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Abstract. The popular view according to which Category theory provides a support for

Mathematical Structuralism is erroneous. Category-theoretic foundations of mathematics

require a different philosophy of mathematics. While structural mathematics studies

“invariant form” (Awodey) categorical mathematics studies covariant and contravariant

transformations which, generally, dont have any invariants. In this paper I develop a

non-structuralist interpretation of categorical mathematics and show its consequences for

history of mathematics and mathematics education.

1. Introduction

Some time ago there was a discussion in Philosophia Mathematica about Hellman’s ques-

tion “Does Category Theory Provide a Framework for Mathematical Structuralism?” [11].

Awodey [2] answered “yes, obviously”; a version of Categorical Structuralism (i.e., Math-

ematical Structuralism developed in a category-theoretic framework) was later described

by MacLarty [31]. Independently of this discussion a structuralist view on Category the-

ory is argued for in [26]; a structuralist view on Category theory also underlies the recent

monograph [27] (even if its author doesn’t discuss in this book Mathematical Structuralism

explicitly). In the paper I propose a different answer to Hellman’s question by arguing that

Category theory leads to a new non-structuralist view on mathematics and its foundations.

1Acknowledgment : I am very grateful to Sergei Artemov, Haim Gaifman, René Guitart, Daniel Isaacson,

William Lawvere, John Mayberry, Colin McLarty, Richard Pettigrew, Irina Starikova, Michael Wright,

Noson Yanofsky and two anonymous referees for their comments on earlier drafts of this paper and valuable

discussions.
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Mathematical Structuralism is usually opposed to various forms of Substantialism about

mathematical objects. As the reader shall see the view on mathematics that I oppose to

Structuralism in this paper is not of this latter sort.

In order to formulate my claims I need to make explicite some of my general assumptions

concerning the aim and the scope of philosophy of mathematics. I hold a traditional view

according to which the principle aim of philosophy of mathematics is to provide mathe-

matics with appropriate foundations. Saying this I have in mind the notion of foundation

described by Lawvere as follows:

A foundation makes explicit the essential general features, ingredients, and

operations of a science, as well as its origins and generals laws of develop-

ment. The purpose of making these explicit is to provide a guide to the

learning, use, and further development of the science. A “pure” foundation

that forgets this purpose and pursues a speculative “foundations” for its

own sake is clearly a nonfoundation.[21]

Following Lawvere I shall not discuss in this paper what he calls “pure” and “speculative”

foundations, i.e., foundations detached from the current mathematical practice.

Further, I assume that foundations of mathematics is a subject to permanent dialectical

revision and historical change; I believe that such a continuing renewal of foundations

is essential for progress in mathematics (and likewise for progress in science in general).

While the progress in most parts of mathematics amounts to building upon earlier acquired

knowledge the renewal of its foundations work differently: it amounts to refutation of

older foundations and positing of new foundations. This process represents the dialectical

development of basic ideas about mathematics, which reflect, support, motivate and lead

contemporary mathematical practice. My aim in this paper is to push this dialectical

development further forward.

Since a general discussion about the nature and the purpose of foundations is out of place

here I shall only say how the above assumptions contribute to my further claims concerning
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Structuralism and Category theory. I shall speak about Structuralism as a way of building

foundations mathematics, not merely as a doctrine about the nature of mathematics. I

shall criticize Structuralism without meaning that Structuralism is boldly wrong. My claim

is that Structuralism is not wrong but outdated. It has been successful in twentieth-century

mathematics but it is no longer appropriate as a foundation for todays and future math-

ematics. I present in this paper an alternative foundational project related to Category

theory and explain its advantages. I also explain how this categorical foundational project

relates to Structuralism and why it doesnt qualify as a variety of Structuralism.

The rest of this paper is organized as follows. First, I briefly discuss Mathematical Struc-

turalism, its historical origins and its relation to Set theory and Category theory. Here

I explain reasons why MacLane, Awodey, and some other people believe that Category

theory provides a support for Mathematical Structuralism. Then I provide my critical

arguments against this latter view arguing that the notion of category should be viewed

as generalization of that of structure rather than as a specific kind of structure. Further I

analyze Lawvere’s paper [20] on categorical foundations and show that the author begins

this paper with a version of structuralist foundations but then proceeds in a different di-

rection. I conclude with an attempt to outline the new categorical view on mathematics

explicitly.

2. Mathematical Structuralism

Before discussing Structuralism as a philosophical view about mathematics I would like to

point to an example of mathematical structure given by a working mathematician for a

philosophical reader:

All infinite cyclic groups are isomorphic, but this infinite group appears over

and over again - in number theory, in ornaments, in crystallography, and

in physics. Thus, the “existence” of this group is really a many-splendored
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matter. An ontological analysis of things simply called “mathematical ob-

jects” is likely to miss the real point of mathematical existence. [22]

The point stressed by Mac Lane with this example is this: things like (algebraic) groups

should be thought of as structures (abstract or instantiated in various ways) rather than

individual objects. Let me now for the sake of my further argument modify Mac Lane’s

example as follows: I replace the words “infinite cyclic group” by the words “number three”

and the word “isomorphic” by the word “equal”:

All threes are equal but this number appears over and over again - in number theory, in or-

naments .... Thus the “existence” of this number is really a many-splendored matter.

This modification reveals a traditional aspect of Structuralism, which often remains unno-

ticed when people stress the novelty of this approach. Indeed the familiar number three is

just as promiscuous as the infinite cyclic group or perhaps even more promiscuous. The

number three equally “appears” (to use MacLane’s word) both inside and outside math-

ematics: in a trio of apples, a trio of points, a trio of groups, a trio of numbers or a

trio of anything else. As in Mac Lane’s original example, there is a systematic ambiguity

between the plural and the singular forms of nouns in our talk about numbers. (Notice

Mac Lane’s talk about “all infinite cyclic groups” and “this infinite group” in the same

sentence; in my paraphrase I talk similarly about a number.) This shows that the notion

of “many-splendored existence” (i.e., of multiple instantiation) is not specific for the way

of mathematical thinking developed in the first half of twentieth century and usually de-

scribed as “structural”. Thus in order to understand what is specific for this thinking one

should look elsewhere. Comparing Mac Lane’s example with its modified version one can

see that in Mac Lane’s example the notion of isomorphism plays the same role that the

notion of equality (as distinguished from identity) plays in traditional mathematics. The
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idea that isomorphic objects can be treated as equal is, in my view, crucial for Structural-

ism - at least if we are talking about Structuralism as a historical trend in mathematics

rather than a philosophical theory about mathematics. 2

This point has been made clear by Hilbert in his often-quoted letter to Frege of December

29, 1899. Stressing the “many-splendored” nature of structural theories (as we would call

them today) Hilbert says:

[E]ach and every theory can always be applied to the infinite number of sys-

tems of basic elements. One merely has to apply a univocal and reversible

one-to-one transformation [to the elements of the given system] and stipu-

late that the axiom for the transformed things be correspondingly similar

(quoted by [9], underlining mine)

Notice that the reversibility condition stressed here by Hilbert implies that the given trans-

formation is an isomorphism.

In the current philosophy of mathematics Mathematical Structuralism is present in a num-

ber of different varieties [10], which include Categorical Structuralism [13], [31]. However

a general notion of Mathematical Structuralism neutral with respect to its more specific

varieties is also described in the recent literature. For my present purposes I shall refer only

to this core of Mathematical Structuralism leaving aside more specific issues concerning its

multiple varieties. Hellman [12] describes this core Structuralism as follows:

Structuralism is a view about the subject matter of mathematics according

to which what matters are structural relationships in abstraction from the

intrinsic nature of the related objects. Mathematics is seen as the free

exploration of structural possibilities, primarily through creative concept

formation, postulation, and deduction. The items making up any particular

system exemplifying the structure in question are of no importance; all that

matters is that they satisfy certain general conditionstypically spelled out

2For a historical study of the structural trend in mathematics see [5].
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in axioms defining the structure or structures of interest - characteristic of

the branch of mathematics in question.

Noticeably Hellman doesn’t explicitly mention the notion of isomorphism in this descrip-

tion. In my view this is a serious default. To see this consider the example of group struc-

ture. A group is any “system” (to use Hellman’s word) that consists of certain “items” a

, b, ... and binary operation ⊕ associating with every ordered pair of such items (possibly

identical) a third item (possibly identical to one of those) from the same system such that

the following axioms hold:

G1: operation ⊕ is associative.

G2: there exists an item 1 (called unit) such that for all a a⊕1 = 1⊕a = a.

G3: for all a there exists a−1 (called inverse of a) such that a⊕ a−1 = a−1⊕ a = 1 .

These axioms are satisfied by many different groups. The infinite cyclic group mentioned

above is just one example but there are many others. These other groups are not, generally,

isomorphic to the infinite cyclic group, i.e. they are different in the structural sense.

This demonstrates the obvious fact that axioms G1-3 determine a class of structures of a

particular type but not a particular structure. This example explains why Hellman talks

in the above quote about “structures of interest” in plural. 3

But in order to give a sense to the expression “type of structures” one needs to have the

notion of structure at the first place. Axioms G1-3, or any other system of axioms deter-

mining some type of structure, cannot help one grasp the notion of structure unless one is

3We are now ready to spell out the precise definition: an infinite cyclic group is a group with an infinite

number of elements and such that any of its elements is generated by some distinguished element g and its

inverse g−1. A group is said to be generated by a set of its distinguished elements called generators when

every element of this group is a product of the generators. A canonical example of an infinite cyclic group

is the additive group of whole numbers, which is generated by numbers 1 and -1. For example of a group

non-isomorphic to the infinite cyclic groups consider the group of permutations of three letters A,B, C with

the composition of permutations as group operation.
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already aware of the fundamental role of isomorphism. For the idea of a general descrip-

tion satisfied by different mathematical objects is obviously not unique to Structuralism;

Euclid’s axioms do the same job with respect to numbers and magnitudes. Stressing the

higher importance of structures with respect to “systems”, the irrelevance of “intrinsic na-

ture” and relevance of “structural relationships” cannot clarify the notion of mathematical

structure by itself.

3. Isomorphisms and “Invariant Forms”

A non-structuralist may observe that axioms G1-3 are satisfied by a number of “particular

systems” (not structures so far!) called groups. Let now G be a class of such systems (i.e.

groups), and consider the situation when some of these, say G1 and G2 are isomorphic.

This actually means two things:

I1: elements of G1 are in one-to-one correspondence with elements of G2; by “one-to-one

correspondence” between elements of two given sets A, B I understand here a set C of

non-ordered pairs (a, b) such that aεA, bεB and that every element of A is a member of

exactly one of these pairs and similarly every element of B is a member of exactly one of

these pairs;

I2: for all elements a1, b1, c1 from G1 such that a1 ⊕ b1 = c1 the corresponding elements

a2, b2, c2 from G2 satisfy a2 ⊗ b2 = c2 where ⊕ is the group operation in G1 and ⊗ is the

group operation in G2.

A one-to-one correspondence between elements of two given groups that satisfies I2 is

called (group) isomorphism. Groups are isomorphic if and only if there exists isomorphism

between them. Notice that, given two isomorphic groups, there are, generally, many dif-

ferent isomorphisms between them. One should not confuse isomorphism as a particular

correspondence between elements of two groups and isomorphism as an equivalence rela-

tion defined on some class of groups. Isomorphism in the latter sense holds between two

given groups if and only if there exists an isomorphism in the former sense between these
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groups. As we can see, this terminology is slightly confusing but it is too common to try

to change it.

Since isomorphism is an equivalence relation it divides class G into sub-classes containing

only isomorphic groups. One may ignore differences between isomorphic groups and get

through this act of abstraction various notions of groups-qua-structures (not to be confused

with the general notion of group as a type of structure!), in particular, the notion of

infinite cyclic group. To facilitate the language and provide this reasoning with some

intuitive support one may talk and think about any particular structure as a thing “shared”

by all members of the corresponding isomorphism class. On this basis one may claim

that “the items making up any particular system exemplifying the structure in question

are of no importance” (as does Hellman in the above quote). This claim describes the

aforementioned abstraction, which can be called structural abstraction. However, one

cannot forget about these exemplifying systems completely because this would destroy the

whole reasoning bringing about the notion of mathematical structure. Noticeably Hellman

needs the auxiliary notion of system in order to describe what is a mathematical structure.

One might think that this additional notion (no matter what one calls it) plays a role in

philosophical talk about structural mathematics but plays no role in structural mathematics

itself. In the next Section I shall argue that this is not the case.

There is yet a different way of thinking about isomorphism (this will be already the third

meaning of the term by our account!), which is common in current mathematical practice

and particularly pertinent for categorical mathematics, as we shall later see. One may

think about a one-to-one correspondence between elements of groups G1 and G2, which

satisfies condition I2, as a map or transformation i : G1 → G2 of one group into another

group. Since a one-to-one correspondence is a symmetric construction the choice of G1

as the source and G2 as the target of this transformation is in fact arbitrary. In other

words one and the same isomorphism-qua-correspondence gives rise to two isomorphisms-

qua-transformations i : G1 → G2 and j : G1 → G2 , which run in opposite directions and

cancel each other on both sides. This latter property means precisely the following: the
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composition transformation i ◦ j resulting from the application of transformation j after

transformation i sends every element of G1 into itself and composition transformation j ◦ i

sends every element of G2 into itself (beware that none of the two conjuncts implies the

other). Given these conditions each of transformations i and j is called the inverse of the

other. Hence this definition: a transformation is called an isomorphism when it has an

inverse. See Footnote 9 for a more precise categorical version of this definition. 4

Thinking about isomorphism as a reversible transformation allows one to think of a struc-

ture shared by given transformed systems as an “invariant form”, i.e. a form invariant

under the given transformation. Then the structural abstraction can be described in these

alternative terms: only the invariant form matters, transformed systems don’t. As we

shall see in what follows, the notion of isomorphism-qua-transformation, which may seem

redundant in the context introduced so far, becomes indispensable in categorical math-

ematics. Noticeably Hilbert in the above quote (Section 3) talks about isomorphism as

transformation, not as a symmetric one-to-one correspondence.

4. Structures versus Abstract Objects; Collections versus

Transformations

Given an equivalence relation defined for a class of mathematical objects, Frege [8] consid-

ered the possibility of replacing each obtained equivalence class by a single object through

an act of abstraction. 5

4Notice that the order in which transformations are composed matters. I use here the so-called geomet-

rical notation where the composition is written in the “direct” order. According to another notation called

algebraic the composition is written in the inverse order.
5Frege’s example is the concept of direction built, as follows. One considers the class of all straight

lines on a Euclidean plane and the equivalence relation “is parallel”. Then one associates a single abstract

concept called direction with each isomorphism class of parallel lines.



10 ANDREI RODIN

Frege calls the result of this procedure an abstract object, not a structure, and indeed he

doesn’t think about this outcome as a structure. So we need a further effort for distin-

guishing structural abstraction from other types of mathematical abstraction. To this end,

let us first consider this question: What are elements of a group-qua-structure? For the

reason that I have already explained we don’t want these elements to have anything like

an “intrinsic nature”. So they should be just “items” or “abstract elements”; the pred-

icate “abstract” refers here to the act of abstraction through which the notion of group-

qua-structure is obtained. However, we still need to make some assumptions about these

things. We want them to be many and form (or belong to) well-distinguishable collections.

Since we want to use the same notion of collection for different purposes we don’t want the

collected elements to be related in a specific way. This will give us the freedom to stipulate

any relation between elements by fiat using the same notion of collection.

This is an important point where Structuralism meets Set theory. Having a notion of set

at our disposal we are in a position to give the standard structural definition of group as

a “structured set”, namely a set provided with a binary operation satisfying axioms G1-3

given above. There is a standard way to account for algebraic operations as relations that

I shall not explain here.

As we have seen, the notion of isomorphism plays a crucial role in structural abstraction,

which brings about new mathematical objects (namely, new mathematical structures).

Importantly isomorphisms do not disappear when a given act of structural abstraction is

accomplished and a new mathematical structure is well-defined. Mathematicians think

about abstract groups and other abstract structures as given in an indefinite number of

isomorphic copies, not as unique objects. As I have already stressed, people think similarly

about numbers in traditional arithmetic (see Section 3). This, in my view, is the princi-

pal point where Frege’s notion of abstraction fails to account for structural abstraction as

this latter notion has been developed in twentieth-century mathematics. Reasoning “up

to isomorphism” doesn’t amount to the strict identification of isomorphic structures; it
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rather amounts to replacement of traditional equality by isomorphism in appropriate con-

texts. From a mathematical (as distinguished from logical and philosophical) viewpoint

the question whether or not two isomorphic structures are identical is just as pointless

as the question whether or not two equal numbers are identical. A sound mathematical

question about two given numbers is whether or not they are equal. A sound mathematical

question about two given structures is whether or not they are isomorphic. 6

Set theory makes the talk of isomorphism as transformation redundant because the notion

of one-to-one correspondence may be analyzed set-theoretically in terms of pairs of ele-

ments. However in many important mathematical contexts the notion of transformation

is widely used anyway: groups of (reversible) transformations are abundant and geometry

and also in physics. As far as foundations of mathematics are concerned we have an impor-

tant choice here: either to (i) consider the notion of collection as more fundamental than

that of transformation and reduce the latter to the former or to (ii) consider the notion of

transformation as more fundamental and reconstruct the notion of collection on this basis.

The former option brings (some version of) set-theoretic foundations of mathematics. The

idea of categorical (i.e. category-theoretic) foundations amounts to taking the latter op-

tion. However the project turns to be non-viable unless one takes into the account other

transformations than isomorphisms.

5. Homomorphisms

Given a type of structures it is always possible to define a general notion of map between

structures of the given type. I shall discuss first the case of general maps between groups;

such maps are called homomorphisms or more precisely group homomorphisms. Then I

shall say few words about general maps between structures of different types. The term

“homomorphism” is traditionally reserved for groups (apparently because this case was

studied first), although, as its etymology suggests, it could also be used for structures

6I elaborate on this issue in [32] In particular, I discuss in this paper the idea of “weakening” equalities

by replacing them with appropriate equivalences in n-categories.
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of different types like the term “isomorphism”. So in what follows I shall use the term

“homomorphism” in the sense of general map between structures of some given type.

The notion of group homomorphism generalizes upon that of group isomorphism in the

following way: instead of one-to-one correspondence between elements of groups G1, G2,

one considers a more general kind of correspondence that is allowed to be many-to-one

(but not one-to-many). In other words, one considers a function (in the set-theoretic sense

of the term) f : S1 → S2 from the set S1 of elements of G1 to the set S2 of elements of

G2. Condition I2 from Section 4 remains the same; notice that it can be satisfied when

elements a1, b1 are different but elements a2, b2 are the same.

Group homomorphism and similar general maps between structures of other types are

colloquially called “structure preserving”. This is somewhat misleading because if such

maps preserve anything at all it is a type of structure but not a particular structure.

Think about this trivial example: for all groups G1, G2 there exist a homomorphism h:

G1 → G2 which sends every element of G1 to the unit of G2. This homomorphism “destroys

all information” about G1 reducing its image to a single element; it doesn’t provide any

information about G2 either.

Actually the example of group homomorphism doesn’t straightforwardly generalize to maps

betweens structures of different types. For given a type of structure there are, generally,

different ways to define maps between structures of the given type (some of which may be

reasonable and some other not). Such maps can be of different kinds. Usual maps between

topological spaces, i.e., general continuous transformations, do not preserve topological

structure (in the same sense in which group homomorphisms are said to preserve group

structure) but reflect it: the inverse image of any open set under a given continuous

transformationis is always open while the direct image of an open set can be closed. In

the case of isomorphism the difference between reflection and preservation of structural

properties disappears. This fact shows that thinking about homomorphisms as “imperfect

isomorphisms” can be misleading; at the very least one should not forget that a given

structural isomorphism may “loose its perfection” in two different ways.
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I shall now argue that homomorphisms, generally, don’t allow for invariants in anything

like the same sense in which isomorphisms do so. Let us try to replace isomorphisms by

homomorphisms in the process of structural abstraction described in Section 4 and see

what happens. One might expect to get in this way a generalized notion of structure but

this doesn’t work. Recall the first step: given class G of groups we have divided it into

equivalence subclasses of isomorphic groups. Two groups are isomorphic if and only if

there exists isomorphism (i.e., a reversible transformation) between them; clearly this is

an equivalence relation. Let me (for the sake of argument) call two groups homomorphic if

and only if there is a homomorphism between them. Although this latter relation is also an

equivalence, one can see the difference: since all groups are homomorphic (see the above

example of group homomorphism) one cannot use this equivalence for dividing G into

equivalence subclasses! Saying that two given groups are homomorphic is tantamount to

saying that the given groups are groups. So the relation of homomorphism just introduced

(not to be confused with the standard notion of homomorphism as transformation) doesn’t

make sense.

In order to see the reason of this failure, note that the existence of homomorphism of

the form G1 → G2 doesn’t imply the existence of homomorphism of the form G2 → G1.

This means that in the case of homomorphism (unlike that of isomorphism) the difference

between the source and the target of the given transformation matters. But the relation

of homomorphism tentatively introduced above doesn’t take this difference into account.

It forgets the difference between isomorphic and non-isomorphic groups and thus confuses

their structural properties and offers no replacement.

A more reasonable choice of relation associated with a given homomorphism h: G1 → G2

would be that of non-symmetrical relation > such that G1 > G2 holds just in case there

is a homomorphism of the form h: G1 → G2. However, since > is asymmetric it is not an

equivalence and so doesn’t allow one to proceed further with the structural abstraction or

anything similar.



14 ANDREI RODIN

We see that homomorphisms cannot do the same job as isomorphisms: the reversibility

condition stressed by Hilbert in the above quote (Section 3) turns out to be crucial for

structural abstraction. One cannot reason “up to homomorphism” in anything like the

same way in which people reason up to isomorphism doing structural mathematics. Since

“invariant” in the given context is just another word for structure it is clear that ho-

momorphisms, generally, don’t have invariants in anything like the same sense in which

isomorphisms and groups of isomorphisms do so. 7

6. Structuralist Motivations behind Category Theory

The emergence of Category theory in he 1940s and its further development in the context

of structural mathematics was related to a growing awareness of the role of general maps

(not only isomorphisms). I shall not explain here the precise mathematical context in

which this theory first proved useful but only mention that the notion of category gen-

eralizes upon such examples as the class of all sets and all functions, all groups and all

group homomorphisms, all topological spaces and all continuous maps (not only reversible

ones!) between topological spaces. This is a simple theorem [22] that a class of structures

of any fixed type provided with an appropriate notion of general map form a category.

Generally, a category comprises a class of objects and a class of composable maps (called

in Category theory morphisms) for every ordered pair of objects, which are subject to few

7I mention here groups of isomorphisms (not to be confused with isomorphisms of groups!) because they

are very important in geometry and physics. I mean groups of geometrical transformations of a given space.

Only reversible geometrical transformations, i.e. geometrical isomorphisms, of a single object (the given

space) form groups (with the composition of transformations as group operation) because in this case the

reversibility is equivalent to the existence of inverse elements. So the talk of invariants of groups, which is so

important for structural approaches in physics, concerns only reversible transformations and doesn’t apply

to geometrical (or other) transformations in general. A non-mathematical reader may skip the reference to

groups of isomorphisms in this part of the paper. I shall explain the idea of group of isomorphisms more

clearly in categorical terms in Section 8.
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natural axioms. Given two different categories one defines a notion of map between cate-

gories. Such maps are called functors; the usual definition of functor is based on the same

idea as the definition of group homomorphism given in the previous Section: a functor

sends each object of the source category into an object of the target category and each

morphism of the source category into a morphism of the target category in such a way that

composition of morphisms is “preserved” in the same sense in which the group operation is

said to be preserved by a group homomorphism. Using the notion of functor one may con-

sider various categories of categories, i.e. categories such that their objects are themselves

categories. One may also consider categories objects of which are functors. The above

standard description of basic categorical concepts is structuralist in spirit. In Section 9

I shall describe functors and categories anew from a foundational and “more categorical”

viewpoint. 8

The idea of categorical foundations as viewed from a structuralist perspective amounts to

recovering all the relevant properties of any structure of any given type through properties

of the category of (all) structures of this given type. In the case of the category of sets

this provides an alternative (category-theoretic) Set theory: one first conceives of sets

as abstract objects and stipulates that they form a category; then one stipulates desired

properties of this category, which make this category “into” the intended category of sets.

This result (see [19]) shows that a reasonable notion of collection (set) can be developed

on the basis of that of transformation (morphism of sets) but not only the other way

round.

The growing popularity of Category theory as a common (albeit certainly not unique)

“language” of contemporary mathematics as well as the continuing efforts of building cate-

gorical foundations of mathematics are generally seen as a further step of the structuralist

project briefly described above. I agree with this view so far as it does not require pre-

serving the basic principles of Mathematical Structuralism (as specified above) in the new

categorical setting. In my understanding, these developments diverge from Mathematical

8For a detailed historical account of early days of Category theory see [16].
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Structuralism and tend towards a very different view on mathematics and science in gen-

eral. Before I describe this new view, let me explain reasons why categorical foundations

appear to many as a version of structural foundations. In the next Section I shall show

that this impression is wrong.

As I have explained in Section 4, the notion of set plays a special role in structural math-

ematics. This explains why Set theory itself is rarely seen as a structural theory on equal

footing with, say, Group theory. As Hellman [12] rightly remarks:

[D]espite the multiplicity of set theories (differing over axioms such as well-

foundedness, choice, large cardinals, constructibility, and others), the ax-

ioms are standardly read as assertions of truths about “the real world of

sets” rather than receiving a structuralist treatment.

The structural notion of group explained above is usually construed as a “set with a

structure” or “structured set” rather than a pure structure (whatever this might mean);

the underlying set of a given group is thought of as a background supporting the structure

rather than a part of this structure. This way of thinking in mathematics is reminiscent

of Aristotle’s metaphysics of Matter and Form. The need for the set-theoretic Matter

to do structural mathematics becomes clear from our analysis given in Section 4, but

the presence of this ingredient doesn’t fully comply with the philosophy of Mathematical

Structuralism, which purports to make mathematical objects into pure forms (structures)

and leave anything like their “background” outside mathematics. The desired “purely

structural” mathematics would deal only with the “invariant Form” and require no set-

theoretic Matter. Historical evidence of such an attitude can be found in what Dieudonne

(under the name of Bourbaki) says in his structuralist manifesto [4] about set-theoretic

difficulties:

The difficulties did not disappear until the notion of set itself disappears

... in the light of the recent work on the logical formalism. From this new
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point of view mathematical structures become, properly speaking, the only

“objects” of mathematics.

I don’t believe that Dieudonne’s claim concerning the alleged “disappearance” of sets is

justified but the quote clearly demonstrates such an intention.

In this context the idea of accounting for relevant properties of mathematical structures

only in terms of structure-preserving maps between these structures independently of any

set-theoretic background, i.e., the idea of categorical foundations, indeed may look like

a further step in the structuralist direction. Hence the popular view according to which

categorical mathematics is the desired purely structural mathematics.

Remarkably, Category theory did never make it into Bourbaki’s Elements [3], which is

the most systematic attempt to develop structural mathematics ever undertaken. This

is in spite of the fact that both founders of Category theory, Eilenberg and MacLane,

were eventually involved in the Bourbaki group, so all the principal members of this group

were well aware about their work. This fact is often seen as a historical puzzle but in

my view it is not. For, as we shall shortly see, categorical foundations of mathematic

are not and cannot be anything like the structural foundations developed by Bourbaki in

his fundamental work. So in order to incorporate Category theory into their Elements

Bourbaki would need to abandon his basic structuralist principles and engage himself into

a very different foundational project.

One may agree that Bourbaki’s version of Structuralism is incompatible with categorical

foundations of mathematics but argue that some other variety of Structuralism is appro-

priate for building such foundations. For this reason I would like to stress once again that

my following arguments concerning Structuralism and Category theory refer to the general

notion of Structuralism described in Section 2 but not only to simple Bourbaki-like exam-

ples of structures and maps between structures. One may also argue that this notion of

Structuralism is in fact too restrictive and doesn’t really reflect the structural character of

modern mathematics in full. Even if in this case the issue may look merely terminological
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I would stress the need to define one’s general notions of structure and Structuralism ex-

plicitely and precisely. Distinguishing between multiple varieties of Structuralism doesn’t

help one to meet this requirement unless one addresses the question What these different

varieties are varieties of? What I want to stress in this paper is a conceptual difference

between the “classical” structuralist thinking exemplified by [14] and [3], on the one hand,

and some developments in Category theory, on the other hand. Leaving terms “structure”

and “Structuralism” without any precise definition and using them in the broadest possi-

ble sense can hardly be helpful for showing such a difference. If Category theory indeed

brings about a new philosophy of mathematics this new philosophy needs a new vocabulary.
9

7. Categories versus Structures; Embodiement of Mathematical Concepts

Categories of structures like the category of groups, topological spaces, etc. capture the

notion of type of structure, not the notion of singular structure. Particular structures

(identified up to isomorphism) may be often also rendered as categories but in this case

their morphisms are no longer structure-preserving maps. For example, a particular group

(like the infinite cyclic group mentioned above) can be presented as a category with just one

object such that all of its morphisms (going from this object to itself) are isomorphisms.

The group operation is given by composition of morphisms; the existence of unit follows

from the definition of a (general) category and the existence of inverse elements follows

from the fact that all morphisms of the given category are reversible. 10

9This paragraph is written after a very valuable discussion with Colin McLarty over an earlier draft of

this paper.
10Categorical definition of isomorphism resembles the definition of reversible transformation given in the

end of Section 3. However, it doesn’t involve a reference to elements. Think about groups G1, G2 as objects

of a category and modify the definition of Section 3 in this way: i ◦ j = 1G1 and j ◦ i = 1G2 where 1G1 is

the identity morphism of G1 and 1G2 is the identity morphism of G2. The rest of the definition remains

the same.
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This simple example shows that categorical morphisms can but should not be structure-

preserving maps. Moreover, the above categorical presentation of group, unlike its standard

set-theoretic presentation, is not structuralist in character. For the standard structuralist

presentation involves this idea: an abstract group can be “exemplified” by what Hellman

calls “particular systems”, like systems of numbers, systems of geometrical motions and

so on and so forth. Of course, when one pictures elements of a given group as loops

rather than dots this does not produce any conceptual change by itself. But given the

above categorical presentation of a group, and using standard category-theoretic means,

one can do something other than keep saying that morphisms of the given category (i.e.,

the given group) stand or may stand for something else than themselves. Namely, one may

consider functors from the given group-category into some other categories, which in their

turn present (rings or fields of) numbers, geometrical spaces, etc. This provides a much

more precise idea of “standing for” in each particular case than the general structuralist

rhetoric. In the structuralist setting the notion of exemplification remains meta-theoretical

and escapes a precise mathematical treatment. But in the categorical setting this notion

becomes a proper part of the given mathematical construction. Instead of saying that A

stands for B one considers functors of the form A→ B and treats these functors on equal

footing with “internal” morphisms of A and B. 11

In my understanding, this latter type of mathematical thinking has little if anything to do

with structural abstraction. A principal epistemic strategy of Structuralism is to capture

what various “particular systems” share in common, namely their “shared structure”.

The corresponding categorical strategy can be described in this way: look how particular

systems translate into each other. Unlike the structuralist strategy this categorical strategy

doesn’t make the particular systems less important. Given morphism A → B there is,

generally, no reason to think of A and B “up to” some equivalence and dispense with A

11A further step of such categorical analysis amounts to considering the full category of functors of the

given form; such a functor category provides a precise information about how A translates into B.
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and B in favor of their shared structure or anything else. As I have already shown in

Section 5 the notion of thinking “up to homomorphism” is plainly unsound.

Let us now consider the case when a category presents a type of structure rather than a

singular structure. To analyze this case I shall use the notion of embodiment, which I have

introduced elsewhere [33]. As we have seen in Section 4 a mathematical structure cannot

be identified with its corresponding abstract concept: something else is needed in order to

make a given concept into a mathematical object. Kant would call this additional element

an intuitive construction; I use the word “embodiment” for a similar purpose but in a dif-

ferent mathematical context. We have seen how the notion of structure allows for making

a concept describing different particular systems into a single mathematical object (single

up to isomorphism, of course). As we have seen in Section 5 this structuralist method of

embodiment doesn’t work for types of structure. While the concept “infinite cyclic group”

can be embodied into a single structure, the concept “group” cannot; “the group” unlike

“the infinite cyclic group” is not a name of unique (up to isomorphism or otherwise) math-

ematical object. However the category of (all) groups is a single mathematical object like

number 3, the infinite cyclic group or, say, the Euclidean plane. Each of these objects has a

many-splendored existence (to use MacLane’s word), so its singleness must be understood

appropriately. But I want now to stress a different point: the way in which all isomorphic

cyclic groups are made into a single object with the notion of structure and the way in

which all groups are made into a single object with the notion of category are essentially

different. While the former involves structural abstraction the latter involves a different

kind of abstraction, which I shall call categorical. Roughly, categorical abstraction amounts

to the following: one forgets about the fact that groups have elements and consider only

how they map to (i.e. transform into) each other with appropriate morphisms; a relevant

notion of element is recovered in this categorical setting only later on. Obviously the two

kinds of abstraction are quite different. I shall say more about categorical abstraction in

the Conclusion.
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A category in which morphisms (including identity morphisms) form a set (in the technical

sense of the term) is called small. Small categories can be thought of as structures on

their own. The corresponding type of structures is defined straightforwardly: one takes

a set of elements called morphisms, stipulates appropriate primitive relations between

elements of this set, and spells out the necessary axioms (see the next Section for more

details). Thus small categories like groups can be thought of as structures of a specific

type. Noticeably, this straightforward approach doesn’t work in the case of large categories

corresponding to types of structures - think again of the category of groups or the category

of all small categories. Since morphisms of such categories form proper classes they cannot

be described as structured sets. Although this may look like a minor technical difficulty,

which can be resolved by an appropriate generalization of the usual notion of structure,

this difficulty provides additional evidence that the structural approach, generally, doesn’t

work in Category theory. Instead of thinking of categories as structures (or generalized

structures) of a particular type, it seems to me more reasonable to reverse the order of

ideas and think of structures as categories or categorial constructions of a particular type.

An immediate suggestion would be to identify structures with small categories. A more

elaborate suggestion by Lawvere (in person) is to identify a structure with a functor from

a small category to a large “background” category, say, that of sets.

To conclude this Section, let me stress that categories don’t always represent particular

structures or particular types of structure. Examples of this latter kind are today so popu-

lar only because they connect the new categorical mathematics with the older structuralist

mathematics. But categorical mathematics also involves concepts and constructions that

were first developed in a categorical setting, for example that of Grothendieck topology.

One may expect that the further development of categorical mathematics will make such

“purely categorical” concepts better known and more useful in various branches of math-

ematics; then the link between the categorical mathematics and its structural predecessor

will become a historical and philosophical rather than mathematical issue.



22 ANDREI RODIN

8. “The category of categories”

The idea of categorical foundations amounts to taking the notions of category, functor

and/or some other related categorical notions as primitive and recovering the rest of math-

ematics on this basis. What are possible ways of realizing this project? In which precise

sense can one consider category-theoretic notions as primitive? A way to do this, which

immediately suggests itself, is to use in categorical foundations a modern version of Hilbert-

style axiomatic method after the example of standard set-theoretic foundations.

Consider a class of things called morphisms and three primitive relations: one that asso-

ciates with every given morphism its source, one that associates with every given morphism

its target, and, finally, one that associates with some (ordered) pairs of morphisms a third

morphism called the composition of the given two morphisms. Then we need axioms to en-

sure that sources and targets of morphisms behave as identity morphisms (i.e. as objects),

that two given morphisms are composable if and only if the target of the first morphism

coincides with the source of the second morphism, and some other similar axioms. Finally

we should assume that the composition of morphisms is associative. For the full list of such

axioms I refer the reader to [20]. The axiomatic theory just described this author calls the

elementary theory of abstract categories.

Lawvere’s paper begins as follows:

In the mathematical development of recent decades one sees clearly the rise

of the conviction that the relevant properties of mathematical objects are

those which can be stated in terms of their abstract structure rather than

in terms of the elements which the objects were thought to be made of. The

question thus naturally arises whether one can give a foundation for math-

ematics which expresses wholeheartedly this conviction concerning what

mathematics is about, and in particular in which classes and membership

in classes do not play any role.
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We see that Lawvere embraces Mathematical Structuralism here but at the same time re-

jects set-theoretic (and even more general class-based) foundations of mathematics. Since

the Hilbert-style axiomatic method is essentially structural (see Section 2) Lawvere’s method

of building his elementary theory of abstract categories perfectly fits his stated purpose. Af-

ter the introduction of the axioms of the elementary theory and providing some definitions

on their basis Lawvere says:

By a category we of course understand (intuitively) any structure which is

an interpretation of the elementary theory of abstract categories, and by a

functor we understand (intuitively) any triple consisting of two categories

and a rule T which assigns, to each morphism x of the first category, a

unique morphism xT of the second category in such a way that ...

(follow the conditions of being structure-preserving). A problematic aspect of this first

part of the paper concerns Mayberry’s argument that Lawvere’s elementary theory like

any other theory built with the Hilbert-style axiomatic method requires some primitive

(non-axiomatic) notion of collection, which cannot be identified with that of category [28].

The argument implies that the elementary theory and the corresponding elementary notion

of category cannot be a genuine foundation. I agree with Mayberry on this point (this

follows from my understanding of the relationships between Structuralism and Set theory

explained in the beginning of Section 4), but unlike Mayberry I think that such a primitive

notion of collection is dispensable in foundations of mathematics along with the Hilbert-

style structural axiomatic method itself. In what follows I shall sketch a different version

of axiomatic method that seems to me more appropriate for categorical foundations. Let

me now return to Lawvere [20].

Lawvere’s elementary theory is a preparatory step towards another theory of categories,

which Lawvere calls basic theory. My claim is that unlike the elementary theory the basic

theory is not structural, at least not in a similar sense. If I am right this shows that the main

content of [20] in fact doesn’t agree with the structuralist agenda announced by the author
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in the beginning of his paper: Lawvere begins with structural reasoning but then proceeds

with a very different agenda, which can be described as genuinely categorical.

The basic theory begins with a re-introduction of the notion of functor:

Of course, now that we are in the category of categories, the things denoted

by the capitals will be called categories rather than objects, and we shall

speak of functors rather than morphisms.

This may sound like a mere terminological convention (rather than an alternative definition)

but in fact it signifies a sharp change of perspective. The idea is now the following: given a

preliminary notion of category (through the elementary theory), conceive of category C of

all categories; then pick up from C an arbitrary object A (i.e., an arbitrary category) and

finally specify A as a category by internal means of C , stipulating additional properties

of C when needed. More precisely it goes as follows (I omit details and streamline the

argument). Stipulate the existence of terminal object 1 in C , i.e., the object with exactly

one incoming functor from each object of C . Then identify objects (= identity functors)

of A as functors in C of the form 1→ A. Stipulate also the existence of initial object 0,

i.e. the object with exactly one outgoing functor into each object of C . Then consider in

C object 2 of the form 0→1 and stipulate for it some additional properties among which

is the following: 2 is a universal generator which means that:

G (generator): for all f , g of the form:

A
f

//
g

// B

and such that f 6= g there exist x such that:

2
x // A

f
//

g
// B

and xf 6= xg.
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U (universal): if any other category N has the same property, then there are y, z such

that:

A
y

//
B

z
oo

and yz = 2.

This allows Lawvere to identify functors (morphisms) of A as functors of the form 2→ A in

C. The fact that 2 is the universal generator (it is unique up to isomorphism as follows from

the above definition) assures that categories are determined “arrow-wise”: two categories

coincide if and only if they coincide on all their arrows. This new definition of functor also

allows one to make sense of the notion of a component of a given functor of the form h:

A → B , which in the elementary theory is understood as a map m sending a particular

morphism f of A into a particular morphism g of B . In the basic theory, m turns into

this commutative triangle: 12

12A categorical diagram is said to commute or be commutative when the compositions of all morphisms

shown at the given diagram produce other morphisms shown at the same diagram in appropriate places,

so that any ambiguity about results of the compositions is avoided. For example, saying this triangle

B
g

��@@@@@@@

A

f
??~~~~~~~

h

// C

is commutative is simply tantamount to saying that fg = h. Morphisms resulting from composition of

shown morphisms can be omitted at a commutative diagram when this doesn’t lead to an ambiguity. For

example, saying this square

A
g // B

C
h

//

f

OO

D

i

OO

is commutative is tantamount to saying that fg = hi.
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2

���������

��???????

A // B

This, once again, significantly changes the whole perspective: categories and functors are no

longer built “from their elements” but rather “split into” their elements when appropriate.

Although the notion of functor as a structure-preserving map can be recovered in this new

context it no longer serves for defining the very notion of functor. Rule T used by Lawvere

for defining functors in the elementary theory disappears in the basic theory without leaving

any trace.

Further consider this triangle which Lawvere denotes 3 :

0

��>>>>>>>

���������

1 // 2

(It should satisfy a universal property which I omit). 3 serves for defining composition

of morphisms in our “test-category” A as a functor of the form 3→ A in C. Finally, in

order to assure the associativity of the composition Lawvere introduces category 4, which

is pictured as follows:

3

0

@@�������
//

��>>>>>>> 2

^^>>>>>>>

1

@@�������

OO

(The associativity concerns here the path 0→ 1→ 2→ 3.)
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This construction provided with appropriate axioms makes A into an “internal model” of

the elementary theory in the following precise sense: If F is any theorem of the elementary

theory, then “for all A, A satisfies F” is a theorem of the basic theory. 13

The following analogy with the set-theoretic mathematics helps to clarify the role of cate-

gories of categories in foundations. As long as the notion of set is not supposed to provide

a foundation for mathematics, one thinks of sets after examples of sets of numbers, sets

of points, and the like. But in a foundational axiomatic theory of sets like ZF there are

no other sets but sets of sets, and every mathematical object like a number or a point is

supposed to be a set. Similarly in a foundational axiomatic theory of categories there are

no other categories but categories of categories and every mathematical object is ultimately

a category.

9. Functorial Semantics, Sketch Theory and Internal Language

In order to see that Lawvere’s basic theory unlike his elementary theory is not based

on structuralist principles, and then to get an idea of non-structuralist principles behind

this theory, it is instructive to take into consideration two similar approaches: Functorial

semantics developed by the same author elsewhere [18] and Sketch theory founded by Ch.

Ehresmann in the 1960s and later developed by other people (see [35] for an overview and

further references).

Functorial semantics involves the presentation of mathematical theories as categories of a

special sort; models of a given theory are functors from the theory to the background cate-

gory of sets or another appropriate topos. The very idea of “interpretation” or “realization”

of a given theory in a set-theoretic background obviously comes from the standard (due to

Tarski) Model theory. Lawvere’s functorial semantic can be seen as a category-theoretic

version of the same basic construction. However, as we shall now see, this technical update

13Isbell in his review [15] of Lawvere’s [20] points to a technical flaw in Lawvere’s proof of this theorem

. This flaw is fixed, in particular, in [30].
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comes with a significant revision of the structuralist background of Tarski’s Model theory

inherited from Hilbert’s notion of axiomatic method.

In order to determine a theoretical structure, an axiomatic theory should be categorical

, i.e., to have models that are all isomorphic. (Beware that this older sense of the term

“categorical” has nothing to do with Category theory!) True, not all axiomatic theories

built by the standard method satisfy this requirement; also true, non-categorical theories

are usually not disqualified solely on this basis. Anyway, in the standard setting the

categoricity of axiomatic theory is commonly (and usually as a matter of course) viewed

as an epistemic gain while the lack of categoricity is viewed as a problem. As long as one

commits oneself to Structuralism such an attitude is understandable: when a set of axioms

fails to specify a model up to isomorphism it fails to specify a structure. Saying that a

non-categorical theory determines many structures rather than one structure is somewhat

misleading because such a theory, strictly speaking, doesn’t specify any structure at all (cf.

Section 2).

In the case of Lawvere’s functorial semantics, the structuralist pursuit of categoricity turns

into an absurdity. For the purpose of this construction is to produce a workable category

of models rather than just one model up to isomorphism. In the functorial setting a theory

determines a category, not a structure. This makes the structuralist thinking behind the

axiomatic method as expressed by Hilbert in the above quote (Section 2) irrelevant. In the

new setting:

The theory appears itself as a generic model [18].

This means that the older structuralist distinction between abstract “formal” axiomatic

theories, on the one hand, and their semantics, on the other hand, doesn’t apply; what

distinguishes a theory form its (other) models is its generic character rather than formal

or abstract character.

The setting of Sketch theory is similar to that of Lawvere’s Functorial semantics but in the

former case generic categories are designed as “generic shapes” or “generic figures” rather
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than axiomatic theories. Unlike the case of Functorial semantics such generic categories are

not supposed to have logical properties; in some approaches sketches are not even categories

but directed graphs with an additional structure. It seems natural to think of sketches as

“proto-structures” but this is somewhat misleading insofar as the usual notion of structure

is concerned. A sketch doesn’t represent a bunch of isomorphic systems but generates non-

isomorphic systems (its models). These systems share their generic shape not in the same

sense in which different systems are said to share the same mathematical structure. In fact

they share a shape in a more straightforward sense: a given sketch is a common source of

all of its models (i.e. specific functors from this given sketch to a background category). To

“have the same source” is obviously an equivalence relation but this equivalence relation

doesn’t support anything like the structural abstraction. Unlike a shared structure a shared

sketch is concrete (it is usually even supposed to be finite and easily pictured) while things

generated by a sketch can be indeed described as abstract structures in the older sense

because they are usually distinguished only up to isomorphism! Thus Sketch theory turns

Structuralism upside down and in certain aspects reminds of more traditional ways of doing

mathematics. Euclid’s geometrical universe is generated by two generic figures, namely,

the straight line and the circle, which is tantamount to saying that every geometrical object

is constructed by ruler and compass. The analogy seems to me straightforward. 14

Whether or not the new categorical approach to theory-building - differently realized in

Functorial semantics, Sketch theory, and the basic theory of [20] - can compete with the

standard Hilbert-style structural approach remains an open question. The considered con-

structions don’t allow one to claim that this new approach can work independently: we

have seen that Lawvere’s basic theory depends on the structural elementary theory, Func-

torial semantics is developed by this author similarly in two steps, and Sketch theory in its

14Does this mean that Ehresmann misconceived of his own invention when he thought of Sketch theory

as a general theory of structure? I don’t think so. A general theory of structure should not be necessarily

a structural theory and should not provide a support for Structuralism as a philosophical view about

mathematics.
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existing form uses Set theory and usually doesn’t make foundational claims at all. How-

ever there is no reason either to claim that the pre-theoretical notion of collection involved

in the standard set-theoretic foundations is indispensible in foundations of mathematics

(cf. Mayberry’s argument in Section 8). It can be replaced by a primitive pre-theoretic

notion of category that involves common intuitions about processes (transformations) and

their composition. What remains a problem is how to upgrade this pre-theoretic notion of

category to a theoretical one without using other means but properly categorical.

Which means and constructions may qualify as “properly categorical” in a foundational

context also remains an open question but I think that the standard machinary of first-

order logic used in [20] and later in [30] for writing down axioms of Category theory after

the example of Set theory does not qualify as such. Category theory suggests a change

of the traditional conception of logic, which is analogous to the change of the traditional

conception of geometry that occurred in the 19th century when people stopped thinking

about “the” geometrical space as a universal container of geometrical objects and learned

to think about spaces as objects and about objects as spaces with the notion of intrinsic

geometry of a given geometrical object. In the first half of the 20th century people learned

to think about systems of logic as objects living in larger meta-logical frameworks. Category

theory showed how one can think about objects (i.e., appropriate categories) as systems of

logic with the notion of internal language of a given category [17]. This reciprocal move that

allows one to avoid the bad infinity of meta-meta.....-logics and meta-meta....-mathematics

in foundations of mathematics has immense philosophical importance and I think that

it has to be taken into account in categorical foundations. This is why the presence of

a self-standing system of logic representing alleged universal laws of reasoning seems me

inappropriate in categorical foundations. A candidate for replacement can be a version of

Sketch logic developed in the vein of [23], [24], [25], [34] and [6]. I leave this issue for a

further study.
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10. Conclusion: a categorical perspective in and on mathematics

I hope to have convinced the reader that the project of categorical foundations requires a

new philosophical view on mathematics, which the traditional Structuralism cannot possi-

bly provide. Let me now try to summarize this new categorical view by contrasting it with

the structuralist view. What matters in the categorical mathematics is how mathemati-

cal objects and constructions transform into each other, not what (if anything) remains

invariant under these transformations. So categorical mathematics is a theory of abstract

transformation, not a theory of abstract form. A theory in categorical mathematics is a

generic model (Lawvere) rather than a scheme (Hilbert). In the end of his [1] Awodey puts

forward the following structuralist slogan:

The subject matter of pure mathematics is invariant form, not a universe

of mathematical objects consisting of logical atoms.

I suggest instead this alternative slogan:

The subject matter of pure mathematics is covariant and contravariant transformation, not

invariant form.

The categorical view on mathematics - as distinguished from categorical foundations of

mathematics in the sense articulated in the previous Section - suggests a new understanding

of the role of history of mathematics in mathematics itself. Consider these two versions of

the Pythagorean theorem.

(1) In right-angled triangles the square on the side subtending the right

angle is equal to the squares on the sides containing the right angle.

(Proposition 1.47 of Euclid’s Elements).

(2) If two non-zero vectors x and y are orthogonal then(y − x)2 = y2 + x2

([7], slightly modified). 15

15The original version reads
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What justifies saying that (1) and (2) express one and the same theorem? A structuralist’s

answer is: “Obviously the invariant content of these two expressions!” I claim that the

answer is wrong. For there are many ways in which Euclid’s geometry can be interpreted in

modern terms ([7] is just one way of doing this among many others) but there is no way to

spell modern geometry in Euclid’s terms. We recognize (2) as the old Pythagorean theorem

(1) because the latter naturally translates into the former. This translation is not just a

matter of the glass bead game but it reflects the historical process of dialectical change of

foundations of geometry from Euclid’s times to 1960s. Crucially this translation doesn’t

work the other way round: our history in general and our intellectual history in particular

develops from the past to the future but not from the future to the past. According to

the argument given in the Section 5, this implies that no translation between (1) and

(2) allows for the identification of an invariant. Thus the existence of sound translations

between theories doesn’t imply that these theories share anything like an invariant content.

There is no essence, no conceptual core preserved by the translation of (1) into (2). But

why in this case should we count them as different versions of the same theorem?

My answer is this. The Pythagorean theorem as distinguished from its particular for-

mulations like (1) and (2) is a conceptual entity perduring over (rather than enduring

through) the historical change of foundations. The change of perspective that I suggest

here is analogous to the replacement of the traditional 3-dimensional ontology in physics by

the modern 4-dimensional ontology [29]. In this sense (1) and (2) can be compared with

points of a trajectory in a spacetime. Importantly Pythagorean theorem doesn’t reduce

to some set of such points, i.e., a set of particular formulations of this theorem. For such

a reduction leaves out what from a categorical viewpoint is the most important, namely

translations between these different formulations. Instead of thinking in this context about

a set of sentences like (1) and (2) I suggest the reader to consider a category of such things.

Two non-zero vectors x and y are orthogonal if and only if (y − x)2 = y2 + x2
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A coherent translation between them is still possible even when no invariant structure is

available.
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