provide us the needed context. As

I have already stressed in the last paragraph of the Introduction my view on history of

mathematical foundations is not supposed to grasp the whole subject. Although in addition to

the principles sources just mentioned I shall touch upon some other (in particular, talking

about Arnauld’s Elements I cannot avoid considering Descartes’ Geometry as well) my choice

remain limited and guided by my specific purpose, which I reveal in the second part of this

book.

While the First Part of this book treats the past the second part treats the future. In this second

part I describe and put further forward the ongoing programme of Categorical foundations of

mathematics, that is, foundations based on Category theory. It seems me evident that

Category theory plays in today's mathematics the role similar to that played by Set theory

about a century ago and deserves a philosophical treatment similar to that once given to Set

theory. In what follows I shall systematically introduce basic concepts of Category theory,

discuss their foundational significance and point to some consequences to some other areas of

philosophy including philosophy of language and philosophy of science. This discussion
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involves a significant revision of current views concerning relationships between mathematics

and logic, the role of mathematics in natural sciences and some others issues. I conclude with

a discussion concerning the role of foundations in mathematical education and arguments in

favour of historical approach.

The critical reader might say that this plan, which includes a historical discussion and

discussion of prospective future of foundations lacks any systematic discussion of foundations

per se. What this reader might look for is a systematic presentation of foundations of

mathematics independent of any historical issues and of any wishful thinking about the future.

To respond to this reader let me first make the following metaphysical claim without going to

a longer argument: the present is wholly analysed into (memory about) the past and

(anticipation of) the future without any remainder like Aristotle's timeless now, which could

be identified with the present per se. What the present involves over and above the past and

the future is a synthesis these two things, which is cancelled by the aforementioned analysis.

True, only by remembering past foundations and anticipating future foundations one doesn't

yet produce any presentation of foundations. However a proper synthesis of the two things

can make it. To achieve such a synthesis is the principle aim of this book. Let me however

stress again that talking about the past and the future I don't mean here the past and the future

of the universal history. Although Category theory since its invention in the mid-20th century

becomes progressively more important as a common language used in different domains of

mathematics and my bet is that Categorical foundations will become more popular in the short

historical future, strictly speaking, I talk only about one possible future, which I want to

promote and contribute to making it real, but obviously cannot predict what is going to

happen.

Anyway when we are talking about Category theory the above metaphysical generalities get a

clear pragmatic meaning. What prevents Category theory from entering the mainstream

philosophical discussion on foundations of mathematics is apparently not a mere lack of

interest but rather the lack of understanding how the new agenda relates to older agendas,

including those yet considered by many philosophers as having a potential for further

development. As a result the minority of philosophers promoting Category theory often looks

in eyes of their colleagues as a team of preachers of a new religion insensitive to arguments of

others. Thus to introduce the issue of categorical foundations in a broader historico-

philosophical context and establish in this way a true dialogue between categorical

foundations and different foundational programmes seems me an important task, which I try

to realise in this book. However useful "timeless" accounts on foundations (like Euclid's,
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Hilbert's or, say, Russell's in his Principles of Mathematics) can be, I deliberately construe my

account as heavily historically-laden. I believe that it is a historical blindness to bring into a

serious philosophical discussion only a relatively recent past - say, only works written in 20th

century - disregarding the rest as a barbarian pre-history or leaving it to pure historians who

have no ambition to judge about today's state of affairs. Philosophy and mathematics are both

old disciplines worth to be conceived in their historical integrity. Their further survival and

their future shape crucially depend of how we today projecting this past history into the

future. Surely one can simplify the task by cutting the past but the result will be poor: instead

of endurable (i.e. revisable) foundations one will get at best just another intellectual fashion,

which will parish soon without leaving any significant trace.

Part I. The Past: a brief history of foundations
Unlike physics, biology, psychology and many other sciences mathematics is at least as old as

philosophy and arguably much older. It has emerged (as a practice if not as a science) in all

known civilisations for obvious practical needs. It is amazing how  mathematics managed to

preserve its identity across all geographical and historical barriers since a very early period of

the history of the humankind. Taking an old text which looks like a philosophical speculation

a historian is often embarrassed by hermeneutic problems as to whether or not the given text

can be indeed qualified as philosophical in anything like today's sense. But mathematical

writings are usually identified as such easily (except only few interesting dubious cases).

Whenever people count and calculate this uncontroversially qualifies as a piece of

mathematics. For this reason mathematics has a longer history of co-existence and interaction

with philosophy than do most of other sciences. The integral impact of this interaction is

difficult to overestimate.

The lost history of mathematics written by Aristotle's pupil Eudemus of Rhodes (lived about

370-300 B.C.) and retold us by Proclus (5th century B.C.) in his Commentary of The First

Book of Euclid's Elements (see Proclus 1873 and Proclus 1970) mentions among other early

achievements of Greek mathematics Thales' (624-546 B.C.) proof of the fact that the diameter

of a given circle cuts it into two equal halves. We know nearly to nothing about the argument

offered by Thales but the very problem is telling. Having only very elementary geometrical

notions like circle, square and fraction in hand one may put mathematically non-trivial
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questions like this one: Which part of a given square takes the circle inscribed in this square?

But Thales' problem about the circle is not one of them. It is hard to imagine that many of

early mathematicians really doubted that the proposition in question was true. Most likely

Thales himself made it problematic and then suggested a proof. He questioned and revised

what appeared to be obvious instead of "going further" as many others would do. This was a

genuinely philosophical move (in the sense of the notion of philosophy described in the

Introduction) albeit we may probably qualify today Thales' proof as mathematical. Actually

this is one of earliest mathematical proofs we know about (even if we don't know it). It seems

reasonable to suggest that the whole idea of proof, which revolutionised mathematics of the

time, came out from this kind of philosophical inquiry about mathematics. That proofs also

allow for a far-reaching progress in mathematics was likely realised only later.

Another famous early Greek proof, that of incommensurability of the diagonal of a square

with its side, which the tradition attributes to Pythagoras, is also interesting in the present

context. This time the question was mathematically non-trivial. But the tradition tells us that

Pythagoras and his school viewed the problem as heavily metaphysically-laden: the related

metaphysical problem was, roughly, whether or not "everything is number"; throughout

classical philosophical literature (noticeably in Plato) one finds numerous references to the

incommensurability of the diagonal with the side of a square used for justification of the idea

that mathematics involves two different "first elements" irreducible to each other: number and

magnitude. Thus a tricky geometrical problem and its solution contributed to reasoning about

foundations.

These and some other similar historical examples suggest that the birth of theoretical

mathematics as opposed to earlier practices of calculations and land planning (the ancestor of

theoretical geometry) is due to the contact between these older practices and philosophical

thought. Obviously neither mathematics nor philosophy existed at the time as established

disciplines. This is why it is pointless to ask whether Thales and Pythagoras were

philosophers, mathematicians or physicists. However in a historically short period (of about

two centuries) Greek philosophy-laden mathematics reached maturity and gained its

autonomy from philosophy. Euclid's Elements (= Foundations), which date back to 4th

century BC and comprise principle achievements of earlier Greek mathematics is beyond any

doubt the most influential mathematical text ever written. It is still read as a sound

mathematical (rather than philosophical) text and some parts of its content are still included

into standard mathematical textbooks in only a slightly modernised form. This fact looks

fairly striking if we compare Euclid's Elements with Aristotle's Physics , History of Animals
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or any other historical scientific text dating back to about the same epoch. In the following

section I shall discuss the Euclid's principle work with some more details.

I.1. Episode One: Euclid's Elements

First of all let's make it precise what historical document we are going now to discuss. This is

less obvious than one might expect. Even if we leave apart the early history of the Elements,

about which we anyway know very little, and look only at what has been published in Europe

under the title of Euclid's Elements since the beginning of book printing (which covers a

relatively small period of the 2300 years-long history of the document) we find a surprisingly

diverse literature. Most of Euclid's publishers aimed at producing a sound mathematical

textbook rather than an accurate reproduction of an older source. So they felt free to correct

what they considered to be mistakes and flaws by providing new definitions, new axioms,

new theorems and new proofs of old theorems, etc. They didn't even always feel obliged to

preserve the principle composition of the source. This is moreover noticeable since many of

Euclid's publishers like I. Barrow (edition of 1733 ) and C.L. Dodgson (also known under the

name of Lewis Carrol, edition of 1875) took a conservative stand against new trends and

produced their editions of the Elements as a secure alternative to new contemporary

mathematical textbooks. So when they urged to return "back to Euclid" they meant the

Euclid's spirit, not the Euclid's letter. The situation is even more involved since many old

geometry textbooks, which don't mention Euclid's name in their titles, are still based on

Euclid's Elements; this makes it apparently impossible to distinguish clearly between a

modified version of the Elements and an original textbook based on the Elements. Comparing,

for example, once popular Elements of Geometry  first published by A. Tacquet in 1654 and

the edition of Euclid's Elements (the first eight books thereof) published by M. Dechales 6

years later in 1660 it is difficult to say why the later work has Euclid's name in its title while

the former doesn't. The difference between the two titles seems to be unrelated to the content

of the two books although it might point to different intentions of their authors. When

Tacquet's book was republished in 1725 (long after the authors death) it actually got Euclid's

name on its cover! Thus stressing the long life of the Elements as a standard textbook one

shouldn't forget that the identity of this ancient text until quite recently used to be understood

very liberally.

Even if some earlier editors of Euclid's Elements like J. Keill (edition of 1754) sincerely tried

to restore the old text rather than to improve upon it, the view on the Elements as a historical
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document, which should be judged from a historical rather than a purely mathematical

viewpoint and which for this reason requires a careful interpretation rather than remedies, is

relatively recent. A great philological work aiming at fixing the urtext of the Elements through

comparing available manuscripts and tracing their history back to lost earlier sources has been

made in the end of 19th - beginning of 20th century by J.L. Heiberg and his assistant H.

Menge. Noticeably these people were not mathematicians but historians and philologists.

Their edition of the original text of the Elements  (1883-1885) and its English translation by

Th. Heath (1908), which follows Heiberg's urtext as closely as possible, until today remain

standard references. All the later translations of the Elements into English and other modern

languages equally rely on Heiberg's urtext and apply a similar translating standard.

Modifications introduced into the Elements during the long history of this document shed a

light on the history of foundations. But here I mention them for a different purpose, namely

for comparing different treatments of the classical text. From a historian's point of view the

way in which the Elements were usually treated until 20th century looks barbarian, since

earlier editors of this document didn't properly distinguish between the original source from

later amendments; often they didn't have this distinction in their minds at all. However in eyes

of a mathematician having little or no interest to history this cavalry’s attitude may look quite

justified. Moreover he or she may argue that the historian's approach simply misses the

genuine mathematical content of the Elements and instead pays too much attention to

superficial details. A typical revisor of Euclid's Elements would say he doesn't change the

mathematical content of this text but tries to express it in a better manner and correct Euclid's

errors. It is easy to resolve this controversy by saying that historians and mathematicians have

different research interests. In my view, however, it deserves a different solution.

The notion of recurrent foundations described in the above Introduction partly justifies the

traditional cavalry’s approach of mathematicians to older sources and at the same time meets

principle concerns of historians. For this notion takes the revision of foundations to be their

essence. It removes foundations from a hypothetical timeless realm and brings them into the

timely realm of human intellectual history; at the same time it wholly justifies the usual

mathematicians' eagerness to modernisation and encourages one to think more seriously about

the future than about the past. The permanent revision of Euclid's Elements during last few

centuries shows that the notion of recurrent foundations has more traditional features than one

might probably expect. However this example also highlights its non-traditional side. A naive

Platonic view on mathematics suggests that improvements made on foundations bring them

closer to a hypothetical perfect form. It seems that at least a part of Euclid's revisors had
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something like this idea in their minds. But whether this notion of perfect foundations is

conceived as a realistic goal or only as a regulative ideal it is obviously in odds with the

notion of recurrent foundations explained above. So this aspect of the traditional view the

notion of recurrent foundations doesn't approve. Actually I can see no historical reason to

approve on it either. For in the real history foundations of mathematics never converged to a

stable form. After all the attempts to find the best possible formulation of the mathematical

content of Euclid's Elements this content is no longer seen today as satisfactory foundations

(Note 8). The post-Euclidean history of foundations doesn't demonstrate any global

convergence either, as we shall shortly see.

Having the notion of recurrent foundations in mind I shall treat Euclid's Element as follows. I

shall use Heiberg's urtext of the Elements and try to avoid its anachronistic interpretations as

the common standard of historical research requires it. However I shall not try to reconstruct

the outdated mathematics of the Elements on its own rights but choose for my analysis only

those of its features which seem me relevant to foundations of mathematics today. It might

sound paradoxical but such relevant features are mostly archaic features swept away by later

modifications. In fact there is nothing paradoxical here. To extract from the Elements its

purely mathematical (as distinguished from historical) content means basically to translate the

theory of the Elements into the language of today's mathematics. As a result of this translation

one gets a sound piece of elementary mathematics, which however no longer qualifies as

foundations. At the same time the basic architecture of the Elements and some philosophical

ideas behind the mathematics of the Elements may be still considered for a new use (in a

properly modified form). As I have already mention the analysis of older mathematical

foundations, which I am going to suggest, requires some historico-philosophical

reconstructions. In the next two paragraphs I provide basics of philosophy of mathematics of

Plato and Aristotle, which will provide us with two different views on the Elements. In

addition to texts of the two classical philosophers just mentioned I shall extensively use the

Commentary on the First Book of Euclid's Elements (hereafter referred as Commentary)

written by Proclus in 5th century A.D. from a Neo-Platonic perspective. I opt for Plato and

Aristotle for three obvious reasons. The first reason is their historical relevance: what

mathematics discussed by these two philosophers can be identified with Euclid's mathematics

with a degree of historical precision sufficient for our purpose. (Remind that the Elements is

not a fully original work but a systematic presentation of earlier results.) The second reason is

the impressive amount of available original writings, which allows for a sound reconstruction

of views of these two authors.. The third reason is related to the second: the two authors
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greatly influenced the following tradition. My view on Proclus, who lived about eight

centuries later than Plato and Aristotle is different. I don't consider his Commentary as an

authentic source of philosophy of mathematics of Euclid's epoch but rather see him as a

colleague doing a job similar to my own. From a historical viewpoint Proclus' Commentary is

very valuable because working on it this author had access to some important sources, which

are no longer available. The limits of this book don't allow me to bring into this discussion

further philosophical sources relevant to Euclid's mathematics. It also goes without saying the

short historico-philosophical summaries found in this book shouldn't be considered as

systematic presentations of philosophical views of the authors they mention.

Section 1.1. Plato's philosophy of mathematics

A) Basics

According to Plato the "highest" and actually the only "true" science is dialectics (Plato's

name for philosophy), which deals with eternal ideas. It is this eternal and immutable nature

of ideas, which makes science possible and guaranties the eternity and the immutability of

scientific truths. At the lowest epistemic level Plato places various kinds of practical

knowledge and technical skills dealing with the ever-changing material world.  This latter

kind of knowledge is doomed to be ever-changing itself because such is its subject-matter.

Epistemic capacities related to the two kinds of knowledge Plato calls, correspondingly,

reason (dianoia) and opinion (doxa). From the ontological viewpoint the domains dealt with

by dialectic and by the practical knowledge are distinguished as Being and Becoming . While

the former domain is accessible only by the pure reason the latter is accessible through the

sensual experience. The two domains are not independent: "becoming" material stuff

partakes and mimics their corresponding ever existing ideas. Think about a potter who tries to

achieve the best possible match between his material production and the ideal pattern he has

in mind beforehand. Similarly the Demiurg of Plato's Timaeos makes up the material world

looking at its pre-existing ideal prototype. This asymmetric relation between Being and

Becoming provides a sense in which the former determines the later and, correspondingly, in

which a pure theoretical reasoning about what there is (i.e. about ideas) supersedes any

practical argument. (Note 9)
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B) Intermediate status of mathematics

Today's popular term Mathematical Platonism suggests that Plato viewed mathematics as a

part of dialectics and took mathematical objects to be eternal ideas. However this is plainly

wrong. In fact today's Mathematical Platonism has very little to do with Plato's own

philosophy of mathematics and with the historical Platonism, i.e. philosophy developed in

Platonic schools of late Antiquity (Note 10). According to Plato mathematics doesn't enter

into either of the two ontological domains (Being and Becoming) and for this reason cannot

be straightforwardly qualified either as a science or as a practical skill. It appears to be

intermediate between the two worlds. The fact that mathematics turns to be a problematic

case doesn't make it less important for Plato but on the contrary makes it central for his

thinking. Consider the following two passages.

(Socrates talks to Gaucon)

"[ Socrates:] -  Next proceed to consider the manner in which the sphere of the intellectual is

to be divided.

- In what manner?

- Thus: --There are two subdivisions, in the lower or which the soul uses the figures given by

the former division as images; the enquiry can only be hypothetical, and instead of going

upwards to a principle descends to the other end; in the higher of the two, the soul passes out

of hypotheses, and goes up to a principle which is above hypotheses, making no use of images

as in the former case, but proceeding only in and through the ideas themselves.

- I do not quite understand your meaning, he said.

- Then I will try again; you will understand me better when I have made some preliminary

remarks. You are aware that students of geometry, arithmetic, and the kindred sciences

assume the odd and the even and the figures and three kinds of angles and the like in their

several branches of science; these are their hypotheses, which they and everybody are

supposed to know, and therefore they do not deign to give any account of them either to

themselves or others; but they begin with them, and go on until they arrive at last, and in a

consistent manner, at their conclusion?
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- Yes, he said, I know.

- And do you not know also that although they make use of the visible forms and reason about

them, they are thinking not of these, but of the ideals which they resemble; not of the figures

which they draw, but of the absolute square and the absolute diameter, and so on --the

forms which they draw or make, and which have shadows and reflections in water of their

own, are converted by them into images, but they are really seeking to behold the things

themselves, which can only be seen with the eye of the mind?

- That is true.

- And of this kind I spoke as the intelligible, although in the search after it the soul is

compelled to use hypotheses; not ascending to a first principle, because she is unable to rise

above the region of hypothesis, but employing the objects of which the shadows below

are resemblances in their turn as images, they having in relation to the shadows and

reflections of them a greater distinctness, and therefore a higher value.

- I understand, he said, that you are speaking of the province of geometry and the sister arts.

- And when I speak of the other division of the intelligible, you will understand me to speak

of that other sort of knowledge which reason herself attains by the power of dialectic, using

the hypotheses not as first principles, but only as hypotheses --that is to say, as steps and

points of departure into a world which is above hypotheses, in order that she may soar beyond

them to the first principle of the whole; and clinging to this and then to that which depends on

this, by successive steps she descends again without the aid of any sensible object, from ideas,

through ideas, and in ideas she ends.

- I understand you, he replied; not perfectly, for you seem to me to be describing a task which

is really tremendous; but, at any rate, I understand you to say that knowledge and being,

which the science of dialectic contemplates, are clearer than the notions of the arts, as they are

termed, which proceed from hypotheses only: these are also contemplated by the

understanding, and not by the senses: yet, because they start from hypotheses and do not

ascend to a principle, those who contemplate them appear to you not to exercise the higher
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reason upon them, although when a first principle is added to them they are cognizable by the

higher reason. And the habit which is concerned with geometry and the cognate sciences I

suppose that you would term understanding and not reason, as being intermediate between

opinion and reason."

(Rep., 510b-511d, B. Jowett's translation)

"[Socrates:] - <...> as to the mathematical sciences which, as we were saying, have some

apprehension of true being --geometry and the like --they only dream about being, but never

can they behold the waking reality so long as they leave the hypotheses which they use

unexamined, and are unable to give an account of them. For when a man knows not his own

first principle, and when the conclusion and intermediate steps are also constructed out of he

knows not what, how can he imagine that such a fabric of convention can ever become

science?

- Impossible, he said.

- Then dialectic, and dialectic alone, goes directly to the first principle and is the only science

which does away with hypotheses in order to make her ground secure; the eye of the soul,

which is literally buried in an outlandish slough, is by her gentle aid lifted upwards; and

she uses as handmaids and helpers in the work of conversion, the sciences which we have

been discussing. Custom terms them sciences, but they ought to have some other name,

implying greater clearness than opinion and less clearness than science: and this, in our

previous sketch, was called understanding. But why should we dispute about names when

we have realities of such importance to consider?"

(Rep., 533b-d, B. Jowett's translation)

There is a number of points to be made about these passages:

1) The principle difference between mathematics, on the one hand, and dialectics, on the other

hand, concerns two different treatments of hypotheses. While mathematics takes appropriate

hypotheses for granted and then "descends" to certain conclusions dialectics moves in the

opposite direction and purports to "ascend" from given hypotheses to some absolute non-

hypothetical principles and so to "do away" with the hypotheses.
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As examples of hypotheses Plato mentions in the first quoted passage "the odd and the even

and the figures and three kinds of angles and the like". This and other contexts found in Plato

suggest that one shouldn't understand hypotheses mentioned by Plato as (or at least only as)

certain propositions , i.e. some basic truths, taken for granted. Comparing Plato's examples

with the content of Euclid's Elements one finds that Plato's hypotheses correspond to Euclid's

Definitions rather than Axioms or Postulates. This shows that Plato's hypotheses can be better

understood as basic concepts rather than basic propositions.

2) Plato distinguishes mathematics both from practical "arts" and from dialectics and relates

mathematics to a special epistemic capacity of understanding (dianoia), which intermediates

between dialectical reason and practical opinion (Note 11). Remarkably this general scheme

doesn't reserve any special room for natural science. See D) for a further discussion.

3) Dialectical reasoning is expressed in dialogues, and first of all in oral discussion rather

written texts (Note 12). This shows that Plato's eternal ideas are not supposed to be matched

by fixed linguistic patterns. Thus "two times two equals four" wouldn't be for Plato an

example of eternal truth about eternal entities as one might expect. Plato would qualify the

"operational" aspect of "two times two equal four", that is, the notion of "producing" the

number four by multiplication, as related to Becoming, and he would insist that this

operational aspect is essential for mathematical thinking.

4) Notice Plato's critique of geometrical reasoning (or more precisely geometrical

understanding) aimed against using images. This critique follows from a more general notion,

according to which opinion relies entirely on senses, reason operates with pure ideas without

any help of sensual representations while mathematical understanding in general and

geometrical understanding in particular do something in between. Geometry demonstrates this

double nature of mathematics in the most explicit form. Thus Plato's critique amounts to

pushing mathematical understanding from the domain of opinion toward a dialectical pure

reasoning.

It is amazing how this Platonic thinking about mathematical matters could survive through

centuries in spite of the fact that Platonic philosophy for long lost its direct appeal. As we

shall see a major concern of people working on foundations of mathematics in the end of 19th

- beginning of 20th century was to get rid with any epistemic reliance on imagery and

intuition. Although these people justified this move differently the resemblance is just too
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striking to be explained by a mere coincidence. This is just one reason why a serious historical

analysis of the impact of Platonism (by which I mean the long-term intellectual tradition

originated from historical Plato but not a branch of philosophy of mathematics developed in

Analytic tradition of 20th century) on mathematics is important.

5) As we have seen Plato's epistemological notions have precise ontological counterparts:

reason corresponds to the domain of ideas, otherwise referred to as Being while opinion

corresponds to material Becoming. Although one doesn't find in Plato's dialogues a systematic

ontological account corresponding to mathematical understanding, that is, a systematic

ontology of mathematical objects, it has been later developed in Plato's circle. Such ontology

is referred to and severely criticised in Aristotle's Metaphysics. In particular, Aristotle

describes the notion of "intellectual matter" which is a counterpart of sensual matter relevant

to mathematical objects (see Met. 1031a).

Particularly interesting is the notion according to which mathematical objects unlike their

ideal prototypes exist in an indefinite number of copies (Met. 987b). According to this

account there is an indefinite number of copies of mathematical number 2 (i.e. an indefinitely

many of such numbers) all of which correspond to the same ideal number 2. A related

difference between ideal and usual mathematical numbers is that the former unlike the latter

cannot be a subject of arithmetical operations; this in particular implies that ideal numbers

unlike mathematical ones cannot be thought of as sums of units and so are "indivisible" (Met.

1081a-1082b). This shows that the intermediate nature of mathematical objects is indeed

essential: if one follows Plato's advise and "ascends" from mathematical objects to their ideal

prototypes one certainly stops doing mathematics!

Plato's view, according to which material and mathematical objects are "imperfect copies" of

their ideas has interesting implications concerning the issue of identity of mathematical

objects. There are multiple passages in Plato where he speaks of  “X itself”,  “X (thought of)

through itself” (kath'autoo) and “Idea of X” interchangeably or explains the latter through the

former.  For example in Symposium 210-211 Plato does this with the notion of Beauty, and in

Phedon 96-103 with number 2 (Note 13). I interpret these passages in the sense, which seems

me straightforward: the notion of “being identical to itself” applies to ideas but not to material

things, nor to mathematical objects. Material objects don't have identities at all (except of

identities of their ideas): their mutual transformations form a Heraclitean flow where nothing

ever remains the same (Note 14). Now, taking into consideration the aforementioned hints

from Aristotle's Metaphysics, it seems reasonable to treat the intermediate case of
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mathematical objects as follows: although these things don't allow for the strict identity they

allow for its weaker version which is equality. In other words (on the Platonic account)

mathematical objects are determined up to equality but not up to strict identity. On this

account judgements of the form A is B , which describe how things are, are available only in

dialectics, while mathematics provides judgements (if this name is still appropriate) of the

form A equals to B .

C) Quadrivium

I conclude this brief sketch of Plato's philosophy of mathematics with Plato's classification of

mathematical disciplines, which he provides in Republic, ch.7. Plato distinguishes four

mathematical disciplines: arithmetic, geometry, music (by which he means a mathematical

theory of musical harmony otherwise called harmonics) and astronomy. This quadruple

(given the name of Quadrivium in the Scholastic tradition) is structured in the following way.

Since arithmetic doesn't rely on images (let alone sensual perception) it is the closest to

dialectics and hence the "highest" and  the "purest" among the mathematical disciplines.

Geometry is the next in the Platonic epistemic hierarchy. One way to justify this lower

epistemic status of geometry with respect to arithmetic is to refer to its reliance to imagery. A

different account of apparently the same issue is found in Aristotle's Posterior Analytics

(Proclus in his Commentary  attributes it to Pythagoreans): while the Unit is the basic concept

(=foundation) of arithmetic the basic concept of geometry is Point, which can be described as

a positioned (thetos) Unit (An. Post. 87a36). Position is conceived of here as a "degree of

freedom", which makes mathematical reasoning (=understanding) less precise; it seems

appropriate to describe this notion of position  in the modern language as spatial intuition.

Harmonics and astronomy, which Plato's calls "sisters", share in Quadrivium the same lower

epistemic status. In modern terms one may describe them as two areas of applied

mathematics, namely harmonics as applied arithmetic and astronomy as applied geometry.

Plato is, of course, aware of the fact that material things, which are less noble than musical

harmonies and celestial motions, also allow for a mathematical treatment. In Republic he

stresses a practical utility of mathematics for affairs of the state. He grants the status of

sciences only to harmonics and to astronomy (leaving now aside his reservation concerning

dialectics) but not to any other "material application" of mathematics because these other

applications aim at practical purposes and so leave one no chance to ascend to dialectics.

Notice that geometry has in this Platonic hierarchy of mathematical sciences an intermediate

position between arithmetic, on the one hand, and harmonics and astronomy (placed at the
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same epistemic level), on the other hand. Given the intermediate status of mathematics itself

(with respect to dialectics and practical skill) the intermediate position of geometry makes it

into the most representative  (albeit not the purest) mathematical discipline. This is why to

refer to mathematics in general Plato often says "geometry and the like".

D) Mathematical physics

One may wonder if Plato finds a place in his epistemolgy to anything like natural science. An

answer can be found in Plato's dialogue Timaeos. In this dialogue Timaeos who is described

as "the most of an astronomer" among the participants presents them a piece of mathematical

physics and cosmology. Using various mathematical considerations he tells a story of creation

of the material universe on the basis of its ideal prototype. In particular Timaeos associates

regular polyhedra with physical "first elements" (Fire, Air, Water and Earth) and explains, to

give a funny example, the usual sensual effect of fire by the fact that the associated

tetrahedron is more picky than other polyhedra. Timaeos' story once again shows that Plato

doesn't identify mathematical objects with eternal ideas; in this dialogue he rather blurs the

boundary between mathematics and physical world. Noticeably before telling his story

Timaeos makes a strong reservation warning his listeners that what he is going to deliver is

nothing but a "probable tale". He explains that this low esteem of the delivered mathematical

speculation about physical matters has nothing to do with his personal modesty but has a more

profound reason: the chosen subject matter in principle doesn't allow for a rigorous account

(Note 15). Although Plato's apparently enjoys Timaeos' mathematical tale his official view

doesn't allow him to take it seriously.

Section1.2. Aristotle's philosophy of mathematics

A) Nature of things and their form

Aristotle is the first philosopher in the Western tradition who made a systematic effort to built

an intellectual history and find his own place in it. In the historical account provided by

Aristotle in the beginning of his Metaphysics the author traces the development of

philosophical thought from the legendary times of the "seven wisemen" up to Plato. Much of

Aristotle's own views are presented as a critical reply to this earlier tradition. I shall mention

here only few of lines of Aristotle's thinking, which diverge from Plato and Platonism.

Leaving aside Plato's dialectic as a philosophical business, which has little to do with science

in anything like today's sense, one can reasonably identify Plato's notion of science with his
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Quadrivium. On this account science reduces to pure and applied mathematics. Aristotle

believes that this reduction is fundamentally erroneous because it misses what he calls (after

some older thinkers) the nature (physis) of things. The following curious story told by

Aristotle's Physics helps to understand his intuition.

"Antiphon points out that if you planted a bed and the rotting wood acquired the power of

sending up a shoot, it would not be a bed that would come up, but wood - which shows that

the arrangement in accordance with the rules of the art is merely an incidental attribute,

whereas the real nature is the other, which, further, persists continuously through the process

of making."  (Phys. 193a12-17, translated by R.P. Hardie and R.K. Gaye)

Indeed, in spite of its aristocratic flavour one finds behind Plato's philosophy the intuition of a

craftsman who has a definite idea of what he wants to make but never manages to realise his

task perfectly. The visible world on Plato's account is a craftsman’s work: remind the

Demiurg from Timaeos. Aristotle, on the contrary, stresses the differences between natural

and artificial things and argues that the former are far more powerful than the latter. The

geometrical form of bed artificially given to a piece of wood unlike the proper nature of the

wood has no reproductive power. So the funny observation due to Antiphon in Aristotle's eyes

is an evidence against Platonic way of thinking, which would treat the wood as a passive

matter and the geometrical form of the bed as a reflection of eternal ideas. It turns out that

nature survives the form through the perpetual reproduction.

This difference between Plato's and Aristotle's views has far-reaching epistemological

consequences, as we shall now see. In particular, it leads Aristotle to a very different

understanding of mathematics.

B) Mathematical abstraction

To counter Plato's argument according to which one cannot possibly reason about sensible

physical things Aristotle says the following:

"[C]learly it is possible that there should also be both propositions and demonstrations about

sensible magnitudes, not however qua sensible but qua possessed of certain definite qualities.

For as there are many propositions about things merely considered as in motion, apart from

what each such thing is and from their accidents, and as it is not therefore necessary that there

should be either a mobile separate from sensibles, or a distinct mobile entity in the sensibles,
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so too in the case of mobiles there will be propositions and sciences, which treat them

however not qua mobile but only qua bodies, or again only qua planes, or only qua lines, or

qua divisibles, or qua indivisibles having position, or only qua indivisibles. Thus since it is

true to say without qualification that not only things which are separable but also things which

are inseparable exist (for instance, that mobiles exist), it is true also to say without

qualification that the objects of mathematics exist, and with the character ascribed to them by

mathematicians. And as it is true to say of the other sciences too, without qualification, that

they deal with such and such a subject - not with what is accidental to it (e.g. not with the

pale, if the healthy thing is pale, and the science has the healthy as its subject), but with that

which is the subject of each science - with the healthy if it treats its object qua healthy, with

man if qua man: - so too is it with geometry; if its subjects happen to be sensible, though it

does not treat them qua sensible, the mathematical sciences will not for that reason be

sciences of sensibles - nor, on the other hand, of other things separate from sensibles.

Many properties attach to things in virtue of their own nature as possessed of each such

character; e.g. there are attributes peculiar to the animal qua female or qua male (yet there is

no 'female' nor 'male' separate from animals); so that there are also attributes which belong to

things merely as lengths or as planes. And in proportion as we are dealing with things which

are prior in reason and simpler, our knowledge has more accuracy, i.e. simplicity. Therefore a

science which abstracts from spatial magnitude is more precise than one which takes it into

account; and a science is most precise if it abstracts from movement, but if it takes account of

movement, it is most precise if it deals with the primary movement, for this is the simplest;

and of this again uniform movement is the simplest form. <...>

Each question will be best investigated in this way - by setting up by an act of separation

what is not separate, as the arithmetician and the geometer do. For a man qua man is one

indivisible thing; and the arithmetician supposed one indivisible thing, and then considered

whether any attribute belongs to a man qua indivisible. But the geometer treats him neither

qua man nor qua indivisible, but as a solid. For evidently the properties which would have

belonged to him even if perchance he had not been indivisible, can belong to him even apart

from these attributes. Thus, then, geometers speak correctly; they talk about existing things,

and their subjects do exist." (Met. 1077b16 - 1078a30, Ross' translation, corrected, bold mine)

There are several points to be made about this passage.
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1) Unlike Plato Aristotle doesn't assume that epistemic boundaries between different branches

of knowledge (and between different types of knowledge) reflect ontological distinctions

between different kinds of entities. He doesn't assume that the subject-matter of any given

branch of knowledge constitutes a "separate" ontological domain (Note 16). The mere fact

that mathematicians successfully reason about numbers and magnitudes doesn't mean for

Aristotle that numbers and magnitudes should be taken ontologically seriously. At the same it

is not Aristotle's aim to disqualify the mathematicians' talk as merely fictious. Aristotle

doesn't try to refute the realism of mathematicians about numbers and magnitudes but tries to

make it less naive and more sound. He doesn't say that claims to the effect that numbers and

magnitudes exist are plainly false but says that these claims are true only provided the

meaning of "exist" is properly specified in the given context.

The idea that the verb "exist" has multiple context-dependent meanings is a cornerstone of

Aristotle's philosophy. In the Platonic vein Aristotle distinguishes between the prior sense of

"exist" (namely, exist as a substance) and a plethora of secondary senses of this verb. This

theory is systematically presented by Aristotle in his Categories. As we shall shortly see the

kind of existence, which Aristotle grants to mathematical objects is not prior. So there is a

sense in which mathematical objects exist and there is a different sense in which they don't

exist. Everything depends on the sense of "exist" taken into the account.

2) In various contexts (but not in the above passage) Aristotle distinguishes between things

prior for us (hemin proteron) and things prior by nature (physei proteron). Here is an example.

For us the notion of solid body is prior - in the sense that we acquire it in the early childhood

through the uneducated sensual experience - while the notions of surface, line and point are

acquired later through mathematical education. But by nature the ("real") order of things is

the opposite: moving points generate lines, moving lines generate surfaces and moving

surfaces generate solids. This is why in mathematical theories, which are supposed to

represent the natural order of things adequately, points and lines are introduced before solids

(like in the Elements). The order in which we learn about these things, i.e. the epistemological

order, doesn't correspond to the ontological order in which these things naturally emerge.    

The above example shows that the opposition for us versus by nature remains well compatible

with Platonism. So in this case Aristotle uses new words to tell us the old Platonic story rather

than proposes something really new. But Aristotle's opposition prior in reason versus prior in

essence (proteron too logoo / proteron the ousia) referred to in the above passage (in the

locution "... as we are dealing with things which are prior in reason and simple ...") definitely
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goes beyond Platonism. Like the former opposition this latter opposition differentiates

between what we know about things (or how we reason about them) and how things really are

(i.e. their essence) (Note 17). This new way to distinguish between epistemological and

ontological priority brakes with fundamental principles of Plato's philosophy. For it

challenges the fundamental Platonic assumption according to which conceptual beauty,

simplicity, coherence, precision and related qualities of reasoning are the best available

evidences of what there is. As Aristotle puts it boldly in one place "not all things which are

prior in reason are also prior in essence" (all'ou panta hosa too logoo protera kai the ousia

protera: Met. 1077b1-2, my translation). Aristotle's message  to Plato, Platonics and other funs

of pure mathematics seems to be here the following: However clear, precise and beautiful

your beloved mathematical theories might be they may fail to account for anything real; this is

why pure mathematics provides no privileged access to what there is.

In the analysis of concrete examples the two pairs of oppositions (for us versus by nature and

in reasoning versus in essence) lead to different results. In particular, it turns out that the

order of generation of geometrical concepts (point --> line --> surface --> solid) corresponds

to the order of "natural reasoning" but not to the essential order of things, i.e. not to the

relevant ontological order. This essential order is reversed; in fact it coincides with the naive

epistemological order for us: solid bodies are ontologically prior while surfaces, lines and

points are ontologically dependent (i.e. their existence depends on that of bodies). For "we

have no experience of anything that can be put together out of lines ot planes or points" (Met.

1077a34-35, Ross' translation). Aristotle's motivation behind this argument seems to be again

physical (or rather biological):  only bodies can be animated , i.e. can be living creatures

(Note 18). Thus from this new perspective the theoretical order of concepts found in

mathematics is no longer seen as an adequate presentation of the natural order of real things.

3) Let us now see what kind of existence Aristotle grants to mathematical objects. It is an

abstract existence. Aristotle's notion of abstraction has two principle components. The first

component is Aristotle's notion according to which any thing A , which has a certain feature

B, can be conceived of qua B disregarding all of its other features. This epistemic operation is

widely used by Aristotle in very different contexts. For example in Metaphysics Aristotle

describes the subject-matter of his first philosophy (which today we call ontology) as being

qua being (on he on). This means that the subject-matter of this science includes everything

that there is but conceived only in the aspect of its existence disregarding anything else. This

qua-operation, for which Aristotle has no special name, should not be confused with
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abstraction. First philosophy in Aristotle's understanding, is not an abstract science, i.e. its

subject-matter is not abstract. (In fact this is the only science, which is not abstract in this

sense as we shall now see.)  For Aristotle's notion abstraction involves a further step: after

taking A qua B one "separates" B and conceives of B on its own rights as if B were a self-

standing entity. Aristotle describes this step somewhat paradoxically as "setting up by an act

of separation what is not separate". This further step can be also described as hypostatisation,

which amounts to thinking of specific features of things distinguished with the qua-operation

as if they were full-fledged self-standing entities. Aristotle's view, if I understand him

correctly, is that this kind of thinking is excusable for a mathematician (and any scientist

dealing with abstractions) but not for a philosopher, who pursues real things (Note 19). So, in

Aristotle's view, it is up to philosopher rather than mathematician to explain what

mathematics is really  about.

4) Mathematical abstraction amounts to (i) taking things qua numbers (in arithmetic) or qua

magnitudes (in geometry), qua moving points (in astronomy), etc, and (ii) hypostatisation of

these features. There is a remarkable trade between precision and abstraction, stressed by

Aristotle in the above passage. The more abstract is a given subject matter (i.e. the less is the

number of features simultaneously taken into consideration) the more precise is the

corresponding theory. This explains, in particular, why (and in which sense) arithmetic is

more precise than geometry. However on Aristotle's account the more abstract implies the less

real. Thus unlike Plato Aristotle doesn't think of theoretical precision as a direct evidence of

truth about what there is. He rather thinks of it as one specific epistemic criterion competing

with other epistemic criteria, which are equally important. It is easy to built a very precise

theory about a very abstract subject-matter (i.e. about a subject matter, which comprises only

very few features of real things) but such a theory will be of a little epistemic value because of

its exceeding abstractness.

Aristotle's epistemological views on mathematics imply a new account of relationships

between different mathematical disciplines, which turns Platonic Quadrivium upside down.

Remind that in the Quadrivium the science of astronomy is given the lowest possible grade,

which it shares with the science of harmonics. Aristotle, on the contrary, sees astronomy as a

science, which achieves the best balance between mathematical precision and physical

substantiality. This makes astronomy, by Aristotle's word "most akin to philosophy". As

explains Aristotle "this science speculates about substance, which is perceptible but eternal,

while the other mathematical sciences, i.e. arithmetic and geometry, treat of no substance"
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(Met. 1073b5-7, Ross’ translation). This is, of course, a polemic exaggeration. For, on the one

hand, Aristotle's theory of abstraction still grants a limited substantiality to numbers and

geometrical magnitudes (i.e. to subject-matters of arithmetic and geometry). And, on the other

hand, it provides a sense in which the subject-matter of astronomy also qualifies as abstract.

So the difference stressed by Aristotle in the above quote is rather a matter of degree.

Nevertheless Aristotle's message seems to be clear: it is wrong to evaluate the epistemic value

of a given theory taking into account only its precision, its substantiality must be also taken

into the account. Judged by this double criterion astronomy gets a higher rank than geometry

and arithmetic. Celestial bodies turn to be "more real" than numbers and geometrical

magnitudes (we shall shortly see more precisely why).

5) It must be stressed that Aristotle's notion of abstraction is not specific for mathematics but

provides a universal epistemic mechanism of constitution of the subject-matter of any special

science. Notice, in particular, the example of the healthy in the above passage. Aristotle goes

as far as claiming that abstraction (i.e. "setting up by an act of separation what is not

separate") is the way in which "each question will be best investigated" - and this obviously

concerns not only mathematical questions. This is why the subject-matter of astronomy is also

abstract: although celestial bodies are perceivable astronomy studies them not qua perceivable

but qua moving and qua geometrical.  Aristotle doesn't make it what distinguishes

mathematical abstraction from different kinds of abstraction except saying that arithmetic

treats things qua numbers, while geometry treats them qua magnitudes (and more specifically

- qua lines and qua planes).

6) Although Aristotle approves on abstraction as an epistemic operation, which facilitates a

scientific investigation, he warns us about its possible misuse. Consider Aristotle's example of

male and female mentioned in the above passage. It may be developed in the following way.

One can reasonably constitute a research area like female studies provided that it will study

only human females or only female individuals of some other particular species. But the

notion of general female studies, which is a science about females of all biological species, is

absurd. This is in spite of the fact that the general notion of female makes a perfect sense and

applies across the species. Such generality doesn't allow one to abstract the property of being

a female from the underlying species and make it into a subject matter of a special research.

Studying females in general one should still properly distinguish between their genera (in this

case - biological species) and avoid any uncontrolled switching between the genera. Such
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erroneous switching prohibited by Aristotle is known after him under the name of metabasis. I

shall say more about Aristotle's notion of generality in 1.4E.

Even if Aristotle tries to justify what mathematicians are doing in their domain rather than

dismiss the mathematical way of thinking he apparently has a suspicion that mathematics

works like the general female studies just described. Why indeed one cannot abstract the

property of being female and study it on its own rights but can abstract and study the property

of being in such-and-such number or have such-and-such magnitude? What makes the

difference? Aristotle doesn't give any definite answer to this question. His strategy is not to

distinguish between appropriate and inappropriate abstraction on some general

methodological grounds but rather always control abstraction through ontological

considerations. As far as one properly distinguishes between what exists in the primary sense

and what exists only in a secondary sense as a hypostasised property abstraction remains

well-controlled. Mathematics may be just as unsound as the general female studies but it is

harmless unless one takes numbers and magnitudes ontologically too seriously. What really

approves on mathematics is astronomy, harmonics and similar disciplines (we may call them

all by the modern name of mathematical physics), which take into their account not only

mathematical properties of things but also these very things (substances) from which the

mathematical properties are abstracted. This doesn't mean that mathematical physics unlike

pure mathematics has a direct access to things but this means that mathematical physics has a

mechanism of ontological control, which the pure mathematics lacks. While a pure

mathematician typically doesn't care about sensible things behind his beloved mathematical

abstractions an astronomer always has these sensible objects in his sight. While a pure

mathematician can forget about abstraction and study mathematical objects as if they were

real for an astronomer the mathematical (and physical) abstraction is a part of his job. In this

sense astronomy is closer to philosophy than geometry and arithmetic as Aristotle states this.

(Remind that on Plato's view it s arithmetic, which is the closest.)

The Aristotelian project of mathematical physics just outlined sounds very modern. In

Aristotle's own works it remained underdeveloped: the above reconstruction is based almost

exclusively on what Aristotle says about astronomy in his Metaphysics and Posterior

Analytics. Aristotle principle means to control abstraction is different: in his view the most

effective ontological control is provided not by the mathematical physics but by the first

philosophy (i.e. ontology and metaphysics).
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C) Mathematics, physics and logic: The Classical Model of Science

Although the notion of mathematical physics described above seems to be perfectly adequate

to Aristotle's epistemological assumptions he apparently couldn't point to any other science

except astronomy as a concrete realisation of this idea (Note 20). His principle

epistemological project is different: to invent and justify a general notion of science such that

physics and mathematics could be seen as its two special cases. Since mathematics in

Aristotle's time was already well-developed while the contemporary physics could be hardly

qualified as a theory in anything like the same sense (remind that Plato viewed it as a mixture

of mythological tales and practical techniques) this Aristotle's project can be also described as

an attempt to establish physics as a science on its own rights. To realise this ambitious project

Aristotle invents and develops two new disciplines (in addition to physics). The first is his

first philosophy, which can be described as a science of everything provided that the

everything is viewed only in the aspect of its existence. This science distinguishes between

abstract and primary entities, between substances and their essential (and accidental)

properties, etc. The second discipline Aristotle calls analytics; it has two different parts,

which roughly correspond to the content of the Prior Analytics and the content of the

Posterior Analytics. The first part is known today under the name of logic (first used by

Stoics) while the second can be identified as epistemology, i.e. a general theory of science.

First philosophy and analytics are closely related: a part of their content, which today we

qualify as logical (for example, the law of non-contradiction) Aristotle qualifies as

ontological, i.e. as a description of how things generally are. Aristotle's ontology, logic and

epistemology found in his Metaphysics and the two Analytics provide a general framework for

doing physics, mathematics and any other science. It can be roughly described as follows:

a) Every particular science accounts for a certain domain of being and claims certain truths

(true propositions) about entities belonging to this domain of being.

b) Scientific truths are divided into two classes: first (fundamental) truths taken for granted

and secondary (derived) truths.

c) Derived truths are obtained from fundamental truths through logical inference.

Fundamental truths are taken as premises of inferences and derived truths are obtained as

conclusions of inferences.

d) Logical inferences are governed by laws of logic, which reflect general ontological

principles and are universal for all sciences.
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This model of science called in (Jong, R., Betti, A., forthcoming) Classical had a great

influence throughout the history. It remains quite influential until today (in spite of the fact

that today people don't usually understand by logic the old-fashioned Aristotelian

syllogistics). It is moreover important to see that the above model of science is not unique.

We have already seen that Platonism offers a very different view on science in general and on

mathematics in particular. Curiously the philosophical view usually called today

Mathematical Platonism , according to which mathematical objects exist beforehand rather

than are created by mathematical activities, derives from the Aristotelian views on

mathematics rather than from the Platonic views. For the Aristotelian views unlike the

Platonic views leave no room for the idea that mathematical objects generate and develop; on

the Aristotelian view they (in an appropriate sense) always exist. True, according to Aristotle,

mathematical objects exist only qua abstract entities and this is not what today's Mathematical

Platonists usually have in mind. However this part of the story has little or no impact on the

mathematics itself: the Aristotelian model of science is universal and doesn't depend on the

ontological status of entities studied by this or that science. So mathematicians, on the

Aristotle’s account, have no other choice but to take the existence of mathematical objects for

granted and leave it to philosophers to specify the ontological status of mathematical objects.

The Platonic notion of generation has, on the contrary, precise mathematical counterparts, as

we shall now see.

Section1.3.  Euclid via Plato

Plato's philosophy of mathematics outlined in I.1.1 turns to be impressively coherent with the

content of Euclid's Elements. I don't think that this fact means that Euclid, about whom we

know near to nothing, was a convinced Platonic and tried to implement Plato's philosophical

doctrine in his mathematical work. It seems me more likely that it was rather Plato who

developed a good deal of his philosophy through a critical reflection upon his contemporary

mathematical tradition, which Euclid later inherited. In any event my aim here is not to

develop a historical speculation about mutual influences of philosophy and mathematics in

Antiquity but to understand the Elements properly. For obvious reason I cannot (and need not)

analyse here the content of this work in full; I shall not even try to provide here a survey of

this content. I shall discuss instead only some architectonic principles of the Elements , which

in my view are relevant to the today's discussion on foundations of mathematics.
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The Elements are foundations of mathematics but they also have foundations of their own,

which I shall call fundamentals (Note 21). I mean Definitions, Postulates and Axioms, which

have a bearing onto all the following Propositions and play a major role in organising the

content of the Elements into a coherent whole. In what follows I shall analyse these three

kinds of fundamentals one after another and then discuss some general issues concerning

Propositions.

A) Definitions

The Elements consist of 13 Books, which contain in total 128 Definitions. Each Book starts

with a relevant list of Definitions except Books 8, 9, 12 and 13, which use only Definitions

from the preceding Books. Book 10 has two additional lists of Definitions introduced in the

middle. Here are basic Euclid's  geometrical ( Book 1) and arithmetical (Book 7) Definitions

(hereafter I use the recent translation of Euclid's Elements by Richard Fitzpatrick):

Definitions of Book 1:

D1.1. A point is that of which there is no part.

D1.2. And a line is a length without breadth.

D1.3. And the extremities of a line are points.

D1.4. A straight-line is whatever lies evenly with points upon itself.

D1.5. And a surface is that which has length and breadth alone.

D1.6. And the extremities of a surface are lines.

D1.7. A plane surface is whatever lies evenly with straight-lines upon itself.

D1.8. And a plane angle is the inclination of the lines, when two lines in a plane meet one

another, and are not laid down straight-on with respect to one another.

D1.9. And when the lines containing the angle are straight then the angle is called rectilinear.

D1.10. And when a straight-line stood upon (another) straight-line makes adjacent angles

(which are) equal to one another, each of the equal angles is a right-angle, and the former

straight-line is called perpendicular to that upon which it stands.

D1.11. An obtuse angle is greater than a right-angle.

D1.12. And an acute angle is less than a right-angle.

D1.13. A boundary is that which is the extremity of something.

D1.14. A figure is that which is contained by some boundary or boundaries.
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D1.15. A circle is a plane figure contained by a single line [which is called a circumference],

(such that) all of the straight-lines radiating towards [the circumference] from a single point

lying inside the figure are equal to one another.

D1.16. And the point is called the center of the circle.

D1.17. And a diameter of the circle is any straight-line being drawn through the center, which

is brought to an end in each direction by the circumference of the circle. And any such

(straight-line) cuts the circle in half.

D1.18. And a semi-circle is the figure contained by the diameter and the circumference it cuts

off. And the center of the semi-circle is the same (point) as (the center of) the circle.

D1.19. Rectilinear figures are those figures contained by straight-lines: trilateral figures being

contained by three straight-lines, quadrilateral by four, and multilateral by more than four.

D1.20. And of the trilateral figures: an equilateral triangle is that having three equal sides, an

isosceles (triangle) that having only two equal sides, and a scalene (triangle) that having three

unequal sides.

D1.21. And further of the trilateral figures: (a) a right-angled triangle is that having a right-

angle, (b) an obtuse-angled (triangle) that having an obtuse angle, and (c) an acute-angled

(triangle) that having three acute angles.

D1.22. And of the quadrilateral figures: (a) a square is that which is right-angled and

equilateral, (b) a rectangle that which is right-angled but not equilateral, (c) a rhombus that

which is equilateral but not right-angled, and (d) a rhomboid that having opposite sides and

angles equal to one an other which is neither right-angled nor equilateral. And (e) let

quadrilateral figures besides these be called trapezia.

D1.23. Parallel lines are straight-lines which, being in the same plane, and being produced to

infinity in each direction, meet with one another in neither (of these directions).

Definitions of Book 7:

D7.1. A unit (or monad) is (that) according to which each existing (thing) is said (to be) one.

D7.2. And a number (is) a multitude composed of units (monads).

D7.3. A number is part of a(nother) number, the lesser of the greater, when it measures the

greater.

D7.4. But (the lesser is) parts (of the greater) when it does not measure it.

D7.5. And the greater (number is) a multiple of the lesser when it is measured by the lesser.

D7.6. An even number is one (which can be) divided in half.
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D7.7. And an odd number is one (which can) not (be) divided in half, or which differs from an

even number by a unit.

D7.8. An even-times-even number is one (which is) measured by an even number according

to an even number.

D7.9. And an even-times-odd number is one (which is) measured by an even number

according to an odd number.

D7.10. And an odd-times-odd number is one (which is) measured by an odd number

according to an odd number.

D7.11. A prime number is one (which is) measured by a unit alone.

D7.12. Numbers prime to one another are those (which are) measured by a unit alone as a

common measure.

D7.13. A composite number is one (which is) measured by some number.

D7.14. And numbers composite to one another are those (which are) measured by some

number as a common measure.

D7.15. A number is said to multiply a(nother) number when the (number being) multiplied is

added (to itself)  as many times as there are units in the former (number), and (thereby) some

(other number) is produced.

D7.16. And when two numbers multiplying one another make some (other number) then the

(number so) created is called plane, and its sides (are) the numbers which multiply one

another.

D7.17. And when three numbers multiplying one another make some (other number) then the

(number so) created is (called) solid, and its sides (are) the numbers which multiply one

another.

D7.18. A square number is an equal times an equal, or (a plane number) contained by two

equal numbers.

D7.19. And a cube (number) is an equal times an equal times an equal, or (a solid number)

contained by three equal numbers.

D7.20. Numbers are proportional when the first is the same multiple, or the same part, or the

same parts, of the second that the third (is) of the fourth.

D7.21. Similar plane and solid numbers are those having proportional sides.

D7.22. A perfect number is that which is equal to its own parts [= equal to the sum of its

factors].

These Definitions can be classified into the following three types.



42

(i) "Technical" Definitions like D1.11, D1.23 and D7.22.  A technical Definition specifies the

intended meaning of a special mathematical term. These Definitions look like today's

mathematical definitions and for this reason seem unproblematic.

(ii) "Philosophical" Definitions like D1.1 and D7.1. Definitions of this kind unlike Definitions

of the former kind cannot be "used" in following mathematical proofs in anything like the

usual sense.

(iii) Definitions, which look like technical but are not used in the following proofs. This, in

particular, is the case of D1.22: terms rhombus and rhomboid nowhere appear in the Elements

except this definition itself.  Instead Euclid uses the notion of parallelogrammic area (first

time in Proposition P1.34) or parallelogram without trying to define it (so apparently he takes

this name as self-explaining).

I leave it to the reader to sort out the above list into the three suggested categories (minding

dubious cases like D1.13 - D1.14) and discuss here from a Platonic perspective only a more

general issue concerning the role of definitions in the Elements.

The question "what is X", to which a definition of X provides an answer, is a basic question

asked in Plato's dialectics. For example, in Symposium  Plato looks for "true" definition of

Eros, in Protagoras - of virility, etc.  According to Aristotle (Met. 1078b) Plato was actually

the inventor of the method of definition employing appropriate genus and species. Taking this

into consideration one may look at Euclid's mathematical definitions as a way to meet

concerns about mathematical "hypotheses", which Plato expresses in his Republic (see the

above quote), by applying the dialectical method of definition within mathematics. As I

showed elsewhere (Rodin 2003) definitions of Book 1 (with an exception of D1.23) indeed

form a precise Platonic hierarchy, which well explains the order of the definitions and the

choice of their definienda. Here I shall demonstrate this only at the particular example of

D1.22 in which Euclid classifies triangles.

This classification looks usual but in fact it slightly differs from the one we normally use

today: on Euclid's account an equilateral (regular) triangle is not  a special case of isosceles

triangle and an isosceles triangle is not a special case of scalene triangle; in Euclid the three

classes of triangles are disjoint.  Euclid's three kinds of triangles are ordered by the "degree of

regularity", not by their generality. For a suggestive analogy think about a potter classifying

his pottery into the three categories: perfectly good, slightly distorted and heavily distorted.

The today's usual convention according to which a regular triangle is isosceles would likely

sound for Euclid as a sheer contradiction. D1.22 provides an example of Platonic hierarchical

ordering, where further elements are conceived of as distorted images of preceding elements:
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Fig. 1

The regular triangle in D1.22 is a generic figure, which generates the other two kinds of

triangles through a progressive distortion. This specific generic principle underlies most of

Euclid's definitions. The basic geometrical  generator in the theory of the Elements is point

(D1.1) while the basic arithmetical generator is monad or unit (D7.1). (Beware that by D7.1

and D7.2 the unit is not itself a number.) Given the aforementioned Platonic notion of point as

a "positioned monad" one may consider the monad as a generator of the whole mathematical

universe.

As we have seen the Platonic view on definitions doesn’t reduce them to auxiliary devices

serving for conjecturing and proof of propositions like we usually do this today. On the

Platonic view mathematical definitions – and systems of definitions - are thought of as self-

sustained pieces of mathematical knowledge. And actually this older view much better

squares with Euclid’s Definitions than the modern view. In particular, it explains why many

of Euclid's definitions are left in the Elements without any further treatment (Note 22). As we

shall see in 1.4A Aristotle’s view on the role of definition is quite different.
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B) Postulates and Axioms

Unlike the case of Definitions, which are spread over the 13 Books of the Elements, this

treatise contains a unique list of Postulates and a unique list of Axioms; both lists are placed

one after the other in the beginning of the Book 1. The main purpose of this section is to make

clear the difference between Postulates and Axioms, which has been largely forgotten in

modern mathematics but is quite important in Euclid. In the second part of this book I shall

argue that this forgotten distinction is relevant to the today's discussion on foundations.

Here are the Postulates:

P1. Let it have been postulated to draw a straight-line from any point to any point.

P2. And to produce a finite straight-line continuously in a straight-line.

P3. And to draw a circle with any center and radius.

P4. And that all right-angles are equal to one another.

P5. And that if a straight-line falling across two (other) straight-lines makes internal angles on

the same side (of  itself whose sum is) less than two right-angles, then, being produced to

infinity, the two (other) straight-lines meet on that side (of the original straight-line) that  the

(sum of the internal angles) is less than two right-angle (and do not meet on the other side).

Postulates P1-P3 describe the well-known rules of "construction by ruler and compass" (Note

23). The point I want to emphasise is that prima facie these Postulates are not propositions.

They are not truths taken here for granted. They are not things to be evaluated as "true" or

"false". If these three Postulates can be qualified as assertions at all they assert the following:

it is postulated,  (literally: asked for) to perform such-and-such operation. P1 requires to draw

a (segment of) straight line between two given points, P2 requires to extend a given straight

segment indefinitely beyond any of its two endpoints and P3 requires to draw a circle using a

given straight segment. What these Postulates allow one to take for granted are these very

operations described by verbs in the infinitive form. Clearly an operation is not something that

can be evaluated as true or false.

The two key points allowing one to make a Platonic sense of P1-P3 are (i) Platonic

fundamental ontological distinction between Being and Becoming and (ii) Platonic doctrine

about the intermediate status of mathematics. As Proclus explains it in length in his

Commentary mathematics in general and geometry in particular has this double, almost

paradoxical nature: it partly belongs to the domain of Becoming (or Generation) and partly to

the domain of Being. Although these two aspects of geometry cannot be separated from each
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other one can nevertheless distinguish between Postulates as principles of "geometrical

Becoming" (geometrical generation) and Axioms as principles of "geometrical Being". Any

assertion that something is the case makes sense only if it concerns Being but not Becoming.

Only such assertions can be evaluated as true or false. Postulates 1-3 describe what and how

geometrical objects generate but not what and how they are. Thus Platonic philosophy of

mathematics allows for making sense of P1-P3 without paraphrasing them into propositions.

The reader may notice that P4 and P5 have a different character. P4 says that all right angles

(see D1.10) are equal. The case of P5 is dubious. In principle P5 can be interpreted like P1-P3

as a description of an operation, namely of the construction of the intersection point of the two

straight lines in question. However it reads more naturally (and more literally) as a description

of a property of a ready-made construction rather than description of the operation bringing

this construction about (Note 24).

Proclus resolves the difficulty of Platonic interpretation of Euclid’s Postulates by claiming

that P4 and P5 don't really qualify as Postulates and must be proven as theorems. He offers

the reader a proof of P4 borrowed from "other commentators". This obvious proof is based on

superposition and relies on Axioms 4,5; arguably it meets Euclid's usual standard of rigor. For

P5 Proclus proposes his own proof, which is obviously mistaken (Note 25). It may be argued

that Proclus simply cheats when he denies to qualify P4 and to P5 as postulates. But I don't

think that this argument is justified. In the given case Proclus acts as a critic but not only as a

commentator. He doesn't cheat against his source but make a suggestion of how to improve on

it.

P1-P3 make more mathematically precise basic Platonic generic principles, which we already

found in Definitions. Think of point as the fundamental generator of our geometrical universe.

This unique Platonic "ideal point" is indistinguishable from a pure ideal unit. Then put some

"geometrical matter" in it. This geometrical matter allows for distinguishing between different

points. In other words (more appropriate to the Platonic way of thinking) - it allows points to

be many. This multiplication of points can be conceived of in two different (mutually

dependent) ways. First, one may boldly introduce (after Pythagoreans) the notion of

"position" and claim that points differ by their positions. Second, one may think of change of

point's position in terms of continuous motion. This gives one the notion of line as a trajectory

of point moving from one fixed position to another (cf. D1.2, D1.3). To get P1 one should

now choose among all possible trajectories the straight one. The fundamental Platonic

assumption according to which any variety of things belonging to the same genus always

contains a generator turns to be helpful again: think of a curvilinear motion as a disturbed



46

rectilinear motion. Even if the principle of inertia just stated is anachronistic we can see that it

perfectly squares with the Platonic way of concept-building (Note 26).

Fig.2

P2 follows from the idea to continue the rectilinear motion of a mobile point inertially instead

of stopping at the previously decided position:

Fig.3

Finally P3 performs an alternative scenario which unlike P2 doesn't lead to infinite

construction. Instead of continuing the rectilinear motion one turns the mobile point around

the fix point and so gets a circle.

Fig.4

One finds in Proclus' Commentary  a version of the same dialectics (Note 27). In the case of

circle (P3 and D1.15, 16) it involves fundamental Neo-Platonic categories of Unity (monhe)

represented here by the generic fix point, Progress (proodos) represented by the radius and
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Return (epistrofhe) represented by the circumference. It is not my aim here to get deep into it.

Instead I would like to stress that my interest to this issue is not purely historical. Notions of

generator and genericity are abundant in today's mathematics. They can be precisely defined

in many different settings including a category-theoretic one. In the second part of this book I

shall show that the notion of genericity plays in new category-theoretic foundations a more

important role than in standard set-theoretic foundations.

Let's now consider Axioms of the Elements. Euclid calls them Common notions (koinai

ennoiai) but their identification as Axioms (axiomata) is clearly documented by Aristotle (see

1.4C below) and so is uncontroversial. Here they are:

A1. Things equal to the same thing are also equal to one another.

A2. And if equal things are added to equal things then the wholes are equal.

A3. And if equal things are subtracted from equal things then the remainders are equal.

A4. And things coinciding with one another are equal to one another.

A5. And the whole [is] greater than the part.

As we see unlike Postulates (or more precisely - unlike P1-P3) Axioms are propositions. From

a Platonic viewpoint this is related to the fact that unlike Postulates Axioms describe

mathematical Being (rather than Becoming). Syntactically the relevance of Axioms to Being

is expressed by the fact that each Axiom contain the word are or is (Note 28). However

Euclid's Axioms account for the "intermediate" mathematical Being, not for Being

simpliciter. This is why A1-A4 involve not the basic non-qualified copula is but the specific

"mathematical copula"  is equal to. (See I.1.1B5 above where we discuss a Platonic

interpretation of the notion of equality.) Taking into consideration that A5 immediately

implies that the whole is not equal to the part we can claim that (under Platonic interpretation)

the main purpose of Euclid's Axioms is to specify the notion of equality, which is a

mathematical substitute of the notion of identity. Since equality is the basic distinguishing

feature of mathematical Being as distinguished from Being simpliciter the Axioms tell us in

general terms what the whole science of mathematics is about. In fact they say even more than

that since they also tell us something about how mathematical Being relates to Being

simpliciter.

A1 is the only axiom in the list, which involves the notion of identity in an explicit form:

notice the word “same” used in this axiom. The interplay between identity and equality made

explicit by A1 is worth a special analysis. Observe that identity is stronger than equality in the
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following obvious sense: identical things are equal but equal things are generally not

identical. (This is why by exchanging identity and equality in A1 one gets a false statement:

things identical to equal things are identical.) Having this in mind one may think of A1 as a

description of what happens when identity is weakened up to equality. Consider things a, b, c,

... equal to self-identical thing I : a = I, b = I, c = I, .... In Platonic terms this construction can

be described as splitting of self-identical idea I  into an indefinite number of mathematical

"copies". A1 states that this splitting is uniform in the following sense: all the obtained copies

turn to be mutually equal. This allows to think of the copies as defined "up to equality" rather

than up to identity (Note 29).

Now observe that A2-A4 involve such notions as addition, subtraction and "putting into

coincidence", which obviously belong to mathematical Becoming. Moreover taken at their

face value these notions may also belong to the domain of sensual material experience

(beware that addition and subtraction mentioned in A2 and A3 don't necessarily mean

addition and subtraction of numbers). That is why they are so telling for people doing

mathematics at all levels and in all ages. But A2-A4 put precise conditions under which these

operations qualify as mathematical; each of these conditions involves the notion of equality.

In this sense we can say that A2-A4 delimit the boundary between the domain of pure

mathematics and the domain of sensual experience. Remarkably A2-A4 don't involve the

notion of identity. Euclid doesn't say instead of A2

If equal things are added to the same thing then the wholes are equal

or

If the same thing is added to equal things then the wholes are equal

or

If the same thing is added to the same thing the whole is the same.

For the operation of addition (or "putting together") makes an obvious sense only in the

domain of copies. Indeed we have no problems with the meaning of a + b = c  when a, b, c

exist in an indefinite number of copies. In this case the addition of a and b doesn't affect a and

b themselves: one gets a new entity c and still keeps a stock of copies of a and b, which can

be eventually used for making up new copies of c or for some other purpose. It is less clear

what happens when a, b, c are unique. Do a and b survive the addition and continue to exist as

parts of c or they get destroyed by this operation? I shall not explore here this controversial

metaphysical question but only mention that the standard Platonic answer to it is in negative:
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self-identical entities, i.e. ideas, are indivisible; moreover they cannot be a subject of any

operation like addition, subtraction and the like. Thus from a Platonic viewpoint the fact that

Euclid avoid the notion of identity talking about operations is quite justified.

Let me now provide more concrete details, which show that the above Platonic reading of

Euclid's Axioms is indeed well-grounded.  A remarkable feature of Euclid's Axioms is that

these Axioms don't mention explicitly any specific mathematical object but talk only about

abstract "things". An analogy with Hilbert's Foundations of Geometry of 1899, where this

latter author similarly refers to "systems of things" (see I.3 below), is tempting but rather

misleading. While Hilbert's axiomatic theory of geometry is supposed to be modelled in a

certain theoretic domain (or domains) Euclid's Axioms are supposed to be universal truths

about mathematical objects. Remind that mathematical objects considered by Euclid are of

two basic kinds: arithmetical objects (numbers) and geometrical objects. This provides one of

two traditional explanations of Euclid's term Common Notions: arithmetic and geometry share

Axioms in common. (The other traditional explanation, which in my view is less plausible,

refers to the fact that the Axioms are allegedly supposed to be commonly known and

commonly granted.) Let's now consider how A1-A5 work in arithmetic and geometry. As I

have already mentioned the crucial notion involved into Euclid's Axioms is that of equality. In

case of numbers we can take it (provisionally) for granted. Similarly we can take for granted

elementary arithmetical operations like addition and subtraction. So at least at the first

approximation the arithmetical meaning of A1-A3 is unproblematic. The question about an

arithmetical meaning of A4 (if any) is, on the contrary, the most difficult. Another word for

the notion of coincidence involved into this axiom is congruence (this latter term stems from

the standard Latin translation of Euclid's "ta farmozonta ep allhla" by "quae inter se

congruunt"). Today this term has a geometrical meaning, which is roughly the same as

Euclid's (see below) and a number of more specific mathematical meanings (including

arithmetical), none of which is suitable for interpreting A4. Thus in order to claim that A4

applies to arithmetic one needs to suggest an appropriate notion of congruence (coincidence)

of numbers. D7.2 turns to be helpful for this end: this definition shows that Euclid's notion of

number is actually not quite the same as today's. The definiendum of D7.2 can be translated

into the modern terms as finite set of units (provided, of course, that we use the most naive

notion of set possible) (Note 30). By congruence of numbers so conceived Euclid and his

contemporaries might mean one-to-one correspondence between their units (elements of finite

sets). This is moreover likely given the quasi-geometrical way in which Euclid treats numbers

in arithmetical Books of his Elements: he systematically represents units by segments of
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straight line and numbers by bigger segments composed of unit segments. Under this

representation the arithmetical operation of subtraction requires the mutual application of

straight lines (Note 31). Although the case of coincidence (congruence) is nowhere revoked

by Euclid in this context it remains an obvious possibility. Proclus definitely considers A4 as

universal (i.e. applicable both in geometry and arithmetic) on equal footing with other

Euclid's axiom although he doesn't explain its arithmetical meaning (Note 32). Apparently he

takes the arithmetical meaning of A4 to be obvious.  The suggested interpretation of the

definiendum of D7.2 as a finite set also sheds a light on A5. The part/whole relation doesn't

seem to be immediately applicable to the modern notion of number. But it does so when after

Euclid one thinks of numbers as sets of units. Beware that talking about parts Euclid always

means proper parts. Notice also D7.3, which explicitly defines the notion of part in the case

of numbers. This definition provides the term part with a more restrictive meaning than one

could expect. What Euclid calls a part of a given number is sometimes called today an

aliquote part. However this restriction doesn't make A5 false in the domain of numbers.

Let me now clarify the geometrical meaning of Euclid's axioms. The notion of congruence in

this case can be taken for granted. But beware that on Euclid's account the case of congruent

geometrical objects is nothing but a special case of equal geometrical objects. In order to see

what Euclid means by equality of geometrical objects one needs to consider how A2-A3 are

used in his geometrical proofs. In the case of straight segments the meaning of addition and

subtraction is obvious but Euclid also applies these operations to other kinds of geometrical

objects, noticeably to rectilinear figures, i.e. polygons. For the sum A+B of two given

polygons A, B Euclid takes a polygon resulted from application of A, B side-by-side;

subtraction is taken to be the reverse operation. Notice that results of both operations are not

defined uniquely up to congruence: there are many ways in which one of the two given

polygons can be applied to the other. However according to A2 all polygons A+B are equal.

Thus Euclid's equality of geometrical objects doesn't imply their congruence although

according to A4 the converse is (obviously) the case. In modern terms Euclid's equality best

translates as equicomposability: A and B are said to be equicomposable when they both can be

cut into the same (up to congruence) disjoint parts or in other words - when B can be obtained

from A trough a re-arrangement of its parts. Since polygons are equicomposable if and only if

they have the same area Euclid's theory of polygons found in Book 1 of the Elements is often

interpreted as a theory of areas (Note 33). This modern reading, however, assumes a very

different setting in which geometrical objects are put into correspondence with real numbers
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called their measures while Euclid's notion of equality applies to geometrical objects directly

(Note 34).

We see that although the five Axioms of the Elements apply both to geometry and arithmetic

meanings of basic terms involved into the Axioms depend on a given domain of application.

In geometry and arithmetic (as these disciplines are presented in the Elements) equality,

addition, subtraction, congruence, whole and part are understood differently, so one may

reasonably wonder if there is any sense at all in which these notions can be grasped in

abstraction from this or that specific subject-matter. This question opens an important issue in

the early philosophy of mathematics, which concerns so-called universal mathematics (also

known under its Latin name of mathesis universalis). I shall postpone a discussion on

universal mathematics until the next section and conclude this section with few general

remarks about Euclid's Postulates and Axioms.

1) We have seen that the Axioms provide a very general framework for doing mathematics,

which can be compared with a logical framework (see 1.4C below). Although this framework

doesn't apply outside of mathematics, the Platonic notion according to which mathematics is

distinguished by its epistemic status rather than by its specific subject-matter, allows one to

call this framework universal in a strong sense. However in the Elements this general

framework doesn't have a form of a mathematical theory on its own rights. To develop any

branch of arithmetic or geometry Euclid needs additional principles introduced through

Definitions and Postulates; such additional principles provide a subject-matter for any

particular branch of mathematics. Unlike Axioms these additional principles are not basic

truths from which one may obtain further truths;  they are rather primitive constructions with

the help of which one may perform further constructions.

2) P4 and P5 look dubious not only because of their content but also because of their

epistemic form. P4 is arguably provable from other principles (without P5) - and hence is

superfluous. But P5 makes a real problem. The project of developing geometry on the double

foundations, which comprise five very general Axioms, on the one hand, and three generic

operations described by P1-P3, on the other hand, doesn't work as it should work from a

Platonic viewpoint. It works only up to certain point which delimits what (after Bolyai) is still

sometimes called Absolute geometry , i.e. the part of Euclid's theory independent of P5.

Attempts to prove P5 as a theorem on the basis of the rest of Axioms and Postulates (and

perhaps some additional fundamental principles) was a major driving force of the long-term
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history of geometry until the second half of 19th century when geometry and the whole of

mathematics changed its shape dramatically (see Episode 3 below).

3) Leaving now the problem of P4-P5 apart we can specify a more general sense in which

Euclid's foundations prove insufficient from a Platonic viewpoint. P1-P3 are supposed to

generate all of the available geometrical content. However the idea to identify the geometrical

content with the geometrical universe generated by P1-P3 (i.e. constructed by ruler and

compass) doesn't go through. One obvious problem is that basic geometrical definitions of

Book 1 cover much more than P1-P3 generate. Consider, for example, D1.2 (general

definition of line which covers all possible curves) and D1.14 (plane figure). So the

geometrical universe RC (for ruler and compass) generated by P1-P3 is only a minor part of

the larger geometrical universe G described by Definitions. In order to tackle this problem a

Platonic could stress the special status of RC and claim, in particular, that only "perfect" lines

like straight lines and circumferences allow for a more precise mathematical treatment while

other kinds of curves don't (Note 35). However this strategy in fact doesn't fully work either.

For similar problems arise within RC itself. Euclid's fundamentals easily allow one to

construct a square and then double it. They equally allow for building a cube but not for

doubling a cube. This latter fact has been firmly established only in 19th century. Ancient

geometers were unaware of it and tried hard to solve the problem (known as Delian problem)

by ruler and compass. They obtained a number of interesting  solutions, which required

different instruments, but didn't achieve what they aimed at. Plato rejected such "mechanical"

solution on philosophical grounds (Note 36). However one didn't need to be a convinced

Platonic to opt for the rejection. Since P1-P3 belonged to the core of foundations of geometry

of the time no Greek geometer could possibly consider mechanical solutions of Delian

problem as satisfactory without a radical revision of foundations of his science. But as a

matter of historical fact the needed revision didn't take place until 17th century B.C. (see

Episode 2 below).

This example shows two important things: (i) that a mathematical problem, which seems to be

quite specific or even purely technical, can undermine foundations and (ii) that a revision of

foundations can significantly contribute to mathematical progress even if this progress is

measured merely in terms of problem-solving. The question of whether or not Delian and

other similar problems undermine Plato's philosophy of mathematics requires a more nuanced

answer. It is clear that this philosophy cannot provide a sound explanation of why a square

can be easily doubled by ruler and compass but a cube, on the contrary, cannot. In this sense
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the impossibility of the desired solution makes for Platonism a real problem. However one

doesn't necessarily need to dismantle the whole of Platonism to fix it. One may argue instead

that circle and straight line turn to be wrong generators and look for better ones without

changing basic philosophical principles behind mathematical theories.

4) Noticeably there is no arithmetical Postulates in the Elements although one can easily

conceive of them. Consider, for example, these:

To compose a number from its given units (compare D7.2)

To compose a given number with a given unit

(alternatively: Given a number to construct the following number)

Given two numbers to construct their sum

The notion of arithmetical Postulate seems me moreover reasonable (I mean reasonable by

Euclid's own standard) since Euclid's arithmetical Propositions just like his geometrical

Propositions have a part, which can be described as construction (in a precise sense of the

term, which I shall explain in the next section). Euclid certainly uses these and some other

basic operations in his arithmetic but he doesn’t stipulate them as Postulates. I shall suggest a

possible explanation of this puzzle in 1.3C3 below.

C) Propositions: Problems and Theorems

Editors of the Elements traditionally give the name of Propositions to numbered blocks of

text, which constitute the principle content of the Elements. Unlike the case of Definitions,

Postulates and Axioms the title  "Propositions" doesn't appear in the original text. This

relatively late terminological invention looks particularly controversial given the today's

standard meaning of the term "proposition" stemming from Frege and Russell as a sentence

having a definite truth-value. For we shall shortly see that Euclid's Propositions generally

don't qualify as propositions in this later sense. Following the established tradition I shall use

the term "Proposition" referring to the Elements in the usual way but I warn the reader that

this term describes here only a textual feature and says nothing about the content. In what

follows I shall denote by "Em.n" n-th Propositions of m-th Book of the Elements.
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A plausible reason why Euclid and Greek mathematics avoid to use any general name in this

case could be this: Euclid's Propositions are of two quite different kinds: some of them are

Problems while some other are Theorems. Although these latter terms don't appear in the

Elements either they were widely used already in the Plato's circle. Proclus describes the

distinction between Problems and Theorems several times in his Commentary. Below is one

such passages. It begins with a more general epistemological point, which I include in the

quote for clarity:

"Science as a whole has two parts: in one it occupies itself with immediate premises, while in

the other it treats systematically the things that can be demonstrated or constructed from these

first principles, or in general are consequences of them. Again this second part, in geometry,

is devided into the working out of problems and the discovery of theorems. It calls

"problems" propositions whose aim is to produce, bring into view, or construct what in a

sense doesn't exist, and "theorems" those whose purpose is to see, identify, and demonstrate

the existence and non-existence of an attribute. Problems require us to construct a figure, or

set it at a place, or apply it to another, or fit it upon or bring it into contact with another, and

the like; Theorems endeavour to grasp firmly and bind fast by demonstration the attributes

and inherent properties belonging to the objects that are the subject-matter of geometry."

(Commentary 200.20-201.14, Morrow's translation)

I should warn the reader that Morrow's English translation of Proclus' Commentary, which I

use here,  is strongly modernising: in particular, there is no counterpart in the Proclus' text for

the word "proposition" used by the translator; Proclus doesn't say in fact that Problems

"require" us to do something. I deliberately use here this modernised translation without

trying to correct it to begin with because I think that the proposed modernisation is rather

advantageous for the first reading. After doing some necessary hermeneutic work I shall

propose a more literal translation, which will provide a closer grasp on Proclus' thinking.

The difference between the two kinds of Propositions is made quite explicit in the Elements:

Problems always end up with the words "[what] it was required to do" ("oper edei poihesai"

or in Latin translations "quod erat faciendum") while Theorems always end up with the words

"what it was required to show"  ("oper edei deixai" or in Latin "quod erat demonstrandum")

(Note 37). In what follows I shall point to another textual criterion of a similar type.  Even if

the word "problem" in this context has a meaning, which is more specific than the colloquial

one, the distinction between Problems and Theorems in the Elements appears to be clear:
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Problems realise geometrical constructions with certain desired properties while Theorems

establish some non-trivial properties of given geometrical constructions. One can remember

this from the school: pupils are asked either to construct something, i.e. to solve a Problem, or

to prove something, i.e. prove a Theorem. What remains unclear is how Euclid combines the

two kinds of Propositions into a single theory. One might expect that Euclid's Theorems

establish facts concerning geometrical constructions, which are realised in the preceding

Problems. One could then describe this situation as follows: Problems grant the existence of

geometrical construction while Theorems treat their further properties (see Backer 1957).

However the order of Propositions in the Elements doesn't meet this expectation. The first

Proposition of the Elements, namely Problem E1.1, shows how to construct an equilateral

triangle by the ruler and the compass but one doesn't find in the Elements any Theorem

establishing a property of the equilateral triangle. The first Theorem of the Elements E1.4

establishes a property of general triangles, which are not built beforehand (except the special

case treated by E1.1). The following Theorem E1.5 treats an isosceles triangle,  which is not

built beforehand either. The reader can easily check that these immediate examples are

anything but exceptional.

Let me now show that Proclus' Platonic analysis allows for a better understanding of the role

of Problems and Theorems in Euclid's mathematics. Before I shall discuss differences

between the two kinds of Propositions I shall stress their similarities. From the modern

viewpoint the fact that there are profound similarities between Problems and Theorems is

perhaps more surprising than the fact that there are differences.  For a (solution of a) Problem

looks like a particular method of geometrical construction while a Theorem is a proved

mathematical truth. So it is not immediately clear how such different things can be taken on

equal footing and put into one and the same category of Propositions. However Euclid's

Problems and Theorems indeed share a common structure, which represents a fundamental

pattern of Euclid's reasoning. Says Proclus:

"Every Problem and every Theorem that is furnished with all its parts should contain the

following elements: [i] an enunciation, [ii] an exposition, [iii] a specification, [iv] a

construction, [v] a proof, and [vi] a conclusion. Of these enunciation states what is given and

what is being sought from it, a perfect enunciation consists of both these parts. The exposition

takes separately what is given and prepares it in advance for use in the investigation. The

specification takes separately the thing that is sought and makes clear precisely what it is. The

construction adds what is lacking in the given for finding what is sought. The proof draws the
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proposed inference by reasoning scientifically from the propositions that have been admitted.

The conclusion reverts to the enunciation, confirming what has been proved." (Commentary,

203.1-15, Morrow's translation)  (Note 38)

Before I shall try to clarify what Proclus tells us here let's consider two examples: Problem

E1.1 (Proclus' own example)  and Theorem E1.5. This is how the six aforementioned parts are

identified in these two cases:

Proposition E1.1 (Problem):

“[enunciation]

To construct an equilateral triangle on a given finite straight-line.

[exposition]

Let AB be the given finite straight-line.

[specification]

So it is required to construct an equilateral triangle on the straight-line AB.

Fig.5

[construction]

Let the circle BCD with center A and radius AB have been drawn [Post. 3], and again let the

circle ACE with center  radius BA have been drawn. And let the straight-lines CA and CB

have been joined from the point C, where the circles cut one another to the points A and B

(respectively).
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[proof]

And since the point A is the center of the circle CDB, AC is equal to AB . Again, since the

point B is the center of the circle CAE, BC is equal to BA. But CA was also shown (to be)

equal to AB. Thus, CA and CB are each equal to AB. But things equal to the same thing are

also equal to one another . Thus, CA is also equal to CB. Thus, the three (straight  lines) CA,

AB, and BC are equal to one another.

[conclusion]

Thus, the triangle ABC is equilateral, and has been constructed on the given finite straight-

line AB. (Which is) the very thing it was required to do."

Proposition E1.5 (Theorem):

“[enunciation]

For isosceles triangles, the angles at the base are equal to one another, and if the equal sides

are produced then the angles under the base will be equal to one another.

[exposition]

Let ABC be an isosceles triangle having the side AB equal to the side AC, and let the straight-

lines BD and CE have been produced in a straight-line with AB and AC (respectively).

[specification]

I say that the angle ABC is equal to ACB, and (angle) CBD to BCE.

[construction]

For let the point F have been taken somewhere on BD, and let AG have been cut off from the

greater AE equal to the lesser AF . Also, let the straight lines FC and GB have been joined.
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Fig.6

[proof]

In fact, since AF is equal to AG, and AB to AC, the two (straight-lines) FA, AC are equal to

the two (straight lines) GA, AB, respectively. They also encompass a common angle FAG.

Thus, the base FC is equal to the base GB, and the triangle AFC will be equal to the triangle

AGB, and the remaining angles subtended by the equal sides will be equal to the

corresponding remaining angles. (That is) ACF to ABG, and AFC to AGB. And since the

whole of AF is equal to the whole of AG, within which AB is equal to AC, the remainder BF

is thus equal to the remainder CG. But FC was also shown (to be) equal to GB. So the two

(straight  lines) BF, FC are equal to the two (straight lines) CG, GB, respectively, and the

angle BFC (is) equal to the angle CGB, and the base BC is common to them. Thus the triangle

BFC will be equal to the triangle CGB, and the remaining angles subtended by the equal sides

will be equal to the corresponding remaining angles. Thus, FBC is equal to GCB, and BCF to

CBG. Therefore, since the whole angle ABG was shown (to be) equal to the whole angle

ACF, within which CBG is equal to BCF, the remainder ABC is thus equal to the remainder

ACB . And they are at the base of triangle ABC. And FBC was also shown (to be) equal to

GCB. And they are under the base.

[conclusion]

Thus, for isosceles triangles, the angles at the base are equal to one another, and if the equal

sides are produced then the angles under the base will be equal to one another. (Which is) the

very thing it was required to show.”
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As we see this Proclus' analysis of a Proposition (a Problem and a Theorem) into six parts

applies to Euclid's text immediately without paraphrasing. The above partitioning of E1.1 is

made by Proclus himself (Commentary, 208.1-210.16). The partitioning of E1.5 is mine but

there is hardly any possible controversy about it. The reader can check it independently that

this six-part structure is present and easily identifiable in most of Euclid's Propositions

including arithmetical Propositions (Note 39).

I shall now generalise upon the two above examples considering them more precisely one

after the other.

C1) Problem

Enunciation of a given geometrical problem is usually read today as a requirement to make a

construction with certain desired properties. But the original text makes this interpretation

unconvincing since in Greek the infinitive form of a verb (to construct  and the like) normally

doesn't imply any deontic modality (Note 40). More significant is the fact that enunciations of

Problems have the same grammatical form as Postulates P1-P3 . This fact shows that the

usual reading of Postualtes as stipulated truths (see 1.3C below) and the usual reading of

enunciations of Problems as requirements are hardly compatible with each other: the original

text strongly suggests that these locutions should be interpreted uniformly. The principle

difference between a Postulate and a Problem is just this: a Postulate (at least one of the first

three Postulates) grants some basic construction while a Problem treats some more

complicated construction. That is why a Problem doesn't reduce to its enunciation just like a

Theorem doesn't reduce to its enunciation. Euclid explains us in E1.1 how to construct an

equilateral triangle but doesn't explain in P1 how to produce a straight line: the latter

construction unlike the former is taken for granted. However this important difference doesn't

concern the meaning of a given enunciation itself. The enunciation of E1.5 "For isosceles

triangles, the angles at the base are equal to one another" comes with an epistemic

requirement according to which it should be proved but not simply taken for granted. But this

enunciation is not itself a requirement of any sort. I claim that enunciations of Euclid's

Problems should be understood similarly. "To construct an equilateral triangle on a given

finite straight-line" is not by itself a requirement but a description of an operation. This

description is sufficient for understanding of what this operation does but not sufficient for

understanding how it does it. Similarly the enunciation of E1.5 is sufficient for understanding

what is claimed here to be the case but not sufficient for understanding why this claim is
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justified. How and why are indeed required but these epistemic requirements shouldn't be

confused with what the two enunciations tell us. People hardly ever make this confusion in

the case of a Theorem but in the case of a Problem the confusion is common. By correcting it

we gain the desired uniform reading of Problems and Postulates. Enunciations of Problems

just like Postulates (at least P1-P3) describe constructive operations. The only difference

between them is that the latter are fundamentals while the former are not. A brief look at the

Proclus' quote concerning the distinction between Problems and Theorems in its original form

fully confirms this interpretation: unlike the translator (Morrow) the author (Proclus) doesn't

describe Problems and Theorems in terms of aims and purposes. Here is my modified version

of this translation:

"Science as a whole has two parts: in one it occupies itself with immediate enunciations,

while in the other it treats systematically the things that can be demonstrated or constructed

from these first principles, or in general are consequences of them. In the geometrical

reasoning this second part is again divided into solving problems and finding theorems. The

name "problem" is appropriate where what in a sense doesn't exist is produced, set, brought

into view and arranged, while the name "theorem" is appropriate where something that is

attributed or not attributed is seen, known and proved. The former [have to do with]

generation, setting, application, ascription, inscription, insertion, touching and the like; the

latter [have to do with] properties and essential attributes of geometrical objects, which are

grasped and firmly bound by demonstration." (Commentary, 200.20-201.14, Morrow's

translation, corrected) (Note  41)

Notice that in the first sentence of this passage Proclus uses the same word "protasis"

(enunciation) (Note 42), which he uses for the first element of a Problem or a Theorem. By

immediate enunciations he clearly mean here both Axioms and Theorems - notice that in the

second half of the sentence he mentions both proofs and constructions. This justifies the

reading of Postulates as self-standing enunciations of the same type as the enunciations of

Problems. For a better understanding of the above quote it is helpful to remind some Platonic

generalities. When Proclus says that geometrical constructions "in a sense don't exist" this

should hardly be understood in the sense that these things are first wholly absent and then

brought into the existence by a constructive procedure. One should rather think about Platonic

basic ontological distinction between Being and Becoming (Generation). Because of its

"intermediate" ontological status any geometrical object has both these aspects: it can be

considered both as generated and as eternally existent. I shall call these two aspects generic
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and ontic correspondingly. To put it roughly, Problems provide the former and Theorems the

latter view onto the same geometrical subject-matter. When one considers a geometrical

object as generated then this object "in a sense doesn't exist". But in a different sense this

object always exists.

The enunciation of a given Theorem is a proposition in the usual logical sense and we

distinguish it from one's belief that this proposition is true. Propositions and propositional

beliefs are different things. Platonic ontology allows for a similar distinction in the case of a

Problem. Here one can distinguish between a constructive operation objectively conceived

and a particular individual action realising this operation. The enunciation of a given Problem

describes an operation in the latter rather than in the former sense. However the modern

notion of operation, which I have used earlier, once again doesn't exactly fit the Platonic way

of thinking. For this modern notion is related to notions of general method or rule, while the

Platonic ontology suggests to conceive of it rather as an event or process related to the generic

aspect of a given construction. This ontology allows one to conceive of such constructive

events objectively in the same sense in which, more generally, it allows one to conceive of

mathematical objects objectively. For the Platonic doctrine of the intermediate ontological

status of mathematical objects implies precisely this: mathematical objects are not just eternal

things but also events and processes; more precisely they are neither of these but  somehow

combine features of both. Importantly this doctrine doesn't suggest a reduction of the generic

aspect of mathematics to its subjective aspect, i.e. to the issue of how we, people, calculate

and make geometrical constructions. Unlike the modern notions of method and rule Plato's

Becoming (in general) and Mathematical Becoming (in particular) are ontological but not

epistemological notions. It is a common knowledge that Platonism grants to mathematical

objects an "independent existence". It is often forgotten that it equally grants to them an

"independent becoming".

In order to understand the role of the exposition and the specification of a given problem

observe first of all that any construction described in Elements usually assumes some of its

elements as previously given. This is equally true for primitive constructions described in

Postulates and for further constructions described in Problems. For example, P1 describes the

construction of straight line by its given endpoints and E1.1 describes the construction of

equilateral triangle by its given side. This notion of the given is tricky. Apparently it is not

informative. For example, saying that a straight line is given doesn't provide any new

information about it: it can be any straight line whatsoever. But in fact this is already a crucial

piece of information! To see this consider a modified version of E1.1, which proposes one
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E'1.1: to construct an equilateral triangle

without mentioning any data as previously given. This modification looks innocent but

actually it is not. To solve the modified problem one starts with a choice of a straight line and

then proceeds just like in E1.1. But now the whole construction depends on the choice made

at the first step. It is easy to see that in this particular example the choice doesn't matter but

this is not a general rule. For another example consider E1.2, which proposes one

E1.2: "To place a straight line equal to a given straight line at a given point"

(Note 43) and drop the requirement concerning the given point:

E'1.2: To produce a straight line equal to a given straight line

Now the problem becomes trivial: given a straight line AB one can straightforwardly construct

another straight line AC equal to AB using P3 and D1.15. or even offer as a solution the

straight line A'B'  congruent to AB. If we further drop the requirement concerning the given

straight line:

E''1.2: to produce a straight line

the Problem in its usual sense disappears (Note 44). We can see that saying that an object is

given is tantamount to saying that it is chosen arbitrarily and not by some special purpose.

And this condition is essential because it makes the solution of a given Problem into a general

method valid for every possible choice of the initial data. E1.1 and E'1.1 equally allow one to

construct an equilateral triangle. But E1.1 is general in a sense in which E'1.1 is not. For there

is a sense in which E1.1 produces all equilateral triangles - each particular triangle

corresponding to each particular choice of the given straight line - while E'1.1 produces only

one particular triangle determined by the choice made at the first step. Keeping this notion of

given in mind let's now consider the exposition and the specification of E1.1.

The exposition of the Problem provides the given data (viz. a straight line) with a proper name

(viz. AB). Specification restates the enunciation referring to what is given by its name  (or

names). Since details of the given data are already explicitly mentioned in the exposition they
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can be omitted in the specification (like in E1.9, for example). Thus the exposition and the

specification taken together make more explicit the distinction between what is given and

what is sought. This analysis of the enunciation into the two components is obviously

important. However it could be equally done without naming. Consider this modification of

the exposition and the specification of E1.1:

A finite straight line is given. It is required to construct an equilateral triangle on it.

 It is rather evident that after this modification the exposition and specification cannot play the

same role but it is not immediately clear why. What is the epistemological impact (if any) of

giving the name "AB " to the straight line mentioned in the enunciation of E1.1? Notice that

this naming doesn't restrict the generality : the given line can be still any straight line

whatsoever. So the given straight line and the given straight line AB is exactly the same thing

in E1.1.

One reason why Euclid nevertheless introduces the name "AB " in the exposition of E1.1 is

that this is advantageous from a notational viewpoint. Let's see what precisely this advantage

consists of.

An obvious remark is that the name "AB " is shorter than the expression “the given straight

line”, so using the former instead of the latter is economical (Note 45). However as we shall

now see this is not the only advantage of Euclid's mathematical notation. This system of

notation based on the principle of identification of geometrical objects by their distinguished

points is in fact very smart and perfectly adapted to Euclid's geometrical reasoning. Giving

the name "AB " to a straight line Euclid also provides names to its endpoints, which can be

now referred to as A and B without a special notice (provided the reader knows how this

system of notation works). So when Euclid mentions point A in the construction of E1.1 he

doesn't need to explain that A is one of the two endpoints of the straight line described as

given in the enunciation. To show that the gained economy is indeed significant I shall

reformulate the beginning of the construction of E1.1 in English without using any special

notation:

Draw a circle with the centre at one of the two endpoints of the given finite straight line and

the radius equal to this given straight line. Draw another circle with the centre at the other

endpoint of the given finite straight line and the radius again equal to this given straight line.

Then produce a straight line from one of the two endpoints of the given straight line to the
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point where the two drawn circles cut each other. Produce also a straight line from the other

endpoint of the given straight line to the point where the two drawn circles cut each other.

In spite of the fact that the geometrical construction described here is very simple it is difficult

to grasp it through the above description. In case of more complicated constructions (and

associated proofs) the purely verbal description becomes impossible or at least practically

useless. One may wonder why Euclid doesn't explain the reader the basic syntax of his

notation, in particular the fact that the name "AB " of a straight line is composed of the names

"A " and "B " of the two endpoints of this line. An obvious reason for it is the following:

Euclid's notation is not a system of shortcuts to verbal descriptions but an interface between

the verbal discourse and diagrams. Letters involved into Euclid's mathematical notation

appear both in the written text side-by-side with words of the natural language and on

diagrams side-by-side with drawn figures. Thus Euclid's notation serves not only for the

economy of thought and/or the economy of writing but also for linking the verbal reasoning

with the diagrammatic reasoning. To see more precisely how it works consider the following

two scriptures:

(i) A_____________B

(ii) straight line AB

(i) is a diagram supplied with a letter notation and (ii) is a linguistic expression supplied with

a letter notation. In (i) the letters A, B play the role of hieroglyphics: what matters in this case

is only the ability of their users to identify and distinguish their shapes correctly. In (ii) the

same symbols are used as letters of a phonetic alphabet along with all the other letters used for

writing down sentences of the natural language. This allows for spelling out (ii) without

difficulties. So the linguistic expression (ii) can be described as voicing of the diagram (i).

Clearly the voicing of mathematical diagrams doesn't reduce to a simple exchange of one

material means of representation for another; it is a cognitive procedure laying at the core of

Euclid's geometrical thinking.

Now I would like to stress another aspect of exposition, which is related to the issue of

notation but doesn't reduce to it. Observe that in the enunciation of E1.1 the expression

"straight line" stands with the indefinite article a while in the following exposition the same
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expression stands with the definite article the. This is a mere artefact of translation since

Greek has no indefinite article. Nevertheless the translator quite correctly expresses here by

means of modern English an important difference between the meaning of the expression

"straight line" in the enunciation and in the exposition: the enunciation tells us about some

given straight line while the exposition points to a particular straight line AB. The expression

"straight line" in the enunciation of E1.1 refers to a general concept rather than a concrete

mathematical object. The exposition, on the contrary, refers to a particular object, which is a

concrete instance of the general concept described in the enunciation. At the stage of

exposition one can forget for a while (namely, until the conclusion) about the general aspect

of enunciation and work with a particular object. I shall call such switching from general

concepts to particular instances of these concepts instantiation. The instantiation doesn't lead

to any loss of generality because instances of general concepts  are supposed to be arbitrarily

chosen. As I have already stressed, the straight line AB referred to in the exposition,

specification, construction and proof of E1.1, on the one hand, and a given straight line

mentioned in the enunciation of E1.1, on the other hand, is one and the same thing. This is

what the exposition of E1.1 explicitly tells us. Or more precisely this is what the exposition

stipulates. And this stipulation doesn't reduce to introduction of a notational convention but

involves instantiation of a given concept (the concept of straight line in our example).

Let me now show that this instantiation concerns not only mathematical objects but also

mathematical subjects. This latter issue is no longer about what is involved into a given

mathematical reasoning but about who reasons mathematically in a given case. Observe that

the name "AB ", which Euclid uses in E1.1, is conventional in a sense in which the general

name "straight line" is not. One may repeat E1.1 using letters L, M, N  instead of letters  A, B,

C used by Euclid without  changing anything essential. One cannot do the same with the term

"straight line" or any other general name. As we shall see in the Episode 3 Hilbert in his

Foundations made general names of mathematical concepts exchangeable in the same way

but this modern approach is, of course, very different from Euclid's. In the traditional Euclid's

geometry an individual mathematician is allowed to choose letters for denoting points but not

allowed to choose general terms in anything like the same way. One cannot, for example, to

call straight lines "points" and to call points "straight lines". For these general terms belong to

a mathematical community but not to an individual mathematician. This different use of

proper names (letter notation) and general names reveals something deeper: while the

enunciation is attributed to a collective thinking subject (or, if one prefers, to a universal

mathematical mind) the exposition and all the following parts of a given Problem until the
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conclusion have a direct appeal to an individual thinker. This can be also seen through a more

precise analysis of Euclid's wording. In the exposition of E1.1 he uses the imperative form of

the verb "einai" (to be), which makes it clear that the name "AB " is given here to a straight

line by an individual act of naming. Formally speaking this is a performative but not a

descriptive sentence: it realises this act here and now (i.e. in any particular reading) rather

than describes some objective state of affairs. This is Euclid who speaks to the reader here,

not the universal mathematical mind. (We shall shortly see that in the case of a Theorem this

feature is expressed even more explicitly.) In the specification (but not in the enunciation!)

there first appears the word "dei" translated into English by the expression "is required",

which in the given context only makes sense as an appeal to an individual. While the

enunciation merely describes an operation the specification urges the reader to work it out. An

individual act of reasoning instantiates here an universal (or collective) reasoning in a sense

similar to which an individual object like straight line AB instantiates a general mathematical

concept .

The switch from general concepts to their instances achieved through the exposition and the

specification can be also described as imagining. When in the enunciation of E1.1 one reads

about a straight line it is appropriate to consult definition D1.4, which defines this very

notion. The following exposition pushes the reader into a new direction, namely to imagining

the straight line mentioned in the enunciation. At this stage one normally starts to draw a

diagram. The following specification restates the enunciation in terms of the straight line

imagined by the reader. This is a prerequisite for the next step.

Construction is the main part of a Problem. It realises the operation described in the

enunciation through combination and reiteration of primitive constructions described in P1-P3

and of further constructions realised in preceding Problems (if any). This is what one usually

means by construction by ruler and compass. Arguably Euclid doesn't make explicit some

important details here. In particular, many modern commentators point to the fact that in E1.1

Euclid refers to the point C of intersection of the two circles without having any appropriate

principle allowing him to identify such a point. I would like however to stress a different

issue, namely that a pure construction by itself doesn't constitute a Problem or a solution of a

Problem. First of all a Problem should be stated in general terms. This is what the enunciation

serves for. Second, one's imagination should be switched on. This is done through the

exposition and the specification as I have already explained. Finally and crucially,  one should

prove that the proposed construction indeed produces what is required in the specification .

This is why a proof is an indispensable element of any Problem. This shows that the generic
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aspect of geometry cannot be autonomous. A pure combination and reiteration of primitive

constructions granted by P1-P3 leads to nowhere. This generic process needs to be tightly

controlled by ontic means, i.e. by proofs based on Axioms. I leave a more detailed analysis of

the construction of E1.1 to the reader and postpone further generalities concerning

construction until the next paragraph.

The proof of E1.1 relies on D1.15 and A1: D1.15 implies that AB=AC and AB=BC; then A1

implies that AC=BC . Hence the conclusion: triangle ABC is equilateral. Enunciation and

conclusion in the case of a Problem look differently: while enunciation refers to an operation

("to construct") conclusion refers to its result ("triangle ... has been constructed"). Moreover

the resulting triangle is referred in E1.1 by its proper name "ABC". The straight line given in

the enunciation is also referred in the conclusion by its proper name "AB ". However in this

case Euclid also repeats its complete description as the "given finite straight line". This allows

for a return to the general point of view expressed in the enunciation : the conclusion achieves

exactly what the above enunciation merely describes. (Note 46)

C2) Theorem

Enunciation of a given Theorem is a proposition in the familiar Fregean sense: it is a truth

about a specific mathematical subject-matter. Enunciations of Theorems always refer to

general concepts like that of isosceles triangle but not to particular mathematical objects like

triangle ABC. In the case of a Theorem this contrast between general concepts and their

instances is even more obvious than in the case of a Problem discussed above. The general

character of the enunciation of Theorem E1.5 can be described by saying that this Theorem

holds for all isosceles triangles or equivalently - that it holds for any isosceles triangle.

However this modern interpretation, in my view, is not quite appropriate or at least it doesn't

precisely fit the Platonic viewpoint to which I stick here. For it assumes that all the individual

isosceles triangles are in some sense previously given and form a domain on which one can

quantify. This view might square well with what is often called Mathematical Platonism today

but it doesn't square with Platonism in the historical sense of the term. On Plato's account the

existence should be attributed to the concept itself rather than to its instances. From this point

of view the instances belong to the generic but not to the ontic aspect of mathematics; they

become rather than exist, and they don't become all at once. I shall come back to this point

shortly.

The exposition and the specification work in the case of a Theorem in a way very similar to

which they work in the case of a Problem. The exposition of E1.5 amounts to picking up a
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particular isosceles triangle ABC (instantiation) while the specification amounts to restatement

of the enunciation applied to the case of this particular triangle. The exposition and the

specification together make explicit the distinction between what is assumed in this Theorem

and what is supposed to be further shown. (In E1.5 it is assumed that the given triangle is

isosceles and it is to be shown that its angles at and under its base are equal.) Just like in the

case of a Problem the instantiation is realised through naming. And once again one observes

that this instantiation has a subjective aspect. While the enunciation claims an universal truth

the exposition involves choices of notation left to an individual mathematician. The

specification of any Euclid's Theorem including E1.5 makes this subjective aspect even more

explicit: this part of the Theorem is formulated as a personal claim of  the form "I say that..."

This expression can be used as a formal criterion for distinguishing between Problems and

Theorems along with the other criterion mentioned above (the specification of a Problem

always begins with the words "It is required...").

The instantiation doesn't restrict the generality of the Theorem because the instance ABC is

supposed to be picked up arbitrarily. There is a sense in which this triangle ABC  - in spite of

the fact that it is a particular triangle of the given kind, just one among many  of its likes -

represents all possible triangles of its kind and hence fully represents the corresponding

general concept. The arbitrariness involved into the constitution of ABC turns to be equivalent

to generality. For similar reasons the instantiation doesn't restrict the generality on the

subjective side. When Euclid says in the specification  of E1.5 " I say that the angle ABC is

equal to ACB, and (angle) CBD to BCE." he doesn't simply express his personal opinion.

Anybody at his place - noticeably, the reader - would be obliged to tell the same (possibly

using a different letter notation) if he or she is a rational being and accepts the same

fundamentals. The individual choice concerns here only the letter notation and insignificant

features of wording. The author instantiates a universal mathematical mind  like isosceles

triangle ABC instantiates the general concept of isosceles triangle. The Theorem works

equally for any other competent thinker and for any other isosceles triangle. I shall provide

more details concerning this fundamental trick of Euclid's mathematics shortly when we shall

discuss the conclusion of E1.5. (Note 47)     

The presence of construction in E1.5 may appear surprising since the enunciation of this

Theorem unlike the enunciation of Problem E1.1 doesn't say anything about constructing.

However anyone having a basic experience in elementary geometry knows that proofs of

geometrical theorems typically require constructions, which are called today auxiliary.

Moreover one knows that in spite of this modest name these constructions are usually crucial
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elements of proofs. An appropriate auxiliary construction can make a non-obvious

geometrical property obvious reducing the rest of the proof to mere formalities. Even if this is

not exactly the case of E1.5 where the construction is followed by a relatively long proof this

following proof essentially relies on this auxiliary construction (Note 48). Thus constructions

generally play a very important role in Euclid's Theorems even if enunciations of these

Theorems don't make it immediately clear why.

Before continuing let me make an important terminological remark. Today we usually analyse

a mathematical theorem into two parts: a proposition and its proof. Even if in Euclid's

mathematics enunciations of Theorems also have a distinguished status, which allows one to

use an enunciation as a shortcut to the corresponding Theorem, the modern bipartition of

theorems hardly applies here. The notion of mathematical proof mentioned by Proclus is by

far more specific than the corresponding modern notion (I am talking now about the current

informal notion of mathematical proof, not about a proof in a refined logical sense). Notice

that on  Proclus' account the proof of a Theorem doesn't include the preceding construction,

which we usually call today auxiliary. Talking above about auxiliary constructions as

elements of geometrical proofs I meant today's notion of proof, not Proclus'. I think that this

historical change of terminology is not without a reason, and in the next section I shall point

to a possible reason for it. But it is worth mentioning already now that a part of the problem

concerns translations from Greek to modern languages. There are two verbs in (the scientific)

Greek, which are often translated by the same English verb to "prove": "deiknumi" and

"apodeiknumi". Correspondingly, there are two Greek nouns, which are often translated by

the word "proof": "deixis" and "apodeixis". But in fact they don't have quite the same

meaning. This can be clearly see, in particular, in Aristotle's logical writings. Proclus uses the

term "apodeixis" for denoting the part of a Problem or a Theorem, which we call here "proof

". Euclid in his turn finishes every Theorem by the standard expression "oper edei deixai",

which is translated by Fitzpatrick as "which is the very thing it was required to show". The

translator quite correctly distinguishes here between the verbs "deiknumi" and "apodeiknumi"

and translates the former verb by the English verb to "show" but not by the verb "to prove".

Thus Proclus' terminology agrees with Euclid's: as a whole a given Theorem shows (deiknusi)

something while its proof proves (apodeiknusi) something; the latter procedure is a part of the

former. However it was common already in early Latin translations of the Elements to pay no

attention to this subtlety and translate Euclid's expression "oper edei deixai" by the Latin

expression "quod erat demonstrandum". Since "demonstratio" is an established Latin
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translation of Greek "apodexis" widely used by Aristotle in his logical writings the difference

between "deiknumi" (to show) and "apodeknumi" has been lost.

As one can see at the example of E1.5 the construction of a Theorem looks just like

construction of a Problem: it is a combination of elementary operations granted by P1-P3. The

only difference between the two cases concerns the purpose of a given construction. In the

case of a Problem the purpose is evident: the construction realises a complex operation

described in general terms in the corresponding enunciation through repeated application of

the three Postulates; the following proof  makes it sure that the construction fits the

enunciation correctly. Thus the construction achieves the principle purpose of a given

Problem while the proof plays an auxiliary role in it. In the case of a Theorem this relation of

purposes is reversed. The main purpose of the whole reasoning in this case is to show that the

enunciation of a given Theorem is true. This is achieved in the proof of this Theorem and the

following conclusion. The purpose of the construction is in this case auxiliary: to make the

proof possible via introduction of new elements into the initially given construction. However

as I have already stressed the "auxiliary construction" involved into a Theorem is in fact

crucially important. Mutatis mutandi the same can be said about the "auxiliary proof"

involved into a Problem (Note 49). These observations suggest that the subordination of

purposes shouldn't be taken too seriously in either case, and that, more generally, to describe

Problems and Theorems in terms of aims and purposes is not a particularly good idea.

The role of conclusion of a given Theorem is not purely rhetorical in spite of the fact that it

repeats the corresponding enunciation almost literally. Notice that each Euclid's proof results

into a claim concerning particular geometrical objects like triangle ABC while the

corresponding enunciation always tells us something about any object of a certain kind. In

particular the proof of E1.5 results into the claim that in the isosceles triangle ABC angles

ABC and ACB at its base AB are equal while the preceding enunciation says that angles at the

base of any isosceles triangle are equal. The conclusion, which follows the proof, repeats the

enunciation and thus marks a logically important step from the claim about the isosceles

triangle ABC to the general claim about any isosceles triangle. We have already noticed a

similar return to a general viewpoint in the conclusion of a Problem. In the case of a Theorem

this return presents itself in a sharper form. While the conclusion of a Problem still involves

the letter notation the conclusion of a Theorem doesn't: it repeats the enunciation literally.

From a logical point of view the situation looks puzzling: the proof proves only a proposition

concerning a particular mathematical object (the proposition specified in the specification) but
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in the following conclusion this proved proposition is claimed to hold for any object of the

given type. One can reasonably ask for justification of this step.

One way to justified it I have already mentioned several times throughout this analysis: since

the mathematical object in question is arbitrarily chosen among its likes everything that is

proved about the chosen object (ABC in our example) equally applies to any other object of

corresponding type (in our example - to any isosceles triangle). To assure this one should only

avoid to take into account any specific feature that the chosen object might have but some

differently chosen object of the same type might not have (Note 50). But as I have already

said this argument hardly fits the Platonic way of thinking. From a Platonic viewpoint the

arbitrariness of instantiation should be thought of in terms of distortion of ideas rather than in

terms of one's free choice. This distortion amounts to the following: mathematical ideas

belonging to the domain of Mathematical Being have multiple copies with arbitrary accidental

properties in the domain of Mathematical Becoming. This is why in E1.5 the general concept

of isosceles triangle splits into particular triangles like ABC.  The task of mathematical

reasoning is to distinguish between essential and accidental properties of particular objects

and disregard the latter in favour of the former. As far as its accidental properties are

systematically ignored a distorted copy is just as good as its ideal prototype.

One may argue that from a logical point of view there is no difference between Plato's story

about ideas and their distorted copies and the modern story about arbitrarily chosen instances:

both can be viewed as metaphors for the universal quantification. One's preferred metaphysics

arguably is not essential for mathematical reasoning in this case. I don't think this argument is

correct. The modern idea of logical semantics according to which quantifiers range over

classes of individuals certainly makes part of modern logic. The talk of all or equivalently any

isosceles triangle requires in this framework a notion of an infinite class comprising all

isosceles triangles (i.e. of the extension of the concept of isosceles triangle). But such notion

hardly makes sense for a Platonic. For elements of a given class are supposed to be full-

fledged individuals with definite identity conditions. But this is not how Plato thinks about

distorted copies. On his account only ideas have proper identities and can be distinguished

clearly. On Plato's account the introduction of letter notation shouldn't be thought of as

identification: the name "ABC " doesn't pick up in E1.5 one isosceles triangle among a bunch

of others but points to the fact that we are dealing with an imaginary copy of the idea of

isosceles triangle rather than with this idea directly. The principle epistemic trick of Platonic

science amounts to "seeing the idea through its copy" without being misled by accidental

features of this copy.
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From a logical point of view this still means that one should consider only those features of

the copy, which are explicitly stated in the enunciation, and ignore any other feature, which

could be later introduced by imagination or by drawing. But this logical puzzle - How a proof

concerning one particular object can be valid for other objects of the same type? - simply

doesn't arise in the Platonic setting. Or at least it doesn't arise in the same form. One can

rather ask here the following: How it is possible to learn anything about ideas by looking at

their material and imaginary copies? This is a central epistemological question of Platonic

philosophy, to which Plato and his followed provided various elaborated answers. I cannot

consider these answers here but want to stress that the question in the Platonic context sounds

very radical. For the possibility of "ascending" from the sensual and imaginary experience to

a purely intellectual conception of ideas is equivalent for Plato and Platonics to the very

possibility of knowledge.  It seems that mathematics - and more specifically the kind of

mathematics one finds in Euclid's Elements - served for Plato and his followers as a strong

evidence that this procedure actually works.

A Platonic may also wonder why after putting forward a general enunciation of a Theorem,

which has a direct appeal to geometrical ideas, and before coming to its equally general

conclusion Euclid needs to "descend" to the domain of imaginary "copies" of these ideas?

Wouldn't it be better to stick to the general ideas without helping oneself with their distorted

copies? From a Platonic viewpoint this might appear desirable: even if mathematics unlike

dialectics is incapable to grasp ideas in their purity it would always work in this case at the

upper level of its epistemic capacity. Expressed in a more modern language this suggestion

amounts to the following: imagination should be barred  from any serious mathematical

reasoning. However as we shall see in the Episode 3 such a strategy of reforming mathematics

became quite influential in 20th century,. But actually Platonic philosophy allows one to

justify not only this proposed reform but also the more traditional Euclid's mathematical

practice. Here is a Platonic argument in its defence.

The fact that the enunciation of a given Theorem is expressed in general terms doesn't provide

any guarantee that the reader can immediately grasp appropriate ideas behind these general

words. This might work for a divine universal mind but not for a human being. By a mere

reading of an enunciation one (a human being) doesn't get any knowledge. That is why

the use of bare enunciations is limited by the case of fundamentals (Definitions, Postulates

and Axioms). A typical Theorem, on the contrary, requires a  progressive "ascending" from

particular imaginary objects to corresponding general ideas. This is what the four intermediate

elements of a given Theorem (exposition, specification, construction and proof) serve for. It is
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naive to think that mathematical ideas can be immediately grasped by a miracle. In fact it is a

technical procedure, which is obligatory for every particular geometrical enunciation unless it

expresses a fundamental (Note 51). By Euclid's legendary word there is no royal road to

geometry.

C3) Problems and Theorems in Arithmetic

Proclus says that the distinction between Problems and Theorems applies only in geometry.

But all Euclid's arithmetical Propositions except special cases mentioned in Note 40 have the

same six-part structure. How this structure is realised in the arithmetical case can be seen at

the example of E1.7 quoted in the Note 32. This example shows, in particular, that the notion

of construction is not specifically geometrical as one might easily think.

Using the first of two aforementioned formal criteria allowing for distinguishing between

Problems and Theorems one can see that all Euclid's arithmetical Propositions without

exceptions qualify as Theorems: all of them finish with "(what) it was required to show" but

not with "(what) it was required to do". This observation squares well both with Proclus'

remark that the Problem/Theorem distinction applies only in geometry, and with the fact that

in the Elements there is no arithmetical Postulates, which I have earlier stressed. This also

squares well with (albeit, in my understanding, is not implied by) the Platonic view according

to which arithmetic stands in the Platonic hierarchy higher than geometry: on this ground a

Platonic can argue that imagination and other things related to the generic aspect of

mathematics are appropriate in geometry but not in arithmetic. What remains puzzling is that

quite a few of Euclid's arithmetical Propositions nevertheless look very much like Problems

rather than Theorems. Consider, for example, enunciation of E7.2

"To find the greatest common measure of two given  numbers (which are) not prime to one

another."

Moreover this and some other Euclid's arithmetical Propositions qualify as Problems by the

second criterion: their specifications begin with words "It is required..." but not with "I say

that....". I don't have a definite solution of this puzzle but one thing seems to be clear. From a

modern viewpoint the major difference between Problems and Theorems concerns the logical

form of their enunciations: while enunciations of Theorems are propositions (i.e. have a truth-

value) enunciations of Problems are not. But for Euclid this difference seems to be not very

significant and so he can render E7.2 into a Theorem on different grounds disregarding the
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distinctive logical form of its enunciation. What these other grounds could be is suggested by

Euclid's wording of E7.2. He says "to find" the greatest common measure, not to produce or

construct it. Numbers are not produced in a mathematical reasoning in anything like the same

sense in which triangles and circles are produced. My guess is that pointing to this Platonic

intuition provides at least a partial answer.

C4) Conclusion on Problems and Theorems

Proclus relies on the distinction between Problems and Theorems for clarifying a less obvious

distinction between Postulates and Axioms, which we have discussed earlier. This could give

one a wrong impressions that the generic and the ontic aspects of mathematics can be

perfectly separated one from the other, so that Euclid's mathematics would be split into two

parts with different fundamentals. However as we have seen the two aspects of Euclidean

mathematics are in fact tightly intertwined: every Problem involves a proof and hence

depends on the Axioms while a typical Theorem involves a construction and hence depends

on the Postulates. Proclus reports that already in ancient times some people tried to

reformulate every Problem as a Theorem while some other people tried to reformulate every

Theorem as a Problem. Among "radical Platonists" trying to banish Problems Proclus

mentions Speusippus (Plato's nephew and his official successor as the Head of the Academy)

and certain Amphinomus (about whom nothing else is known) (Commentary 77-78).

According to Proclus these people argued that the notion of generation involved in Problems

is irrelevant to mathematics because mathematical objects are eternal. Among "radical

constructivists" trying, on the contrary, to banish Theorems in favour of Problems Proclus

mentions Menaechmus (a pupil of Plato and of Eudoxus) and his pupils. I would like to stress

that Proclus describes this controversy as internal for Platonic thinking; I called the first

aforementioned position the "extreme Platonism" only in order to point to an obvious analogy

with debates on foundations of mathematics taking place in 20th century (see  Episode 3),

where the name of Platonism was largely devoid of its historical content. This analogy

provides a certain ground to Whitehead's view on European Philosophical tradition as "a

series of footnotes to Plato" (Whitehead 1979, p. 39). But even if philosophy is indeed

doomed to the endless repetition of positions and arguments it doesn't make it trivial and easy,

as I have already explained in the Introduction.
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Section 1.4. Euclid via Aristotle

We have seen that the historical Platonism allows one to clarify many features of the

Elements, which otherwise look obscure like the distinction between the Postulates and the

Axioms or plainly unsound like the presence of definitions, which are not used in the

following theory. As we shall now see Aristotle's philosophy doesn't provide anything like the

same effect in spite of the fact that this philosopher repeatedly refers to mathematical

examples for illustration of his logical and epistemological points (Note 52). In I.1.2 I have

already mentioned one reason for it: while Plato basically identifies mathematics with science

(as distinguished from opinion, one the one hand, and from dialectics, on the other hand)

Aristotle aims at a more general notion of science supposed to include mathematics as a

special case along with physics (i.e. natural science including biology - see section 2 above).

Aristotle puts forward his mathematical examples along with examples coming from physics

and everyday life, and so it is hardly surprising that his general scheme supposed to embrace

that much doesn't provide a precise grasp on mathematical reasoning.

Another reason why Aristotle's philosophy seems to be less clarifying for interpreting the

Elements is more prosaic: many of Aristotle's polemic points later became common places

and are often taken by modern readers as a matter of course. This makes Aristotelian features

of the Elements in the eyes of the modern reader clear to begin with, so one doesn't need any

longer Aristotle for clarifying them. However this apparent clarity can be quite misleading as

we shall shortly see. In any event the significance of Aristotle's philosophy and of Aristotelian

philosophical tradition for later developments in the foundations of mathematics provides a

strong reason to look at this author carefully. Let's now see how Aristotle's Classical Model of

Science described in section 2 applies to Euclid's mathematics.

A) Definitions

In his Posterior Analytics (Part 2, chapters 3-12) Aristotle systematically compares definitions

and proofs as two different means of acquiring knowledge, and argues in favour of the latter

at the expense of the former. So Aristotle shares the common today's view according to which

definitions alone cannot provide knowledge. (Remind that Plato's philosophy allowed us to

argue for the opposite; this helped us to make sense of some problematic Euclid's definitions.)

But in spite of this important common point modern and Aristotle's views on definition are

quite different. Aristotle considers but rejects the view according to which definitions explain

nothing but meanings of defined terms; he still believes that they can say something essential
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about defined objects (definienda). His worry is that what definitions say about their

definienda is never proved even if it is true. For example, if one defines a man as a wingless

two-footed mortal animal, it is quite appropriate, in Aristotle's view, to ask questions like

Why a man is wingless? and insist that the corresponding claim must be proved rather than

merely postulated (An. Post. 92a1ff). Aristotle uses quite complicated arguments, which I

leave here aside, for showing that definitions by themselves cannot provide answers to such

questions (Note 53). Aristotle doesn't say that every proposition implied by a given definition

(like men are wingless) must be proved. Some of them can and should be taken for granted as

immediate premises. This is why Aristotle doesn't dismiss definitions but considers them as a

particular kind of fundamentals. His point is that people who try to use definitions for

acquiring knowledge usually don't care whether the propositions implied by these definitions

are to be proved or taken for granted as fundamentals. In order to put this issue under control

Aristotle reserves for definitions the role of fundamentals and combines them with a

deductive reasoning.

Let's now see how this Aristotle's account applies to Euclid's Definitions. Euclid's Definitions

are listed in the Elements among fundamentals of other types (Postulates and Axioms); some

(but not all) of them are used in the following proofs. For example, Euclid repeatedly uses the

fact that radii of a given circle are equal, which is implied by D1.15 (definition of circle); see

again E1.1. Since it is not unreasonable to take this premise as immediate rather then try to

find a proof for it D1.15 satisfies Aristotle's epistemic requirements. Even if today we tend to

consider the proposition radii of a given circle are equal as an immediate consequence of a

terminological convention concerning the term "circle" rather than as a basic mathematical

truth like 2x2=4 Aristotle's views on definition square well in this case not only with Euclid's

mathematics but also with the today's common attitude. Talking about those of Euclid's

Definitions, which are not used in the following proofs  we should distinguish between two

cases. I have already identified these cases in the previous section as "philosophical" and

"technical" Definitions.  Aristotle's views on definition don’t really imply that "philosophical"

Definitions like D1.1 or D7.1 are redundant as one might expect. Aristotle might well ask

Euclid to clarify the impact of the immediate premise "a point has no parts" (cf. D1.1) in his

theory. But he would hardly agree to drop this Definition out even if Euclid would reply him

that this premise actually plays no role. Aristotle would rather try either to redefine the notion

of point or show that Euclid somewhere uses D1.1 tacitly (Note 54). The reason why Aristotle

cannot leave the notion of point without a definition is not that he purports to "define

everything" by explaining away every notion in terms of some other notions. He
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systematically avoids an infinite regress in deduction and there is no reason to suggest that he

would embrace it in definition. But on Aristotle's account, the two cases are not parallel: the

regress in deduction is stopped by fundamentals (immediate premises) while definitions (or at

least good definitions), in Aristotle’s view, are themselves fundamentals. The role of

definition is not to explain the definiendum away but to introduce it as a primitive (Note 55).

Primitive notions, on Aristotle's account, cannot be introduced only by their names; they

should be introduced through a number of primitive propositions, i.e. of immediate premises.

Hilbert's notion of "definition by axioms" (see Episode 3) is, in my view, not so alien to

Aristotle's thinking as it might seem (but beware that Aristotle uses the term "axiom" in a

different sense, which I explain later). In my understanding, Aristotle wouldn't see the

difference between sentences "Point is that of which there is no part" and "Points have no

parts" as logically and epistemically significant. What Aristotle's logic and epistemology

really doesn't allow is the idea to define, for example, both points and straight lines by

postulating propositions like "Two different straight lines share at most one point". This is

because for Aristotle the notion of relation is secondary: in his view one should first make it

clear what things are by themselves and only then describe how they relate to each other. This

is indeed a major difference between Aristotle's and modern logic. In this sense Aristotle's

logic and epistemology remain "essentialist" in spite of the requirement according to which

definitions should be always followed by proofs. We shall shortly see that this feature of

Aristotle's logic makes its applicability for analysis of Euclid's mathematical reasoning very

limited.

For example of a "technical" definition not used by Euclid in his proofs consider the

Definition of romboid  D1.22d. Properties of a romboid  postulated in D1.22d are later proved

in E1.32 where the same thing is called by a different name of "parallelogrammic figure".

Thus D1.22d is a clear example of the kind of definitions disapproved by Aristotle in the

Posterior Analytics: they merely postulate what can and hence must be proved. The fact that

Euclid uses here two different terms for the same geometrical notion, which seems

particularly inappropriate from a modern viewpoint, would be for Aristotle less significant.

B) Postulates

Aristotle doesn't use systematically the term "postulate" (aithema) in his logic but in Posterior

Analytics he provides the following distinction between a postulate and an hypothesis:
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[A]nything that the teacher assumes, though it is a matter of proof, without proving it himself,

is an hypothesis if the thing assumed is believed by the learner [...] but, if the same thing is

assumed when the learner either has no opinion on the subject or is of a contrary opinion, it is

a postulate. This is the difference between an hypothesis and a postulate; for a postulate is that

which is rather contrary than otherwise to the opinion of the learner, or whatever is assumed

and used without being proved, although matter for demonstration". (An.Post. 76b26-34,

Heath's translation)

The above passage tells us that a postulate is a provable hypothesis, which is non-obvious, so

one is not inclined to belief it to begin with. There is little doubt that Aristotle reports to us

here correctly a popular meaning of the word. However it is not so clear what this description

has to do with the five Postulates found in the Elements. Although Euclid indeed begins his

list of Postulates with the expression "let it have been postulated..." (literally "...asked for" or

"demanded"), which squares well with the Aristotle's description, it is unclear what kind of

proof of P1-P3 one could think of and why P1-P3 are non-obvious. Interestingly P4-P5, which

in Proclus' view are not genuine Postulates at all, are in fact the only Postulates fitting

Aristotle's description! However this is apparently not a matter of disagreement between

Proclus and Aristotle about philosophical or mathematical principles but rather a

terminological matter: with the accordance with Aristotle’s notion of postulate Proclus

believes that both P4-P5 can and should be proved as Theorems (Note 56). It is however

extremely unlikely - or even plainly impossible - that Euclid considered all his Postulates

including P1-P3 in this way - as provisionary hypotheses to be eliminated in an improved

version of the same theory. For even today it is fairly impossible to imagine what the required

improvement might consist of. For this reason I am fully agree with Barnes who says

commenting on An. Post. 76b that Euclid and Aristotle use the term "postulate" in quite

different senses (see  Aristotle 1993, p. 141). It is not however without a reason that Aristotle

points to this meaning of the term rather than to the other. For Aristotle's model of science

unlike Platonic model of science doesn't have any place for such specific non-propositional

fundamentals as P1-P3. So the only way to make sense of Euclid's Postulates from an

Aristotelian viewpoint is to render (i.e. paraphrase) them into propositions (Note 57).  This is

actually the way in which Euclid's Postulates are usually read today. There are two principle

ways in which P1-P3 are commonly paraphrased into propositions; I'll show them at the

example of P1. Consider first this paraphrase:
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P1M: Given two different points it is always possible to draw a straight line between them.

P1M asserts the feasibility of the operation described in P1. I shall call this paraphrase modal

because it involves the notion of possibility. Apparently it squares very well with the Euclid's

intended meaning. The principle problem concerning this paraphrase is that it remains

logically sterile. It would be an interesting project to translate Euclid's geometry in terms of

modal logic taking the modal interpretation of Postulates seriously but for the best of my

knowledge it has been never done so far, and I'm not going to pursue this project in this book

either. But usually the modal paraphrase serves a different purpose, namely a mere blurring of

the Euclid's distinction between Postulates and Axioms; this can allow one to claim that every

Euclid's Proposition follows from a number of unproved basic propositions (usually called

"axioms"). The term "proposition" as a common name for Euclid's Problems and Theorems is

introduced as a part of the same modification, which aims at rebuilding of Euclid's geometry

after the Classical Model of Science. But unless these efforts are followed by much deeper

changes of Euclid's setting they remain purely rhetorical. When one tries to make it precise

what does it mean that Euclid's Propositions "follow from" assumed first principles, one

immediately observes that modal notions play no role in it.

The idea of modal paraphrasing of Euclid's Postulates apparently stems from Aristotle's own

attempts to use modal notions for resolving certain mathematical and mathematico-

philosophical questions, in particular for making sense of mathematical infinity. (A different

Aristotle's attempt to use modal notions for an analysis of a Theorem will be discussed below

in the paragraph D of this section.) In Aristotle's view, what has been called in the later

tradition potential infinity is the only sound notion of infinity. A given straight segment, in

Aristotle's view, doesn't actually contain an infinite number of points but only provides a

possibility to mark as many points on it as one wishes. This sounds appealing but rises this

question: what is a precise difference between a conceived possibility to mark a point and

marking it? What we can do about it on a diagram cannot provide an exhaustive explanation

until one identifies the drawn straight line with the drawing itself - and Aristotle certainly

wouldn't go that far. One can only imagine eating a cake and really eat it: in this case the

modal distinction between possible and actual things seems to be clear. But to imagine a

geometrical point and actually "get" it is arguably one and the same thing. If the distinction

between actual and potential (i.e. merely possible) mathematical objects can make any sense

at all it should be described more precisely but not only by an analogy with the common

practice. In spite of the continuing work on formal mathematical theories of modal logic
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philosophy and mathematics of 20th century hardly clarified this question significantly. In

fact the mainstream developments in foundations of mathematics in 20th century rather

followed the idea to lift the traditional Aristotelian ban of actual infinity and so get rid with

modal distinctions in mathematics (Note 58). This brought about another method of

paraphrasing Euclid's Postulates into propositions, which I shall call existential. Consider the

following paraphrase of P1:

P1E: Given two different points there exist a straight segment bounded by these points.

While P1M says that the straight line can be produced P1E says that it is already there, it

eternally (or timelessly) exists. In 20th century this approach has been misleadingly called

Platonic although, as we have seen, it has little to do with the historical Platonism. While the

formalisation of P1M requires a modal logic P1E can be easily formalised with the usual

modern First Order logic. There were few recent attempts to formalise Euclid's geometrical

reasoning and more generally the traditional geometrical reasoning in terms of First Order

logic (see Avigad et al. 2008). Such interpretations can demonstrate the power of modern

methods and also clarify the mathematical content of ancient mathematical texts from a

modern viewpoint but they can hardly clarify specific ancient foundations of mathematics,

which are of our concern here.

C) Axioms

A comparison of Euclid's Axioms with the notion of axiom found in Aristotle brings a richer

outcome. In An. Post. ch.10 and several other places Aristotle discusses the distinction

between those first principles, which are specific for a given science, and those, which are

shared in common by certain sciences. In this context Aristotle gives the following

mathematical examples:

"Instances of first principles peculiar to a science are the assumptions that a line is of such-

and-such a character, and similarly for the straight line; whereas it is a common principle, for

instance, that if equals be subtracted from equals, the remainders are equal." (An. Post. 76a38-

43, Heath's translation)

Euclid's A3 is recognised in this quote immediately and uncontroversially. Aristotle's

terminology agrees here with Euclid's: both writers describe A3 as common (common notion
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or common principle). "Axiom" is Aristotle's alternative term for "common opinion" or

"common principle" (see, for example, Met. 997a12); although one doesn't find in Aristotle's

corpus a place where any of Euclid's Axioms would be called by this name (axioma) the

tradition to use this name for Euclid's common notions also perfectly complies with Aristotle's

terminology. Let's now look at non-mathematical examples of axioms given by Aristotle; they

turn to be more relevant to our topic than one might expect. Says Aristotle:

"By first principles of proof [as distinguished from first principles in general] I mean the

common opinions on which all men base their demonstrations, e.g. that one of two

contradictories must be true, that it is impossible for the same thing both be and not to be, and

all other propositions of this kind." (Met. 996b27-32, Heath's translation, corrected)

We see that by "common opinions" (=axioms) Aristotle calls here basic logical laws. This

Aristotle's terminological peculiarity should be taken into consideration in any discussion of

Aristotle's logic. This author doesn't call by the name "axiom" any assumed immediate

premise like we do this today. Axioms for Aristotle are always "common" while immediate

premises are usually specific. As first principles of demonstration the axioms (in Aristotle's

sense) are common for all sciences, which involve demonstrations. This makes a difference

between axioms and first principles, which are specific for geometry, astronomy, physics, etc.

One may wonder how this later notion of axiom (universal logical law) relates to the notion of

mathematical axiom. Although both kinds of axioms are "common" for many sciences they

are not common for the same sciences: logical axioms are common for all demonstrative

sciences without any exception while mathematical axioms are common only for

mathematical sciences (in particular for geometry and arithmetic). The problem of

relationships between mathematical and logical axioms is touched upon by Aristotle in the

following two passages:

"We have now to say whether it is up to the same science or to different sciences to inquire

into what in mathematics is called axioms and into [the general issue of] essence. Clearly the

inquiry into these things is up to the same science, namely, to the science of the philosopher.

For axioms hold of everything that [there] is but not of some particular genus apart from

others. Everyone makes use of them because they concern being qua being, and each genus is.

But men use them just so far as is sufficient for their purpose, that is, within the limits of the

genus relevant to their proofs. Since axioms clearly hold for all things qua being (for being is
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what all things share in common) one who studies being qua being also inquires into the

axioms. This is why one who observes things partly [=who inquires into a special domain]

like a geometer or a arithmetician never tries to say whether the axioms are true or false"

(Met. 1005a19-28, my translation)

"Since the mathematician too uses common [axioms] only on the case-by-case basis, it must

be the business of the first philosophy to investigate their fundamentals. For that, when equals

are subtracted from equals, the remainders are equal is common to all quantities, but

mathematics singles out and investigates some portion of its proper matter, as e.g. lines or

angles or numbers, or some other sort of quantity, not however qua being, but as [...]

continuous." (Met. 1061b, my translation)

In order to see that the above passages indeed say something about logical laws one should

take into consideration an important feature of Aristotle's thought, which I have briefly

mentioned in I.1.2: Aristotle conceives of logical laws (like "one of two contradictories must

be true" or "it is impossible for the same thing both be and not to be") as fundamental features

of Being ("being qua being") but not (only) as rules of thought. This is why the title of

"logical axiom" is in fact more appropriate in this case than that of "logical law". By the

"science of philosopher" and "first philosophy" Aristotle means a "science of Being" called

today ontology. Having in mind the traditional title of the collection of Aristotle's texts

presenting this "science of philosopher", it is also appropriate to call this science metaphysics.

(It is not now my aim to distinguish these philosophical disciplines precisely.) Thus when

Aristotle says that the inquiry into the axioms makes part of the "science of the philosopher"

which treats "being qua being" there is no doubt that by "axioms" he means here [what we

call today] logical laws.

Mathematical axioms are mentioned in the beginning of the second quote. Since Aristotle

repeatedly points in his writings at Euclid's A3 as a standard example of mathematical axiom

the notion of mathematical axiom referred to in the above passage can be safely identified

with that found in Euclid's Elements. But immediately after mentioning mathematical axioms

Aristotle describes a notion of axiom, which is quite different: he obviously talks here about

his notion of logical axiom.  The problem is that Aristotle doesn't say it explicitely that he

uses the word "axiom" in two different senses, so the reader might think that sentences like
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"one of two contradictories must be true" could be found under the title of axiom in some

mathematical writings known to Aristotle.

But this impression is superficial and most certainly wrong. In my understanding the

following is going on here. Talking about mathematical axioms Aristotle refers to an

established concept, about which he has learnt from his contemporary mathematics. But then

Aristotle suggests an original and far-reaching generalisation of this notion supposed to cover

not only mathematical disciplines but also other sciences including natural sciences. This is

how the notion of logical axiom (logical law) came about: Aristotle didn't borrow it in

mathematics but invented. Mathematical axioms like those used by Euclid in his Elements

suggested to Aristotle this great invention.

Thus the unnoticed change of the meaning of the term "axiom" can be intentional. Aristotle

perfectly knows what mathematicians call by the name "axiom" but he is not satisfied with

this current notion; so he explains us what thinking people - including mathematicians -

should understand by this word. Aristotle couldn't see a mathematical treatise where explicitly

stated logical laws would take the place of traditional mathematical axioms as we know them

after Euclid's Elements. But Aristotle might dream that once such a treatise will be written.

We shall shortly see why neither Aristotle nor any of his followers didn't make - and couldn't

possibly make -  any significant progress in this direction. But as we shall also see in Episode

3 this project in a different form was realised in 20th century: Elements of Bourbaki begin

with a presentation of a system of logic (Bourbaki 1954).

The thesis according to which Aristotle's logic is of a mathematical origin is well-known and

hardly controversial (see Smith 1978 and further references thereof). For a popular illustration

let me show to the obvious analogy between Euclid's A1 and Aristotle's logical axiom of

perfect syllogism (PS). In order to make this analogy more apparent I present here both A1

and PS in a  modernised form:

A1M: If A=B and C=B then A=C

PSM: If all A are B and all B are C then all A are C

The fact that Euclid is younger than Aristotle shouldn't confuse the reader: the core content of

Euclid's Elements is older than Aristotle's logic; while the latter is a genuine invention of its

author the former is not. So historically speaking it is more likely that Aristotle invented PS

after the model of A1 rather than the other way round.
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It can be also mentioned that the core of Aristotle's logical terminology stems from the earlier

established mathematical terminology. We have seen this already at the example of the term

"axiom" but there are also other examples. A telling one is the expression "figure of

syllogism" having an obvious geometrical origin. In what follows I shall also point to

Aristotle's letter notation and show that it likely derives from the mathematical letter notation,

which we discussed above. My principle aim here, however, is not to justify the thesis about

mathematical origins of Aristotle's logic, which I take to be already established, but rather try

to explain why and how Aristotle used his mathematical sources. One might suggest that

Aristotle managed to grasp a logical form of his contemporary mathematics, and this allowed

him to formulate his logic. But this is definitely wrong. As we shall shortly see Aristotle's

logic in fact doesn't fit the kind of mathematical reasoning he could be aware of, namely one,

which is present in Euclid's Elements. A plausible way in which Aristotle could proceed is

different.

Notice that Euclid's Axioms are used only in proofs - now I'm talking about proofs in the

technical sense of the term explained in 1.3C above - not in constructions or some other parts

of Propositions. These proofs are all based on the same mathematical Axioms whether

corresponding Propositions are geometrical or arithmetical. Aristotle's notion of proof

generalises upon mathematical proofs in this technical sense - not upon mathematical

reasoning generally. Aristotle's notion of logical axiom (law of logic) generalises upon the

notion of mathematical axiom, as I have already explained. The main purpose of this

generalisation was, in my view, the extension of the notion of science (episteme) beyond

mathematics into the domain of natural sciences. The new notion of proof based on universal

logical axioms was supposed to be applicable in all of these disciplines. Understandably

Aristotle was more concerned about consequences of his project for physics (i.e. natural

sciences) rather than for mathematics, which was already well-established. But as I have

already mentioned in a longer run this project greatly influenced mathematics too.

Let's now return to the two Aristotle's passages quoted above. The first passage begins with

the question of whether axioms should be treated by the "science of essence", i.e. by ontology

and metaphysics, or by some other science. What other science Aristotle could have here in

mind? One possibility is that he conceives here of a notion of logic as distinguished from

ontology, then asks whether or not it is appropriate to merge the two disciplines into one, and

finally answers in positive. However from a historical viewpoint it seems more likely that

Aristotle points here to the Platonic notion of universal mathematics, which provides an

alternative approach to the same issue. I shall discuss this notion in paragraph E) below.
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In the second passage Aristotle mentions that mathematical axioms are common for all

quantities (poson). Nevertheless he avoids here to discuss a possibility of treating quantities in

general. The alternative he puts forward is this: on the one hand, there is mathematics, which

applies axioms separately to particular genus, and on the other hand, there is ontology, which

relates axioms to Being. But axioms relevant to this latter approach are logical axioms, not

mathematical. If I'm right that in the first passage Aristotle tacitly rejects the universal

mathematics this explains why he doesn't consider a possibility of general science of quantity

in the second passage. For the universal mathematics can be described as such a science, as

we shall see. In the next Episode we shall also see how this missed possibility was eventually

realised in 17th century.

The specific relationships between mathematical and logical axioms just described make it

difficult to analyse the former in terms of the later. When one tries to describe Euclid's

Axioms in terms of Aristotle's logic and epistemology Aristotle's own notion of axiom strikes

the eye first. But then one immediately sees that the two authors use the term in different

senses. The reason is that unlike Plato's philosophy Aristotle's philosophy suggests a radical

revision of his contemporary mathematics rather then accounts for it in ontological and

epistemological terms. For this reason Aristotle's philosophy is less helpful for understanding

Euclid. However it is more helpful for understanding what happened in foundations of

mathematics afterwards. Consequences of Aristotle's philosophical reform for mathematics

are described more precisely in the next paragraph.

D) Propositions

As it has been noticed by other scholars Aristotle's syllogistic is "hopelessly inadequate" for

grasping Euclid's reasoning (Smith 1978 and  Mueller 1974). (Note 59). This is why instead

of making another hopeless attempt I prefer to analyse a mathematical example, which

Aristotle provides himself:

"Let A be two right angles, B triangle, C isosceles. Then A is an attribute of C because of B,

but it is not an attribute of B because of any other middle term; for a triangle has [its angles

equal to] two right angles by itself, so that there will be no middle term between A and B,

though AB is matter for demonstration." (An. Pr. 48a33-37, Heath's translation, corrected)    
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Aristotle discusses here a syllogism, which amounts to application of the theorem about the

sum of internal angles of a triangle to a special case of isosceles triangle. In a modernised

form this syllogism can be written as follows:

All triangles have [...] two right angles (Premise 1: AB) (Note 60)

All isosceles triangles are triangles (Premise 2: AC)

---------------------------------------------------------------------

All isosceles triangles have [...] two right angles (Conclusion: BC)

The principle point made by Aristotle in the above passage is this: Premise 1 is immediate ,

i.e. it cannot be proved by introducing another middle term D "between" A and B and making

a similar syllogism with the latter three terms. Aristotle tries to explain why Premise 1 is

immediate using the traditional Platonic distinction between intrinsic features, which a given

thing has "by itself" (kath'auto) and extrinsic features, which a given thing may have in virtue

of some other things. Aristotle's argument is this: the two-right-angles property (2R ) of

triangle (T) belongs to the very essence of triangle, so it cannot be proved by introducing any

new intermediate term S  such that 2R would be an essential property of S and S would be an

essential property of T (Note 61). However Aristotle definitely knows that Premise 1 can be

proved as a geometrical theorem (E1.32 in the Elements). So what he says here sounds like a

sheer absurdity from the point of view of Aristotle's own logic: we have got an immediate

premise, which is matter of demonstration! The problem, to which Aristotle points us here, is

that the syllogistics turns to be incapable to grasp this latter demonstration. The best what it

can do about E1.32 is to show how this general Theorem is applied to a special case. In order

to show where lies the problem let me quote E1.32 in full:

"For any triangle, (if) one of the sides (is) produced, (then) the external angle is equal to the

(sum of the) two internal and opposite (angles), and the (sum of the) three internal angles of

the triangle is equal to two right-angles.

Let ABC be a triangle, and let one of its sides BC have been produced to D. I say that the

external angle ACD is equal to the (sum of the) two internal and oppo site angles CAB and

ABC, and the (sum of the) three

internal angles of the triangle ABC, BCA, and CAB is equal to two right-angles.
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Fig.7

For let CE have been drawn through point C parallel  to the straight-line AB [Prop. 1.31].

And since AB is parallel to CE, and AC has fallen across them, the alternate angles BAC and

ACE are equal to one another [Prop. 1.29]. Again, since AB is parallel to CE, and the straight-

line BD has fallen across them, the external angle ECD is equal to the internal and opposite

(angle) ABC [Prop. 1.29]. But ACE was also shown (to be) equal to BAC. Thus, the whole

angle ACD is equal to the (sum of the) two internal and opposite (angles) BAC and ABC.

Let ACB have been added to both. Thus, (the sum of) ACD and ACB is equal to the (sum of

the) three (angles) ABC, BCA, and CAB. But, (the sum of) ACD and ACB is equal to two

right-angles [Prop. 1.13]. Thus, (the sum of) ACB, CBA, and CAB is also equal to two right-

angles.

Thus, for any triangle, (if) one of the sides (is) produced (then) the external angle is equal to

the (sum of the) two internal and opposite (angles), and the (sum of the) three internal angles

of the triangle is equal to two right-angles. (Which is) the very thing it was required to show."

In this Theorem one can immediately identify the six part of Proclus' analysis. A general

difficulty of application of Aristotle's syllogistic to Euclid's reasoning is that there is no

obvious way to fit these six parts into this logical form. The best one can hope to achieve by

applying syllogistics in this case is to render the proof of E1.32 into a syllogistic form. But

this proof is preceded by the construction of the new straight lines CD and CE, and essentially

depends on properties of the emerging construction ABCDE, not only on properties of the

given triangle ABC. This shows two important things. First, it shows that Aristotle is quite
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right assuming that there is no hope to deduce E1.32 from a definition of triangle whatever

this definition might be.  Second, it shows that Aristotle is totally wrong assuming that the 2R

property of triangle is itself an intrinsic property, which can be considered as a basis for

definition of triangle. For it becomes evident only through considering new "external"

elements but not through a deepening of our grasp of triangle's intrinsic nature.

Anachronistically one could say that the 2R property of triangles actually reflects an essential

property of Euclidean plane, namely the fact that this plane is flat. This news, however, would

hardly help an Aristotelian to render the proof of E1.32 into syllogisms.

A more specific observation is this. Aristotle’s syllogistics uses premises of the form all A are

B (in fact the universal quantifier "all" is a modernisation but let me skip this point). In other

words it operates only with properties. But assumptions used in mathematics more often have

the logical form of relations like the relation of being parallel. That's why the modern logic,

where the notion of property (one-place predicate) is seen as a particular case of a more

general notion of relation (n-place predicate) has more power to support a mathematical

reasoning. But in spite of this significant difference between Aristotelian and modern logic

most of modern approaches to logical analysis and logical foundations of mathematical

reasoning seem to assume - most often uncritically - few fundamental feature of Aristotle's

approach, which I am now going to describe.

From Aristotle's viewpoint mathematics should assume, first, universal logical axioms (like

any other science) and, second,  certain special principles in the form of definitions and/or

particular basic propositions (immediate premises).  Then it should deduce further

propositions from the basic propositions according to the assumed logical axioms. This is how

a ready-made mathematical theory should look like accordingly to Aristotle's Classical Model

of Science. I claim that in spite of significant modifications of logic this Aristotelian scheme

had a great influence on mathematics and philosophy of mathematics of 20th century.

Moreover the were no serious attempts to rebuild mathematics after the Classical Model of

Science before 20th century.  An obvious reason for it is that in spite of its ancient origin this

Model clashes with the traditional mathematics (as we know it after Euclid) dramatically. I

shall point here only to two major differences between Euclid's mathematics and the notion of

mathematical theory implied by the Classical Model of Science.

The first difference concerns Axioms: in Euclid they cover only mathematical disciplines

(geometry and arithmetic) while in Aristotle they cover all sciences including natural

sciences. This implies that Euclid's mathematical reasoning prima facie is not based on any

system of logic - if by logic we understand a normative theory of formal reasoning, i.e. a
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theory of reasoning, which is neutral with respect to the content of this reasoning. Euclid's

mathematics has only a tool of reasoning, which is neutral with respect to particular kinds of

mathematical content but which is not supposed to be applicable outside mathematics. I mean,

of course, the scheme of mathematical reasoning determined by Euclid's five Axioms.

The second difference, which in my view is even more significant, concerns Euclid's

Postulates, which has no counterpart in the Classical Model of Science. We have seen that

Postulates are non-propositional fundamentals of Euclid's mathematics, which play a central

role in it. Postulates are supposed to generate the whole of mathematical universe, and we

have seen more precisely how it works in Euclid's Elements. One can disguise Postulates by

calling them "axioms" but one cannot get rid of them (as Classical Model of Science actually

requires) without destroying basics of Euclid's mathematical reasoning completely. The

Classical Model of Science requires objects of study to be already there, it doesn't have

anything like the notion of generation allowed by the Platonic scheme. This is why it implies

in mathematics what today is (inappropriately) called Mathematical Platonism. This feature of

the Model survives replacements of one system of logic for another.

I shall return to this important issue but already at this point I would like to encourage the

reader to think about Classical Model of Science critically. Notice that modern physics began

when this Aristotelian Model was largely abandoned in this domain. So at the very least we

should not take the idea to apply it in mathematics as self-obvious.

To conclude this paragraph I would like to quote another Aristotle's passage where he

analyses the same mathematical example from a very different viewpoint:

"Diagrams are devised by an activity, namely by dividing-up. If they had already been

divided, they would have been manifest to begin with; but as it is this [clarity] presents itself

[only] potentially. Why does the triangle has [the sum of its internal angles is equal to] two

right angles? Because the angles about one point are equal to two right angles. If the parallel

to the side had been risen [in advance], this would be seen straightforwardly" (Met. 1051a21-

26, my translation) (Note 62)

The chapter of Methaphysics from which I took this quote concerns Aristotle's ontological

distinction, which I only briefly mentioned above, namely one between actual Being

(energeia) and potential Being (dunamis). At the first look this distinction seems analogous to

Plato's distinction between Being and Becoming. But the above mathematical example shows

that in fact it is quite different. From this new Aristotle's viewpoint one can indeed think of
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geometrical constructions as pre-existent. However this pre-existence is only potential unless

it is actualised through an act of mathematical thought. Aristotle considers such pre-existence

as ontologically deficient; on his account actual Being determines potential Being rather than

the other way round. This new view allows Aristotle to give a full justice of geometrical

constructions: as the above quote clearly shows he is wholly aware about the fact that

construction is a crucial element of geometrical theorems. Although Platonism equally allows

for taking seriously the generic aspect of mathematics it cannot get rid with the basic principle

according to which the generic aspect of mathematics is fully determined by its ontic aspect.

But Aristotle turns here the Platonic hierarchy upside down: unless a construction is realised

through an on-going mathematical activity it doesn't exist in the proper sense at all (Note 63).

We see that Aristotle's distinction between the actual and the potential Being suggests a view

on mathematics, which differs dramatically from one implied by Aristotle's Classical Model

of Science and his syllogistics. We encounter very different Aristotles in these two cases. It is

a pity that this alternative modal approach to mathematics has been never further developed

either by Aristotle himself or by the following tradition. At least it has been never developed

up to a point where it could serve for rebuilding of foundations of mathematics. The idea is

still waiting to be further developed in the future.

E) Proportion, Metabasis  and Universal Mathematics

In Euclid's Elements the theory of proportion is developed separately for numbers (in Books

7-8) and for geometrical magnitudes (in Books 5 and 10). More precisely, the Elements don't

contain such thing as the theory of proportion at all but do contain a theory of proportion of

numbers and a theory of proportion of magnitudes. Obviously Euclid's theory of proportion of

magnitudes cannot reduce to his theory of proportion of numbers because the former contains

the case of incommensurable magnitudes. However Euclid also treats separately proportion of

numbers and proportion of commensurable magnitudes. For this reason some Propositions in

the Elements look nearly identical.  Compare, for example, these two:

E10.13: "To find the greatest common measure of two given commensurable magnitudes."

E7.2:  "To find the greatest common measure of two given  numbers (which are) not prime to

one another."
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I provide here only enunciations of these Problems and leave it to the reader to check that the

rest is equally very similar: in both cases Euclid  applies the same method known today as

Euclidean algorithm. Euclid's quasi-geometrical proofs, which he uses in arithmetic (see

paragraph 1.3C3) makes this similarity even more apparent. The following pair of

Propositions looks as another example of the same sort but in fact it is different because here

the second Proposition holds for incommensurable magnitudes too.

E7.13: "If four numbers are proportional then they will also be proportional alternately."

E5.16:  "If four magnitudes are proportional then they will also be proportional alternately."

The rest of the last two Theorems is not quite the same because they rely on essentially

different Definitions of proportion: E7.13 refers to D7.20, which defines proportional

numbers while E5.16 refers to D5.6. which defines proportional magnitudes and applies (in

particular) to the case of incommensurable magnitudes.

The fact that Euclid uses in both cases the same term "analogon" (proportion) and doesn't

avoid the textual identity of Propositions concerning numbers and magnitudes shows that the

analogy between the two theories of proportion couldn't be left unnoticed. From a modern

point of view it looks very unnatural that Euclid didn't develop this obvious analogy into a

genuine generalisation and didn't include into his Elements an universal proposition, which in

modern algebraic notation would read

if a :b = c :d  then a :c = b :d

and cover E7.13 and E5.16 as special cases. But at the same time this feature of Euclid's

mathematics perfectly complies with Aristotle's Classical Model of Science, which, let me

remind, assumes a fixed domain of studied objects and doesn't allow for switching between

domains or merging them freely. Aristotle's views on this issue will help us to understand why

Euclid didn't merge his two theories of proportion together like we do this today. But before I

come to a more precise analysis of these Aristotle's views I would like to stress that the

situation with the two theories of proportion in the Elements is in fact more involved than just

described. The two theories are indeed first developed separately but at certain point Euclid

makes a link between them.  Namely Euclid includes into Book 10 of his Elements five
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Propositions, which involve both numbers and magnitudes. Here is the first of them, which is

worth to be fully quoted: (Note 64):

E10.5:

"Commensurable magnitudes have to one another the ratio which (some) number (has) to

(some) number.

Let A and B be commensurable magnitudes. I say that A has to B the ratio which (some)

number (has) to (some) number.

For if A and B are commensurable (magnitudes) then  some magnitude will measure them.

Let it (so) measure (them), and let it be C. And as many times as C measures A, so many units

let there be in D. And as many times as C measures B, so many units let there be in E.

Fig.8

Therefore, since C measures A according to the units in D, and a unit also measures D

according to the units in it, a unit thus measures the number D as many times as the

magnitude C (measures) A. Thus, as C is to A, so a unit (is) to D [D5.6 or D7.20?]. Thus,

inversely, as A (is)  to C, so D (is) to a unit [E5.7?]. Again, since C measures B according to

the units in E, and a unit also measures E according to the units in it, a unit thus

 measures E the same number of times that C (measures) B. Thus, as C is to B, so a unit (is) to

E [D5.6 or D7.20?]. And it was also shown that as A (is) to C, so D (is) to a unit.  Thus, via

equality, as A is to B, so the number D (is) to the (number) E [E5.22?].

Thus, the commensurable magnitudes A and B have to one another the ratio which the

number D (has) to the number E. (Which is) the very thing it was required to show."
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The construction of E10.5 produces (by fiat) a pair of numbers, which Euclid denotes by

letters "D" and "E" such that the given magnitudes A, B have the same ratio as numbers D, E.

Notice that talking about the "same ratio" in the previous sentence I referred to a general

notion of ratio, which applies both to numbers and to magnitudes. However the preceeding

part of the Elements contains no Definition, which allows for the equality between a ratio of

numbers  and a ratio of magnitudes! Euclid never provides explicit references to Definitions,

Postulates, Axioms and preceding Propositions leaving it to the reader to guess which

reference would be appropriate in every particular case. Usually this task is easy but in the

given case one may think of different Definitions of proportionality ( D5.6 or D7.20) and still

none of them fits the purpose exactly. A similar observation concerns Propositions E5.7 and

E5.22, which officially apply only to magnitudes but in E10.5 seem to be applied in a

situation involving both magnitudes and numbers. I cannot see any way to avoid saying that

E10. 5 and the following four Propositions, which are obviously supposed to fill the gap

between the two theories of proportion (one for numbers and the other for magnitudes) don't

actually achieve this goal.

Euclid's attempt to find a link between the two theories of proportion shows that he might be

aware about the idea of a general theory of proportion. There are some independent evidences

(Granger 1976) that Eudoxus, who invented the theory of proportion presented in Book 5 of

the Elements as a geometrical theory, considered it himself as a genuine generalisation of the

old Pythagorean arithmetical theory of proportion presented in Books 7-9. Eudoxus' term

"magnitude" might originally stand for a general notion of quantity including numbers and

geometrical magnitudes as its special cases. Another evidence, which shows that the idea of a

general theory of proportion was around in Euclid's circle, is given by Proclus:

"As for unifying bond of the mathematical sciences, we should not suppose it to be

proportion, as Erathosphenes says. For though proportion is said to be, and is, one of the

features common to all mathematics, there are many other characteristics that are all-

pervading, so to speak, and intrinsic to the common nature of mathematics." (Commentary ,

43.22-44.1, Murrow’s translation)

Eratosphenes of Cyrene is an Alexandrian librarian contemporary to Euclid, who was, as

Proclus tells us here, enthusiastic about the idea of unification of mathematical disciplines on

the basis of a generalised theory of proportion. Evidences that generalised mathematical
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theories of this sort were known already in Aristotle's times are found in Metaphysics where

this author repeatedly refers to "universal mathematics":

"The question may be asked whether first philosophy is universal or deals with some

particular genus or some one class of things. For not even in mathematical sciences is the

method one and the same; geometry and astronomy, for instance, deal with a certain class of

thing, but the universal science of mathematics is common to all branches." (1026a3-7,

Heath's translation)

"For each of the mathematical sciences is concerned with some distinct genus, but universal

science of mathematics is common to all" (1064b8-9, Heath's translation)

"Further some propositions are proved universally by mathematicians, which extend beyond

these substances [belonging to special mathematical sciences]" (1077a9-10, Heath's

translation)

"Just as the universal part of mathematics deals not with objects which exist separately, apart

from extended magnitudes and numbers, but with magnitudes and numbers, not however qua

such as to have magnitude or to be divisible, clearly it is possible that there should also be

both propositions and demonstrations about sensible magnitudes, not however qua sensible

but qua possessed of certain definite qualities." (1077b17-22, Ross' translation)

These passages show Aristotle's attitude to the issue : he never treats the notion of universal

mathematics systematically (in his known writings) but refers to "universal mathematics" and

"universal mathematical propositions" as something already known to the reader. In the first

of the above passages Aristotle compares the universal mathematics and his first philosophy.

This clearly concerns the issue discussed in the previous paragraph: while the universal

mathematics covers all mathematical sciences the first philosophy covers non-mathematical

sciences as well. In the last quoted passage Aristotle refers to universal mathematical

propositions (i.e. theorems of the universal mathematics) in order to explain his theory of

abstraction (see 1.2B): just like universal mathematical propositions take numbers and

geometrical magnitudes in abstraction from the specific properties allowing for distinguishing

between these two kinds of mathematical entities, mathematics in general abstracts from all

sensible qualities of things and treats them qua mathematical objects. Most likely by universal
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mathematical propositions Aristotle means here certain theorems of Eudoxus' theory of

proportion (conceived of as a generalisation of the Pythagorean theory of proportion rather

than as a specific geometrical theory).

The fact that Euclid's separate treatment of arithmetical and geometrical proportion is

compatible with the Classical Model of Science doesn't mean that this Model rules out any

possibility of generalisation in this case. But it requires the following question to be clearly

answered: What a given general theory is about? or What is its subject matter? As far as we

are talking about Aristotle's original version of this Model rather than its later modifications

this subject-matter is supposed to be a particular genus. The following passage, where

Aristotle explains his notion of universal proposition using a mathematical example, shows

that the aforementioned requirements has a clear logical aspect and cannot be dispensed with

as a "pure metaphysics":

"Something holds universally when it is proved of an arbitrary and primitive case. E.g. having

[the sum of internal angles equal to] two right angles doesn't hold universally of figures - you

may indeed prove of a figure that it has two right angles, but not of an arbitrary figure, nor can

you use an arbitrary figure in proving it; for quadrangles are figures but do not have angles

equal to two right angles. An arbitrary isosceles [triangle] does have angles equal to two right

angles - but it is not primitive: triangles are prior. Thus if an arbitrary primitive case is proved

to have two right angles (or whatever else), then it holds universally of this primitive item,

and the demonstration applies to it universally [...] [I]t does not apply to the isosceles

[triangles] universally, but extends further." (An.Pr. 73b33-74a4, Barnes' translation)

For better understanding of this passage I shall analyse it into a number of separate claims:

(i) To hold universally amounts to being true about some case, which is both arbitrary and

primitive.

This is a formal definition, which the following mathematical example is supposed to explain.

(ii) It is not the case that figures (in general) have the 2R property universally .

This is in spite of the fact that
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(iii) Certain figures have the 2R property.

What Aristotle tells us here is clear: some figures, namely, triangles, do have the 2R property

while some other figures, for example, quadrangles, don't. However Aristotle renders this

conclusion in somewhat different form:

(iv) It is not the case that an arbitrary  figure has the 2R property because certain figures, for

example quadrangles, don't have this property.

In order to understand why Aristotle uses here the term "arbitrary" remind the six-part

structure of Problems and Theorems described in 1.3C above. Suppose one wants to prove

that a triangle has the 2R property. Then one proceeds as follows: takes an arbitrary triangle

(exposition), applies the enunciation of the given theorem to this chosen triangle

(specification), makes an appropriate construction, which allows for the wanted proof, and

finally comes to the desired conclusion. The Theorem is tantamount to the claim that an

arbitrary triangle has the 2R property. "Arbitrary" refers to the exposition of this Theorem and

to what Proclus calls "first conclusion" (see again Note 52). Thus saying that an arbitrary

triangle has the  2R property translates into saying that any triangle (or all triangles) has

(have) this property.  Saying that an arbitrary figure doesn't have 2R property translates into

saying that not any figure has the 2R property.

Checking with (i) shows that to "be true about an arbitrary case" is indeed a necessary

condition for being true (holding) universally. Since the proposition "a figure has the 2R

property" is not true about an arbitrary figure it doesn't hold universally. However, as we shall

now see, this condition is not sufficient.

(v) An arbitrary isosceles triangle has the 2R property.

This is not surprising: all isosceles triangles are triangles and all triangles have the 2R

property. Hence all isosceles triangles have the 2R property.

(vi) Proposition "isosceles triangles have the 2R property" doesn't hold universally; the

corresponding proof doesn't apply to isosceles triangles universally.
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This sounds surprising for one who expects that Aristotle uses his term "universally" in the

sense of universal quantifier. But in fact he doesn't. Proposition "isosceles triangles have the

2R property" is true for any isosceles triangle but it nevertheless doesn't hold universally

because

(vii) An isosceles triangle [in the given context] is not primitive, a [general] triangle is prior.

(vii) complies with (i): the condition of being true primitively turns out to be essential. We

should now understand what it amounts to. For this end let me now make explicit one further

assumption, which Aristotle makes here only tacitly:

(viii) A [general] triangle [in the given context] is primitive.

The last element needed for understanding of "primitive" is this:

(ix) Proposition "an isosceles triangle has the 2R property" extends further, [namely, to

triangles in general].

Proposition "a triangle has the 2R property" holds universally because it holds for an arbitrary

triangle and an arbitrary triangle is a primitive case with respect to this proposition. Thus

"holds universally about Ts" in Aristotle's language means roughly this: "true of all Ts and of

nothing else".

This is, of course, another rendering of Aristotle's notion into the modern extensional

language. Aristotle himself thinks of general triangles and isosceles triangles not in terms of

logical extensions of these notions but in terms of their "generic cases" appearing in

expositions of corresponding Problems and Theorems. The arbitrary character of a given case

guarantees that every proposition P, which is true in this arbitrary case A, also holds for its

genus G. Another relevant issue is whether or not P holds for G "by itself" or it holds in virtue

of some other genus G' . The former situation occurs if and only if the case A is primitive with

respect to P. An arbitrary isosceles triangle is not primitive with respect to the 2R property

because this property belongs to its genus (of isosceles triangles) in virtue of another genus

(that of triangles). In terms of syllogistics this is tantamount to saying that the premise

"triangle has the 2R property" is immediate while the premise "isosceles triangle has the  2R

property" is not (see again An.Pr.48a33-37 discussed in the previous paragraph).
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Let's now see what kind of constraints this Aristotle's notion of being universal imposes onto

possible generalisations of mathematical theories. Let me first illustrate this with a dummy

example. Imagine that the 2R property of triangles has been noticed and proved only in some

very special cases, say, only for regular triangles and for isosceles right-angled triangles

(these two kinds of triangles appear in Plato's Timaeos). Then in Aristotle's view it wouldn't

be appropriate to call these two kinds of triangles by some general name (say, that of simple

triangles) and to state a general theorem according to which all simple triangles have the 2R

property. For this general theorem would anyway reduce to considering the two known cases.

In this sense simple triangle wouldn't constitute a genus. Then imagine that a further research

brought into the light the fact that the 2R property belongs to all isosceles triangles but not

only to the isosceles triangles of the two aforementioned kinds. Although this looks like a real

progress Aristotle wouldn't consider the corresponding general theorem about isosceles

triangles as a sound generalisation either. For he already knows that the 2R property belongs

to isosceles triangles not in virtue of their proper genus but in virtue of a "higher" (i.e. more

general) genus of triangles! So Aristotle would dismiss the proposed generalisation as

incomplete.

This dummy example shows, in my view, what Aristotle could feel about generalised theories

of proportion and the "universal mathematics". A mere merging of the two existing theories of

proportion, on Aristotle's account, couldn't produce anything deserving the name of a theory.

Calling numbers and magnitudes by a common name like quantity and stating general

theorems about quantities, in Aristotle's view, can be only misleading unless a general theory

of quantity is developed independently. Only in this latter case  quantity could be considered

as a genus and earlier known theories about numbers and magnitudes could be reduced to a

general theory of quantities.  Until the higher genus of quantity is properly understood and its

properties are effectively used for proving theorems about numbers and magnitudes one

should avoid the talk of general theory of proportion and stick to the traditional separation of

mathematical disciplines.

As a matter of fact Aristotle (as we know him after his preserved writings) doesn't say much

about the universal mathematics or about generalisation in mathematics. For mathematics, as I

have already argued, was Aristotle's starting point rather than his field of study. It seems that

Aristotle considered the generalisation aimed at by the universal mathematics as insufficient,

and for this reason not worth trying. Aristotle's project of "first philosophy" was similar to (by

Aristotle's own word) but by far more ambitious than that of universal mathematics: it aimed

at covering everything that there is but not only what is mathematically treatable. Anyway the
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idea to find for mathematics its proper genus, and develop various mathematical disciplines

on the basis of a single general theory treating this proper genus, remained pertinent during

the whole history of mathematics until today. In Modern times, as we shall see,  people

identified the universal mathematics with algebra, while in 20th century people tried to base

the whole of mathematics on Set theory. This pattern greatly influenced the current notion of

foundations of mathematics.

Conclusion of Episode 1

In the above philosophically-laden presentation of Euclid's Elements I told very little about its

mathematical content; its detailed analysis can be found elsewhere, in particular in Heath's

edition of the Elements. But I hope I managed to present the reader some philosophical

aspects of Euclid's Elements, which, in my view, remain pertinent for today’s mathematics.

We have seen that Plato's and Aristotle's philosophy provide rather different perspectives on

Euclid's mathematics. Aristotle's approach is by far more revisionary with respect to his

contemporary mathematics than Plato's approach. This is why Plato's philosophy and the later

Platonic philosophical tradition turn to be more helpful for understanding Euclid than

Aristotle's philosophy and its tradition. However when one studies the history of Greek

mathematics in a wider historical perspective Aristotle's approach turns to be at least equally

important since many of later trends in foundations of mathematics followed the Aristotelian

line. This in particular concerns the notion of logical foundations of mathematics, which

played a central role in foundations of mathematics in 20th century.

It is difficult to imagine that writing  his Elements Euclid intended to produce a book, which

would be later qualified by anyone as the foundations of mathematics. For Proclus'

Commentary and some other sources tell us about a variety of concurrent approaches to the

issue existing in Euclid's times. However this is exactly how Euclid's Elements were

conceived of at certain point in the later tradition, which tried to improve upon Euclid rather

than treat the issue of foundations of mathematics independently. The history of these

improvements is very telling and could be a subject of a special study (which was never

systematically done so far) but it lies out of the scope of this present book. The principle issue

of this present study is the renewal of foundations, not their progressive development. Even if

the difference between the renewal and the progressive development is a matter of degree, and

even if it is too often confused by authors' rhetoric, I shall not make an attempt to build a

narrative covering the whole history of foundations of mathematics from ancient times to
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today. I shall jump instead immediately into 17th century and consider several mathematical

works which explicitly aim at the renewal of foundations. I don't want to hide that this Early

Modern spirit of renewal greatly motivates the notion of foundations developed in this book.

Endnotes

Note 1

The case of cosmology is particularly interesting. Taking the possibility of empirical check as

a necessary condition of science Kant qualified cosmology as a part of metaphysical

speculation. For it seemed him obvious that the past of the universe we are living in is beyond

any possible human experience. However it turned out that new observational methods

together with new theoretic backgrounds allow for empirically-grounded claims about the

remote past of our universe. Kant's views can be probably salvaged by arguing that

cosmology in his sense is not today's empirical cosmology. This example shows that

boundaries between the philosophical speculation and the empirical science cannot be

determined once and for all.

Note 2

How this works in a given community  depends on how it works in minds of its individual

members, and how it works in an individual mind obviously depends on how it works

globally in a community in which this given mind participates. I think about individual minds

and communities of minds as complex systems without trying to reduce one level of

organisation to the other and to claim that one of them is fundamental while the other is not.

Note 3

The difference between a "genuine understanding" of an earlier tradition and a "genuine

invention", which brakes an existing tradition and starts a new one, is often conventional and

sometimes even merely rhetorical. In some epochs like late Antiquity and Middle Ages new

developments are usually presented as improvements on the common understanding of older

sources; in some other epochs like ours it is more common to express oneself through refuting

older doctrines and putting forward new ones. One may often switch between the two

strategies by playing with identity conditions of older and new doctrines.
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Note 4

One may ask where proposition T comes from. This is a matter of discovery, which I leave

here aside. In any event it doesn't come first through a deduction from given premises, except

trivial cases. All interesting theorems are first conjectured and only then proved. Remarkably

this order is preserved in academic papers and textbooks, that is, in standard presentations of a

ready-made knowledge.

Note 5

The fact that foundations of a given discipline unify and organise the given discipline into a

systematic whole explains why philosophy as an art of renewal of foundations is doomed to

be disorganised. In order to be organised like a science philosophy would need its proper

foundations and it's own cumulative research programmes. Such organisation may be

appropriate for particular philosophical projects (which can eventually develop into new

scientific disciplines) but not for philosophy in general. A science-like philosophy is

incapable to perform a full-scale revision of foundations of science. This is unfortunate both

for science and for philosophy. Sometimes cumulative philosophical projects indeed give

birth to new scientific disciplines as it happened with psychology and is about to happen with

neuroscience. But far more often they degenerate into a sheer scholasticism. The birth of a

new scientific discipline is a good thing but notice that to perform a sustainable progress a

newly born discipline still needs a continuing philosophical questioning of its foundations.

Note 6

One may argue that non-scientific doctrines cannot possibly have foundations. I assume here

that they can. Think about a well-developed religious doctrine like Christianity. What I told

above about educational, conceptual and systematic foundations seems to be applicable in this

case: Christianity involves basic texts and basic beliefs reproduced and transmitted through

education as well as a room for further developments. What is specific for scientific

foundations is, in my view, the way in which these foundations are reproduced, namely the

kind of radical revision, which has no analogues in religious doctrines or elsewhere.

Note 7

The scientific consensus is based on grounds (in particular empirical evidences and theoretical

conclusions) which appeal to individual minds. Because of specialisation of science any
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individual scientist has the full access only to grounds related to his or her limited domain of

study. The global scientific consensus is possible only because scientists trust each other:

although an individual scientist has only very limited access to scientific grounds outside his

or her domain of study he or she trusts his or her colleagues working in different domains.

This double mechanism combining the direct access to grounds and mutual trust produces the

global scientific consensus.

Note 8

The discovery of Non-Euclidean geometries certainly played a role in this change of the view

on the Elements but this role was not as crucial as it is often claimed. See Episode 3 for a

further discussion.

Note 9

Cf. this passage:

"[W]e must make a distinction and ask, What is that which always is and has no becoming;

and what is that which is always becoming and never is? That which is apprehended by

intelligence and reason is always in the same state; but that which is conceived by opinion

with the help of sensation and without reason, is always in a process of becoming and

perishing and never really is." (Tim. 27d-28a, Jowett's translation)

Note 10

Today's term "Mathematical Platonism" stems from (Bernays 1935); for a recent account of

Mathematical Platonism see, for example, (Balaguer 1998). For a recent study of Plato's

philosophy of mathematics see (Pritchard 1995).

Note 11

English term "understanding" is a reasonably good translation of Greek "dianoia" but it

certainly should not be taken here along the line of philosophical hermeneutics of 19-20th

centuries. One may rather think of Kant's "Verstand" also usually translated as

"understanding" .

Note 12

See Seventh Letter where Plato disqualifies written literature as an appropriate means for

doing philosophy.
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Note 13

In this dialog Plato (as usual through the voice of Socrates) argues that it is inappropriate to

think of number 2 as the sum of two units because one may obtain 2 by the inverse operation,

namely by dividing a given unit into two halves. Thus, Plato argues, one should rather think

of 2 "through itself", that is, through the idea of 2.

Note 14

Thus Plato's view according to which only ideas properly exist Plato perfectly agrees with

Quine's dictum "no entity without identity".

Note 15

"[T]he world has been framed in the likeness of that which is apprehended by reason and

mind and is unchangeable, and must therefore of necessity, if this is admitted, be a copy of

something. Now it is all-important that the beginning of everything should be according to

nature. And in speaking of the copy and the original we may assume that words are akin to the

matter which they describe; when they relate to the lasting and permanent and intelligible,

they ought to be lasting and unalterable, and, as far as their nature allows, irrefutable and

immovable-nothing less. But when they express only the copy or likeness and not the eternal

things themselves, they need only be likely and analogous to the real words. As being is to

becoming, so is truth to belief. If then, Socrates, amid the many opinions about the gods and

the generation of the universe, we are not able to give notions which are altogether and in

every respect exact and consistent with one another, do not be surprised. Enough, if we

adduce probabilities as likely as any others; for we must remember that I who am the speaker,

and you who are the judges, are only mortal men, and we ought to accept the tale which is

probable and enquire no further."

(Tim. 29a-d, Jowett's translation)

Note 16

It is not quite clear whether this Aristotle's argument is directed against Plato himself or rather

against some of Plato's followers, who improperly vulgarise Plato's doctrine. Many of

Aristotle's arguments against Platonics can be in some form found in Plato himself; some of

these arguments can be interpreteded as a defence of "true" Platonism against its

vulgarisation. Arguably Plato himself didn't conceive of ideas as separate : remind his notion
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of partaking.  I skip these nuances in my presentation and don't distinguish between Plato and

early Platonics attacked by Aristotle. Although Aristotle's philosophy for the obvious

historical reason has a Platonic background it certainly doesn't reduce to it.

Note 17

Ross translates Aristotle's "too logoo proteron" (literally "prior in logos") as "prior in

definition" or "prior in formula". Although Greek word "logos" in a technical sense indeed

means "definition", the meaning of the term is larger and also includes “reasoning”. By “prior

in logos” Aristotle means prior in a theoretical order.

Ross translates  "the ousia proteron" as "prior in substance" or "prior in the order of

substantiality". Arguably Ross' translation is better than mine, since Aristotle indeed aims

here at the ontological order (as distinguished from the epistemological order), while the term

“essence” in its common today's sense refers to conceptual priority rather than to ontological

priority. I opt nevertheless for "prior by essence" because “essence” is the standard English

translation (derived from the Latin translation tradition) of Aristotle's "ousia", which is widely

used by Ross and other translators in other contexts. I feel very uneasy about translating a

term like "ousia", which clearly stands in the original text for a single notion, by different

terms depending on a given context, even if I realise that such equivocacity can be hardly

always avoided.

Note 18

Aristotle's physics comprises all of the natural science but not only physics in today's more

restricted sense. The principle Aristotle's example of physical entity is a living organism

rather than an inanimate object like a stone.

Note 19

Compare this notion of hypostatising abstraction with Plato's notion of hypothesis, which

helps him to distinguish  between mathematics and dialectics (see the previous section).

Note 20

The modern history of mathematical physics begins only with Galileo's attempts to change the

scholastic pattern of doing physics developed by Schoolmen after (their reading of) Aristotle.

It is not surprising that Galileo looked for a support of Platonic rather than Aristotelian

philosophy.
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Note 21

In Greek we have two different terms here : “stoiceia” for the title of the book and “archai”

for the general notion, which (according to Aristotle in Posterior Analytics) comprises

Definitions, Postulates and Axioms. I translate the former term as “foundations” and the latter

term as “fundamentals”.

Note 22

It is a plausible historical speculation that Euclid copied the list of definitions of Book 1 from

an older source and didn't pay attention to the fact that some of these definitions are useless as

far as further propositions are concerned. But this speculation doesn't explain why Euclid

could do this (provided he was a rational being). My point is that he could consider this list of

definition as having an independent epistemic value, not as an auxiliary device for proving

theorems.

Note 23

Postulate 3 allows for drawing a circle with the center in one of the two ends of a given

straight segment and the radius equal to this segment. The Postulate doesn't immediately

allow for drawing a circle with a given centre and the radius equal to any given straight

segment. However this latter construction is also doable on the basis of the complete set of

Postulates and Axioms as it is shown in Proposition 2 of Book 1.

Note 24

Here is the appropriate diagram:

Fig.N1
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P5 says that if ALFA+BETA <2d (=two right angles) then straight lines a and b intersect at

certain point C.  This famous postulate distinguishes Euclidean, i.e. in modern word "flat",

geometry among a wider family of geometries developed in 19th century.

Note 25

A comprehensive history of attempts to prove P5, which eventually resulted into the

discovery of Non-Euclidean geometry, can be found in (Bonola 1955)

Note 26

P1-P3 determine a precise mathematical sense in which the straight line and the circle

generate the universe of geometrical objects dealt with in Euclid's Elements. But the notion of

straight line itself is not given in the Elements  any precise mathematical treatment. Instead

Euclid mentions somewhat cryptic D1.4, which appeals to the intuition of "straight", "even"

and the like.

Note 27

Cf. in Proclus:

"The drawing of a line from any point to any point follows from the conception of the line as

the flowing of a point and of the straight line as its uniform and undeviating flowing. For if

we think of the point as moving uniformly over the shortest path, we shall come to the other

point and so shall have got the first postulate without any complicated process of thought.

And if we take a straight line as limited by a point and similarly imagine its extremity as

moving uniformly over the shortest route, the second postulate will have been established by a

simple and facile reflection. And if we think of a finite line as having one extremity stationary

and the other extremity moving about this stationary point, we shall have produced the third

postulate." (Commentary 185.8-2, Morrow's translation)

Note 28

In A5 the copula is made explicit by the translator. I think this is perfectly justified; I can see

no point in elaborating on the fact that there is no explicit copula in the original text here.

Note 29

Think about "equal copies" 2=2=2=... of the "ideal number" 2. This ideal number can be

thought of as a type shared by all equal 2s.
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Note 30

I owe this remark to John Mayberry and Michael Wright

Note 31

Consider, for example, Proposition 7.1:

"Two unequal numbers (being) laid down, and the lesser being continually subtracted, in turn,

from the greater, if the remainder never measures the (number) preceding it, until a unit

remains, then the original numbers will be prime to one another.

For two [unequal] numbers, AB and CD, the lesser being continually subtracted, in turn, from

the greater, let the remainder never measure the (number) preceding it, until a unit remains. I

say that AB and CD are prime to one another—that is to say, that a unit alone measures (both)

AB and CD.

Fig.N2

For if AB and CD are not prime to one another the  some number will measure them. Let

(some number) measure them, and let it be E. And let CD measuring BF leave FA less than

itself, and let AF measuring DG leave GC less than itself, and let GC measuring FH leave  a

unit, HA.
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In fact, since E measures CD, and CD measures BF, thus also measures BF. And (E) also

measures the  whole of BA. Thus, (E) will also measure the remainder and AF measures DG.

Thus, E also measures DG. And (E) also measures the whole of DC. Thus, (E) will  also

measure the remainder CG. And CG measures FH.  Thus, E also measures FH. And (E) also

measures the  whole of FA. Thus, (E) will also measure the remaining unit AH, (despite)

being a number. The very thing is impossible. Thus, some number does not measure (both)

the numbers AB and CD.

Thus, AB and CD are prime to one another. (Which is) the very thing it was required to

show."

The talk of representation of numbers by Euclid straight segments from a Platonic viewpoint

requires some reservations. Remind the Platonic theory according to which geometrical

objects are "distorted images" of numbers, while material drawings are distorted images of

geometrical objects. This theory provides an explanation of Euclid's method used in the

arithmetical Books of the Elements, which doesn’t involve the modern notion of

representation. First of all it justifies the practice of using the same drawings for numbers and

for geometrical magnitudes: since the Platonic relation “to be an image of” is assumed to be

transitive one and the same picture can stand both for a number and for a straight line. This

allows one to think of images used in arithmetic as images of numbers ignoring the fact that in

a different context the same pictures can refer to lines.

Beware that all drawings found in modern editions the Elements are made by editors. But

there is little doubt that geometrical diagrams were widely used in Euclid’s times too. See

(Netz 2005).

Note 32

After discussing A1-A5 Proclus considers an additional axiom proposed by some people,

which reads as follows:

"Two straight lines don't contain a space"

The axiom says that the two lines making part of the construction below cannot be straight

lines:
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Fig.N3

Proclus rules out this additional axiom on the ground that it doesn't have any arithmetical

meaning but applies only in geometry (while axioms should apply universally). This shows

that he believes that A4 like any other axiom from Euclid's list applies both in geometry and

arithmetic.

Note 33

Remind that the equivalence of the equicomposability and the sameness of areas of polygons

doesn't generalise to the case of polyhedra: polyhedra having the same volume are not always

equicomposable.

Note 34

It seems me suggestive to think of the content of Books 1-2 as a theory which aims at the

"regularisation" of any given polygon, i.e. at the construction of a square equal to a given

polygon. In the end of Book 1 (E1.45) Euclid makes the first important achievement toward

this strategic goal, namely he constructs a rectangle equal to an arbitrary polygon. After

studying rectangles in Book 2 Euclids resolves in E2.14 (the last Proposition of this Book) the

problem of construction a square equal to an arbitrary polygon. One may speculate that an

ultimate aim of this theory was to construct a circle equal to a given polygon, which would

require to square a circle (or, better, to say, to "circle a square"). Remarkably in Books 3-4

Euclid studies circles and their relations to polygons.
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Note 35

One may notice that conic sections were given a precise treatment in Greek geometry. But

this is exactly because there is a sense in which they are generated by the straight line and the

circle involved into the construction of a cone!

Note 36

Cf. "Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavouring to bring

down the doubling the cube to mechanical operations; for by this means all that was good in

geometry would be lost and corrupted, it falling back again to sensible things, and not rising

upward and considering immaterial and immortal images, in which God being versed is

always God." (Plutarch 1909)

Note 37

This formal criterion works perfectly in the geometrical Books of the Elements. In the case of

the arithmetical Books 7-9 there arises an interesting problem concerning this criterion, which

I discuss in paragraph C3 of the same section. So far I follow Proclus and limit my discussion

to the geometrical case. Beware that in spite of its very general philosophical Prologue

Proclus' Commentary  technically concerns only the Book 1 of the Elements, and leaves out of

its scope the arithmetical Books and all specific questions concerning arithmetic.

Note 38

Greek terms are respectively - "protasis", "ekthesis", "diorismos", "kataskeuhe", "apodeixis",

"sumperasma".  In order to stress that the corresponding English terms have in the given

context a specific technical sense I always write them in italic.

Note 39

Exceptions from this rule are of the following two types. (i) Some simple geometrical

Theorems of the Elements lack any construction (called today auxiliary construction), or they

involve only a minimal construction, which is difficult to separate from the following proof.

Such is, for example, E1.8. This situation is more common for Euclid's arithmetical

Propositions, see, for example,  E7.4. (For a clear example of arithmetical construction see

E7.1.) Thus (i) presents a reduced form of the same six-part pattern rather than a different

pattern. (ii) Some Problems like E4.10 lack both an exposition and a specification. This

deviation from the basic pattern is more profound and I shall discuss it in what follows in the
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main text. However I don't think that these deviations are sufficiently systematic for talking

about the presence of a different pattern of reasoning in certain Euclid's Propositions.

Note 40

I owe this remark to Svetlana Mesjatz

Note 41

Here is the Greek text: ADD QUOTE

Note 42

A more popular translation of this Greek term is proposition (through Latin propositio which

translates the Greek word literally). I don't use it here because this would make the

terminological situation yet more complicated.

Note 43

Beware that P3 assures only the construction of a circle with the centre at one of the two

endpoints of a given straight line. So the compass used for geometrical constructions is not

supposed here to preserve the distance between its legs when one moves it from one place to

another. E1.2 shows that this latter assumption, which looks stronger than P3, doesn't in fact

bring a stronger theory.

Note 44

Notice that P1 assures the construction of straight line by its endpoints, not the construction of

straight line without any qualification. One might argue on this basis that E''1.2 is impossible

rather than trivial. However as one can see at the example of E1.5 Euclid in fact admits the

arbitrary choice of points as a justified constructive step. Thus to chose a couple of points and

then use P1 would qualify for Euclid as a solution of E''1.2.

Note 45

Notice however that in the conclusion of E1.1 Euclid uses the full expression "the given

straight line AB ", which from a notational viewpoint is redundant. One can explain this

redundancy by saying that Euclid reminds here the reader what the name "AB " stands for. In

what follows I shall provide another explanation of this apparent redundancy.
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Note 46

Here is Proclus' account of how the six-part structure is realised in E1.1:

"Let us view the things that have been said by applying them to this our first problem. Clearly

it is a problem, for it bids us devise a way of constructing an equilateral triangle. In this case

the enunciation consists of both what is given and what is sought. What is given is a finite

straight line and what is sought is how to construct an equilateral triangle on it. The statement

of the given precedes and the statement of what is sought follows, so that we may weave them

together as "If there is a finite line, it is possible to construct an equilateral triangle on it." If

there were no straight line, no triangle could be produced, for a triangle is bounded by straight

lines; nor could it if the line were not finite, for an angle can be constructed only at a definite

point, and an unbounded line has no end point.

Next after the enunciation is the exposition: "Let this be the given finite line". You see that

the exposition itself mentions only the given, without a reference to what is sought. Upon this

follows the specification: "It is required to construct an equilateral triangle on the designated

finite straight line". In a sense the purpose of the specification is to fix our  attention; it makes

us more attentive to  the proof by announcing what is to be proved, just as the exposition put

us in a better position for learning by producing the given element before our eyes. After the

specification comes the construction [...]. In general the postulates are contributory to

constructions and the axioms to proofs. Next comes the proof [...]. "The three lines therefore

are equal, and the equilateral triangle [ABC] has been constructed". This is the first

conclusion following upon the exposition. And then comes the general conclusion: "An

equilateral triangle is therefore been constructed upon the given straight line". For even if you

make the line double that set forth in the exposition, or triple, or of any other length greater or

less than it, the same construction and proof would fit it."

(Commentary 208.1-210.16 Morrow's translation, slightly corrected)

In the end of this passage Proclus distinguishes between a preliminary conclusion given in the

end of the proof and the general conclusion, which concludes the whole Problem. While this

preliminary conclusion concerns only the particular straight line AB identified in the

exposition the general conclusion applies to any given straight line. Beware that Proclus

doesn't quote here Euclid's text but paraphrases it. About the two conclusions see the next

Note.
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Note 47

Here is what Proclus says about it:

"[M]athematicians are accustomed to draw what is in a way a double conclusion. For when

they have shown something to be true of the given figure, they infer that it is true in general,

going from the particular to the universal conclusion. Because they do not make use of the

particular qualities of the subjects but draw the angle or the straight line in order to place what

is given before our eyes, they consider that what they infer about the given angle or straight

line can be identically asserted for every similar case. They pass therefore to the universal

conclusion in order that we may not suppose that the result is confined to the particular

instance. This procedure is justified, since for the demonstration they use the objects set out in

the diagram not as these particular figures, but as figures resembling others of the same sort. It

is not as having such-and-such size that the angle before me is bisected, but as being

rectilinear and nothing more. Its particular size is a character of the given angle, but its having

rectilinear sides is a common feature of all rectilinear angles. Suppose the given angle is a

right angle. If I used its rightness for my demonstration, I should not be able to infer anything

about the whole class of rectilinear angles; but if I make no use of its rightness and consider

only its rectilinear character, the proposition will apply equally to all angles with rectilinear

sides. (Commentary 207.4-25, Morrow’s translation)

In the last part of the quote Proclus takes as an example a rectilinear angle, that is, a "usual"

angle sides of which are straight lines. In the Elements rectilinear angles are defined in D1.9

while D1.8 defines a more general notion of angle, which allows sides of an angle to be curve.

Curvilinear angles appear in E3.16.

I shall not elaborate on Proclus' notion of "double conclusion" but in what follows (in the

main text) propose my own "Platonic" account of this phenomenon, which is partly based on

Proclus'.

Note 48

For Aristotle's example of a construction, which makes a non-obvious theorem nearly obvious

see 1.4D below in the main text.

Note 49

As Proclus' rightly points out (see his Commentary 203-204) the situation is not wholly

symmetric: some Theorems lack any (auxiliary) construction but each Problem without
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exception involves a proof. This remark only strengthens my point: proofs are not only

important but also indispensable in Problems. About Theorems lacking construction see also

Note 39 above.

Note 50

A more involved but in sometimes the only available way to proceed in the same situation is

to consider a number of special cases separately. Then one should make sure that the list of

cases is complete, i.e. that the considered cases exhaust all the possibilities.  In such situations

the use of special properties is not any longer forbidden but still tightly controlled. Naturally

this strategy can work only when the number of special cases is finite.

Note 51

Concerning the question of first principles (fundamentals) remind section 1.1: on Plato's view

the first principles cannot be adequately grasped by mathematical reasoning (which Plato calls

"understanding") alone; it requires a different epistemic capacity and a different theoretical

activity (viz. dialectics).

Note 52

All Aristotle's mathematical references are collected, translated and commented in (Heath

1949).

Note 53

Cf. "Division is a sort of weak deduction; for it postulates what it has to prove. ... But at first

this escaped the notice of all those who made use of it..." (An. Pr. 46a 32-7, Barnes'

translation). By "division" Aristotle means here the standard procedure of getting a definition

through dividing a given genus into species.

Note 54

In Aristotle's own writings one finds a proof, which involves the proposition a point has no

parts as a premise. In his Physics (226b) Aristotle defines a binary relation "in continuity

with" as follows: A is in continuity with B iff boundaries of A and B are the same. Then (231a)

he uses this definition for proving that two points cannot be in continuity, and hence that no

collection of points can constitute a continuous line (or any other continuum). For suppose

they can and consider two neighbouring point. Since the line is supposed to be continuous the
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two points are in continuity. The above definition implies that boundaries of these points are

the same. But since a point has no parts it is identical with its own boundary. Hence the two

points are the same. Hence any collection of points such that each point is in continuity with

at least one (possibly the same) point from this collection reduces to a single point.

Note 55

Cf. "[I]t is impossible that there should be demonstration of absolutely everything, for there

would then be an infinite regress, so that even then there would be no proof" (Met. 1006a7-9,

Ross' translation). Even if Aristotle recognises a semantic regress in definitions, i.e. the fact

that a definitions explains the meaning of its definiendum in terms of the meaning of its

definiens, this is, in Aristotle's eyes, only a secondary function of definition. This is why he

never discusses the notion of "semantic primitive" stopping the semantical regress.

Note 56

Proclus says this definitely about P5. He is less sure about P4 but also quotes its known proof,

which he tends to accept. See the Commentary  on P4-P5. Talking about attempts to prove P5,

which in a long while led to the discovery of non-Euclidean geometries, it should be stressed

that at least ancient mathematicians and their commentators like Proclus didn't look

specifically for a proof of P5 based only on the rest of the Euclid's fundamentals. They would

be quite ready to embrace a proof P5 like that proposed by Wallis in 1663 (Bonola 1955),

which proves P5 on the basis of an additional principle having a stronger intuitive appeal than

P5 itself.

Note 57

This fact is related to different ontologies of the two thinkers. Both consider mathematical

objects as ontologically deficient but not in the same sense: in Plato's view they are

"intermediate" while in Aristotle's view they are abstract. While Plato's basic ontological

distinction between Being and Becoming can be well interpreted within mathematics

Aristotle's distinction between abstract and non-abstract is rather meta-mathematical than

mathematical. The fact that mathematical objects exist only in a specific sense of "exist",

which is appropriate for abstract objects, doesn't have any direct impact on mathematical

reasoning itself; it is relevant only when mathematics is applied elsewhere, notably in physics.
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Note 58

I refer here after Cantor to the scholastic distinction between potential and actual infinity,

which is indeed helpful in the given context. But it must be stressed that the modern notion of

infinity developed in mathematics of 20th century is free from any associated modality - be it

potentiality or actuality. I shall explain this issue providing more details in section I.3.

Note 59

For attempts to rewrite Euclid's proofs in terms of Aristotle's syllogisms see (Euclid 1845) and

(Euclid 1848).

Note 60

Let me demonstrate my earlier claim that Aristotle's letter notation derives from Euclid's (I

mean, of course, from an earlier geometrical practice, which is similar to Euclid's). After

specifying referents of symbols "A " and "B " Aristotle introduces the new name “AB”, which

stands for the proposition formed out of A, B and the copula – similarly to a geometer who

uses the name"AB " for a line drawn between points A and B. This observation suggests that

Aristotle took  an earlier established system of geometrical notation and used it for a different

purpose.

Note 61

Remind how it works in this schoolish example. One needs to prove that Socrates is mortal.

One assumes that (i) Socrates is a man (i.e. it is Socrates' essential property) and (ii) that all

men are mortal (once again it is an essential property of men). Then the desired conclusion

follows by the perfect syllogism. The proof can be described as the introduction of the middle

term "man" between terms "Socrates" and "mortal". Premises (i) and (ii) are supposed to be

immediate, which means that they cannot be proved similarly by introduction of new

additional terms between terms "Socrates" and "man" and between terms "man" and "mortal".

Note 62

Here is the original text ADD QUOTE

Heath translates it is follows:

"Propositions too in mathematics are discovered by an activity; for it is be a process of

dividing-up that we discover them. If the division had already been performed, the proposition
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would have been manifest; as it is they are present only potentially. Why does the triangle

imply two right angles? Because the angles about one point are equal to two right angles. If,

therefore, the straight line parallel to the side had been drawn upwards, the reason why would

at once have been clear."

Ross translates it as follows:

"It is by actualisation also that geometrical relations are discovered; for it is by dividing the

given figures that people discover them. If they have been already divided, the relations

would have been obvious; but as it is the divisions are present only potentially. Why are the

angles of the triangle equal to two right angles? Because the angles about one point are equal

to two right angles. If, then the line parallel to the side had been already drawn, the theorem

would have been evident to anyone as soon as he saw the figure."

It is not easy to be as laconic in English as Aristotle manages to be in Greek but in my

proposed translation I tried to avoid as far as possible any additional words and expressions

and particularly logically charged terms like "proposition", "relation" or "imply" absent in the

original. Explaining his translation of Aristotle's "diagrammata" by "propositions" Heath

writes:

"I feel no doubt that "ta diagrammata" in 1051a22 are, as in Categ.14a39 and Metaph.

1014a36, geometrical propositions including the proofs of the same, and not merely

"diagrams" or even "constructions".

I opted for "diagrams" in spite of this warning. Heath is right that Aristotle is talking here

about the process of proving a theorem, not about a diagram in a narrow sense. But he tells us

about proving a theorem with  a diagram. Aristotle, in my understanding, describes here an

informal reasoning, which combines talking and drawing, rather than an accomplished result

in the form found in the Elements. The additional line referred to by Aristotle makes the

theorem obvious only in an informal sense: to prove it rigorously one still needs a solid

theoretical basis like one provided by Euclid for E1.32.  This is why I think that the litteral

translation of Aristotle's "diagrammata" is more appropriate. Another reason for it is that in

the second sentence of the quoted passage the word "diherhemena" (divided)"

uncontroversially relates to "diagrammata". As Heath himself stresses quite rightly Aristotle's

"diarountes" (dividing-up) should be understood here in a literal non-technical sense but not
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in an abstract logical sense. Heath finds his way to avoid talking about "divided propositions"

in his translation but it seems me artificial.

What Aristotle means here by "diarountes" is quite clear from the following examples: he

talks about geometrical constructions made on the basis of some given figures or

constructions. It is less clear why Aristotle uses here this word, which doesn't seem to be quite

appropriate in the given case. I think that this fact has to do with Aristotle's theory according

to which additional constructions are potentially present in a given figure rather that in an

outer space. We can see behind this term the same Aristotle's intuition, which we have already

encountered elsewhere: every essential property of a figure is discovered by an analysis of its

"proper nature" rather than through its relations to anything else. The fact that additional

constructions in geometry don't reduce to cutting given figures into parts suggests that

Aristotle's approach doesn't actually square with his contemporary mathematics. This is not

particularly surprising because this approach, as I have already stressed, is mainly motivated

by physical and biological rather than mathematical examples.

Note 63

The idea to distinguish between "Being properly speaking" and various kinds of deficient

"Being in a special sense" Aristotle obviously took from his teacher.

Note 64

Here are enunciations of all the five:

E10.5: "Commensurable magnitudes have to one another the ratio which (some) number (has)

to (some) number."

E10.6: "If two magnitudes have to one another the ratio which (some) number (has) to (some)

number, then the magnitudes will be commensurable."

E10.7: "Incommensurable magnitudes do not have to one another the ratio which (some)

number (has) to (some) number."

E10.8: "If two magnitudes do not have to one another the ratio which (some) number (has) to

(some) number, then the magnitudes will be incommensurable."
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E10.9: "Squares on straight-lines (which are) commensurable in length have to one another

the ratio which (some)  square number (has) to (some) square number. And squares having to

one another the ratio which (some)  square number (has) to (some) square number will also

have sides (which are) commensurable in length. But  squares on straight-lines (which are)

incommensurable in length do not have to one another the ratio which (some) square number

(has) to (some) square number. And squares not having to one another the ratio which (some)

square number (has) to (some) square number will not have sides (which are) commensurable

in length either."
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