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Résumé : Dans cet article je présente une analyse critique de ’approche
habituelle de I'identité mathématique dont a son origine dans les travaux de
Frege et Russell, en faisant un contraste avec les approches alternatives de
Platon et Geach. Aprés je pose ce probléme dans un cadre de la théorie des
catégories et montre, que la notion d’identité ne peut pas étre « internalisée »
par les moyens catégoriques standards. Enfin, je présente deux approches de
Iidentité mathématique plus spécifiques : une avec la fibration catégorielle et
Pautre avec des catégories supérieures faibles.

Abstract: In this paper I consider the standard approach to identity in math-
ematics originating from Frege’s and Russell’s works against alternative ap-
proaches due to Plato and Geach. Then I put the problem in a category-
theoretic setting and show that the notion of identity cannot be “internalized”
with usual categorical means. Finally I present two more specific mathemat-
ical approaches to the identity problem: one based on a categorical fibration
and the other involving weak higher categories.

1 Paradoxes of Identity and Mathematics

Changing objects (of any nature) pose a difficulty for the metaphysi-
cally-minded logician known as the Paradoz of Change. Suppose a green
apple becomes red. If A denotes the apple when green, and B when it
is red then A = B (it is the same thing) but the properties of A and B
are different : they have a different color. This is at odds with the Indis-
cernibility of Identicals thesis according to which identical things have
identical properties. A radical solution - to explain away and/or dispense
with the notion of change altogether was first proposed by Zeno around
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500 BC and remains popular among philosophers (who often appeal to
the relativistic spacetime to justify Eleatic arguments). Unlike physics,
mathematics appeared to provide support for the Eleatic position : for
some reason people were more readily brought to accept the idea that
mathematical objects did not change than to accept a similar claim about
physical objects - in spite of the fact that mathematicians had always
talked about variations, motions, transformations, operations and other
process-like notions just as much as physicists.

The Paradox of Change is the common ancestor of a family of pa-
radoxes of identity which might be called temporal because all of them
involve objects changing in time!. However time is not the only cause
of troubles about identity : space is another. The Identity of Indiscer-
nibles (the thesis dual to that of the Indiscernibility of Identicals) says
that perfectly like things are identical. According to legend in order to
demonstrate this latter thesis, Leibniz challenged a friend during a walk
to find a counter-example among the leaves of a tree. Although there
are apparently no perfect doubles among material objects, mathema-
tics appears to provide clear instances immediately : think about two
(different) points. But the example of geometrical space brings another
problem : either the Identity of Indiscernibles thesis is false or our idea
of perfect doubles like points is incoherent. In what follows I shall re-
fer to this latter problem as the Paradox of Doubles. Mathematics looks
more susceptible to this paradox than physics. However nowadays ma-
thematics and physics are so closely entwined it is hardly possible to
isolate difficulties in one discipline from those in the other. Were she li-
ving today, Leibniz’s friend might meet his challenge by mentioning the

indiscernibility of particles in Quantum Physics 2.

Category theory provides an original understanding of identity in
mathematics, which takes seriously the idea that mathematical objects
are, generally speaking, variable and handles the problem of doubles in a
novel way. Category theory does not resolve paradoxes of identity of the
above form ; rather it provides a setting where paradoxes in such a form
do not arise. The Category-theoretic understanding of identity in ma-
thematics may have important consequences in today’s mathematically-
laden physics and hence (assuming some form of scientific realism) for the
notion of identity in a completely general philosophical setting. In this
paper I explore this new understanding of identity in Category Theory,
leaving its implications outside mathematics for a future study.

L Chrisippus’ Paradox, Stature, The Ship of Theseus belong to this family. See
[Deutsch 2002]
2[French 1988]
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The paper is organized as follows. First, I consider some difficul-
ties about the notion of identity in mathematics, providing details and
examples. Then I briefly review some attempts to overcome these difficul-
ties. I pay particular attention to the account of identity in mathematics
proposed by Frege and afterward developed by Russell, which remains
standard in the eyes of many philosophers. Then I consider an alter-
nate approach to identity in mathematics, which dates back to Greek
geometry but made a new appearance in 19th century and later deve-
loped in Category theory. I consider the issue of identity in Category
theory starting with general remarks and then coming to more specific
questions concerning fibred categories and higher categories. Finally I
suggest a way of thinking about categories, which implies deversifica-
tion of the notion of identity and revision of Frege’s assumption that
identities must be fixed from the outset.

2 Mathematical Doubles

The example of two distinct points A, B (Fig.1) does not, it is usually
argued, refute the Identity of Indiscernibles because the two points have
different relational properties : in Fig. 1, A lies to the left of B but B
does not lie to the left of itself> :

Ae B
Fig. 1
(The difference in the relational properties of A and B amounts to

saying that the two points have different positions.)

However the example can be easily modified to meet the argument.
Consider two coincident points (Fig. 2) : now A and B have the same
position.

A=1B
[ ]
Fig.2

It might be argued that coincident points are an exotic case, one which
can and should be excluded from mathematics via its logical regimen-
tation. But this is far from evident — at least if we are talking about

3These relational properties of the two points depend on their shared space : the
argument doesn’t go through for points living on circle. I owe this remark to John
Stachel.
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classical Euclidean geometry. For one of the basic concepts of Euclidean
geometry is congruence, and this notion (classically understood) pre-
sumes coincidence of points : figures F, G are congruent iff by moving G
(without changing its shape and its size) one can make F and G coincide
point by point.

The fact that geometrical objects may coincide differentiates them
significantly from material solids like chairs or Democritean atoms. The
supposed impenetrability of material solids counts essentially in provi-
ding their identity conditions [Lucas 1973]. Thus, identity works diffe-
rently for material atoms and geometrical points®.

We see that the alleged contradiction with the Identity of Indiscer-
nibles is not the only difficulty involved here. Indeed the whole question
of identity of points becomes unclear insofar as they are allowed to coin-
cide. Looking at Fig.2 we have a surprising freedom in interpreting “="
sign. Reading “=" as identity we assume that A and B are two different
names for the same thing. Otherwise we may read “=" as specifying a
coincidence relation between the (different) points A and B. It is up to
us to decide whether we have only one point here or a family of super-
posed points. The choice apparently has little or no mathematical sense.
One may confuse coincidence with identity here without any risk of er-
ror in proofs. However this does not mean that one can just assimilate
the notions of identity and coincidence. For identity so conceived would
be very ill-behaved, allowing for the merger of different things into one
and the splitting of one into many. (Consider the fact that Euclidean
space allows for the coincidence of any point with any other through a
suitable motion.) Perhaps it would be more natural to say instead that
the relations of coincidence and identity while not identical in general,
coincide in this context ?

For an example from another branch of elementary mathematics
consider this equation : 3 = 3. Just as in the previous case there are
different possible interpretations of the sign “=" here. One may read “="
either as identity, assuming that 3 is a unique object, or as a specific
relation of equality which holds between different “doubles” (copies) of
3. Which option is preferable depends on a given context. There is a
unique natural number x such that 2 < x < 4; x = 3. Here “=" stands
for identity. But when one thinks about the sum 3 + 3 or the sequence

4This fact shows that Euclidean geometrical space cannot be viewed as a realistic
model of the space of everyday experience as is often assumed. One needs the third
dimension of physical space to establish in practice the relation of congruence between
(quasi-) 1- and 2-dimensional material objects through the application of a measuring
rod or its equivalent.



Identity and Categorification 5

3,3,3,...1t is convenient to think of the 3s as many. In this latter case
3 = 3 still holds but now “=" is being read as equality rather than iden-
tity. Again the choice looks like a matter of convenience rather than of
theoretical importance.

Similarly, in one sense cube is a particular geometrical object, while in
a different sense there exist (in some suitable sense of “exist”) many cubes.
When one proves that there exist exactly 5 different regular polyhedrons,
and says that the cube is one of them, one speaks about the cube in
the first sense. When one considers a geometrical construction, which
comprises several cubes, one thinks about the cubes in the second sense.
However no distinction between the two meanings of the term “cube”
can be found in standard textbooks, and it is not even clear whether
such distinction can be sharply made. In fact in geometry the situation
is even more complicated. For there is a sense in which the “same figure”
means a figure of the same shape and the same size, and there is another
sense in which it means only a figure of the same shape, and the notion
of “same shape” can itself also be specified in different ways. In addition
geometry unlike arithmetic allows for the identification of its objects (of
geometrical figures) by directly naming them, usually through naming of
their most important points. This allows us to distinguish two different
triangles ABC and A’ B’C’ which are the “same” in any of above senses.
There is apparently no clear argument, which would allow us to choose
one of these senses of “the same” as basic and eliminate the others as an
abuse of the language!

The above examples might make one think that the notion of identity
simply plays no significant role in mathematics. 2 x 2 = 4 remains true
independently of whether the sign “=" is read as equality, or as identity,
whether equality is treated as identity, or identity is weakened to equa-
lity. It looks as if here one may choose one’s interpretation according to
personal taste or preferred philosophical position. However such a libe-
ral attitude to identity in mathematics looks suspicious from the logical
point of view. Claims of existence and uniqueness of mathematical ob-
jects satisfying given descriptions (definitions) play an important role in
mathematics. Such a claim means that a given description indeed picks
out (identifies) an object, not just a property. The standard definition
of the unit of a given group G (also often called the identity of G) is
an example®. Obviously a claim that such-and-such an object is unique

5The unit of a group G is defined as the element 1 € G such that for any element
z € G(including 1 itself) 1 *xz = z * 1 = =z, where * is the group operation. The
existence of 1 is guaranteed by definition but its uniqueness is proved. Suppose 1’ is
another element of the group satisfying the same condition : 1 * z=x x 1’ = z. Then
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makes sense only if its identity conditions are fixed. But as we have seen
they may in fact be very loose. It is clear that 3 is the only natural num-
ber bigger than 2 and smaller than 4 but it is not clear that 3 indeed
refers to an unique object. But how can mathematics hang together as
a body of knowledge if it apparently does not meet Quine’s “no entity
without identity” requirement ?

There are several ways to approach this problem. I now explore them.

3 Types and Tokens

The remedy, which readily comes to mind on the part of anyone fami-
liar with contemporary Analytic metaphysics, is that of the type/token
distinction. Consider another example, which prima facie looks very like
the above mathematical cases. There are 26 letters in the English al-
phabet, and the letter a is one of them. In the last phrase the letter
a is referred to as a particular thing, namely a particular letter of the
alphabet. But in this phrase itself there are five such things. Hence the
letter a is not a particular thing. The standard way of dissolving this
puzzle is to say that here we have one a-type and five a-tokens. In ex-
plaining the distinction, one starts from tokens : an a-token is a piece
of paper with typographic pigment, or another material object (e.g. a
piece of printer’s type) representing the letter a. Obviously a-tokens are
many. The second step is to explain what the a-type is. Intuitively it is
what all and only a-tokens share in common (typically a certain shape).
To explain the notion of type better than this is not an easy task, and
it involves old and hard metaphysical questions as well as complicated
logical problems, which I shall not enter into here. Let me show instead
that the type/token distinction doesn’t fix the problem of identity of
mathematics anyway : whatever mathematical types might be they do
not correspond to well-distinguishable tokens.

The natural number 3 indeed looks like a type but the 3s, which we
find in the series 3,3,. . . or in the formula 343 do not look like tokens from
the viewpoint of standard examples (like particular chairs). For formula
3-+3 may be applied to many different situations : one might add 3 chairs
to 3 chairs, 3 points to 3 points, or even (taking a liberal attitude) 3 chairs
to 3 points®. Arguably such application amounts to instantiation of both

taking first z = 1, and then z = 1’ we have 1’ * 1 = 1 * 1’ = 1 = 1’. This argument
justifies the use of the definite article in the expression “the unit of G”.

SThe last example shows that the typification certainly matters here but this does
not change the argument.
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3s (in formula 3+3) by certain sets of objects. That is certainly not how
good tokens behave : the fact that types can be instantiated but tokens
cannot is essential ; if we allow for the instantiation of tokens by other
tokens we either lose the type/token distinction or must provide it with a
new relational sense (which looks like an interesting project but I cannot
pursue it here).

The case of points (or more structured geometrical figures like tri-
angles) at first sight looks more promising. Apparently points are well-
distinguishable tokens of the same type. Unlike the case of numbers it
is common in mathematics to denote different point-tokens by different
labels such as A and B. However this works only until coincident points
are taken into consideration. For in the case of coincident points we can-
not distinguish a singular point-token from a “stock” of point-tokens. It is
tempting in this case to think of the stock of points as a “place” occupied
by a family of singular point-tokens. But this again involves a reiteration
of the type/token distinction on another level as in the case of 3-tokens.
Point-locations initially considered as tokens can themselves be instan-
tiated by second-order tokens stocked there. Once again this destroys
the usual distinction between point-tokens and the point-type. It is a
condition of acting as a (classical) token that the object so acting have
determinate identity conditions - as concrete symbols like printed nu-
merals do. But our hypothetical number- and point-tokens do not meet
this condition. So the type/token distinction (at least in its usual form)
does not help us to handle the identity issue in mathematics. (This also
makes me doubt how well it works outside mathematics.)

4 Frege and Russell on The Identity of Na-
tural Numbers

Frege considered it a principal task of his logical reform of arithmetic
to provide absolutely determinate identity conditions for the objects of
that science, i.e. for numbers. Referring to the contemporary situation
in this discipline he writes in the Introduction to [Frege 1884] :

“How I propose to improve upon it can be no more than indicated in
the present work. With numbers ...it is a matter of fixing the sense of
an identity.” (quoted by [Frege 1964], p. Xe)

Frege makes the following important assumption : identity is a general
logical concept, which is not specific to mathematics :

“It is not only among numbers that the relationship of identity is
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found. From which it seems to follow that we ought not to define it spe-
cially for the case of numbers. We should expect the concept of identity
to have been fixed first, and that then from it together with the concept
of number it must be possible to deduce when numbers are identical
with one another, without there being need for this purpose of a special
definition of numerical identity as well.” (quoted by [Frege 1964], p.74e)

In a different place Frege says clearly that this concept of identity is
absolutely stable across all possible domains and contexts :

“Identity is a relation given to us in such a specific form that it is
inconceivable that various forms of it should occur” ([Frege 1903] ; quoted
by [Frege 1962, 254] )

Frege’s definition of natural number, as modified in [Russell 1903]
later became standard”. I present it here informally in Russell’s simpli-
fied version. Intuitively the number 3 is what all collections consisting
of three members (trios) share in common. Now instead of looking for
a common form, essence or type of trios let us simply consider all such
things together. According to Frege and Russell the collection (class,
set®) of all trios just is the number 3. Similarly for other numbers. Isn’t
this construction circular ? Frege and Russell provide the following ar-
gument which they claim allows us to avoid circularity here : given two
different collections we may learn whether or not they have the same
number of members without knowing this number and even without the
notion of number itself. It is sufficient to find a one-one correspondence
between members of two given collections. If there is such a correspon-
dence, the two collections comprise the same number of members, or to
avoid any reference to numbers we can say that the two collections are
equivalent. 1 shall follow current usage in calling this equivalence Hu-
mean®. Now we check that this relation is indeed an equivalence in the
usual sense, and define natural numbers as equivalence classes under this
relation.

This definition reduces the question of identity of numbers to that
of identity of classes. This latter question is settled through the axio-
matization of set theory in a logical calculus with identity. Thus Frege’s
project is realized : it has been seen how the logical concept of identity
applies to numbers. However a closer look reveals some problems which
call the success of Frege’s project into question.

See, for example [Fraenkel 1966, 10].

8Following [Russell 1903] T use here words class, collection, and set interchangeably
ignoring their technical meanings if any. The standard distinction between sets and
classes is discussed in the next section.

9[Hume 1978], book 1, part 3, sect. 1.
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5 Logical Identity at Work

In an axiomatic setting “identities” in Quine’s sense (that is, identity
conditions) of mathematical objects are provided by an axiom schema
of the form

VaVy(zx =y &) (IS)

called in [Keranen 2001] the Identity Schema (IS). A paradigmatic example
of IS is the Extensionality Principle (EP) for classes, according to which
“two” classes are the same if and only if they consist of the same mem-
bers, or in symbols :

VaVy(x =y & Vz(z €z < 2 € y)) (EP)

To see how EP helps to dispense with “mathematical doubles” consider
this example which is on a par with the examples of equal natural num-
bers and of coinciding points given above. Namely, consider the Cartesian
square A2 of a given class A, that is, the class of all ordered pairs (a, b)
where a, b are members of A. In particular A% contains pair (a, a). Do
we have the same a “taken twice” here, or two equal but still different
“copies” of a, or something else? Now EP provides a definite answer,
which rules out the colloquial talk about “copies” and “repetitions”. To
see this define ordered pair (a, b) as follows :

(aa b) =def {{a}v {aa b}}

where {z, y, ..} stands for the class having exactly z, y, .. as its members.
The rationale behind this definition is this : EP implies that

{{a}, {a, b}} ={{c}, {¢,d}} if and only if a = cand b =d

so our ordered pairs are “extensional”. Then apply this definition to pair
(a, a) and use EP again :

(@, a) =aet {{a}, {a, a}} = {{a}, {a}} = {{a}}

Thus the “doubling” of a is explained away.

The set-theoretic formalism used in this example doesn’t support the
usual intuition about copying. This creates a tension between the forma-
lism and the intuition, which is hardly helpful for doing mathematics.
Assuming that the formalism is correct one should rather abandon the
intuition about copying and develop another intuition supporting this
formalism. Alternatively the intuition of copying could be kept and sup-
ported by a different formalism. The former option is problematic, on
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the one hand, because the intuition of copying is virtually ubiquitous in
today’s mathematics, and on the other hand, because the difference bet-
ween an object a, the class {a} (singleton), and class {{a}} (“double sin-
gleton”) has a very poor intuitive appeal if any. The latter option is also
problematic because no formalism justifying the idea of copying of ma-
thematical objects is presently known. (The two other options — doing
mathematics purely intuitively and purely formally — I don’t consider
as viable.)

A tentative application of the same method to a more general si-
tuation, in particular for spelling out the Russell’s definition of natural
number as an equivalence class of classes brings more serious problems.
Remind the idea : one considers class F' of all finite classes, then splits
its up into equivalence classes by Humean relation, and finally identi-
fies the equivalence classes with natural numbers. The problem is that
reasoning with classes like F' easily leads to contradictions as Russell’s
famous paradox shows. I shall not trace here the history of struggling
against this problem but only mention what is today commonly vie-
wed as a reasonable solution!?. One distinguishes between well-behaved
classes called sets and ill-behaved classes called proper classes. Sets are
subject of a system of restrictive axioms (like ZF') safeguarding them
from the known paradoxes; proper classes are also allowed but classes
of proper classes are not. This latter restriction (which doesn’t apply to
sets) allows for avoiding the known paradoxes and suggests the following
informal explanation of the distinction : unlike sets proper classes are
overcomprehensive, that is, “too big” to behave properly.

I believe that the idea that the bad behavior of proper classes is
caused by their “size” is just wrong. I think that the notion of “class of
all sets” and other similar notions are ill-formed in a different sense :
elements of such collections are not properly individuated, hence such
collections are not extensional, hence they are not classes. An evidence
for this is the following : unlike sets proper classes don’t have any definite
cardinality, so strictly speaking they don’t have any definite size at all.
In other words elements of proper classes cannot be “counted” even in
the generalized sense of the term in which elements of any set — and not
only of “countable” set (in the usual technical sense) — can be counted
by the corresponding cardinal. The idea that given a predicate P one
also gets for free uniquely defined class EXTp (called the extension of
P) of “all” individuals x such that P(zx), in my view, cannot be justified.
Recall that an analogous claim for sets (the Separation axiom) is much
weaker. Given a set S and a predicate P such that for any element x

10See [Bernays 1958]
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of S P(x) is either true or false this axiom guaranties the existence of
subset T" of S such that P(x) holds for every x from T. So the Sepa-
ration axiom allows for distinguishing between individuals (elements of
S) which are previously given while its counterpart for proper classes
is supposed to bring such individuals about. Even naive examples show
that this doesn’t work automatically. Think about the property of being
a human. The expression “all humans” is usually taken to designate the
class of all presently living humans. This is, of course, a well-defined fi-
nite set. However one might wish also to take all (or some) previous and
future generations of humans into the account. Whether this is possible
or not it is clear that the accounting for “all humans” is an empirical
matter : we can imagine a possible world in which there is no humans
just like in ours there is no unicorns. In logic and mathematics we need
a general scheme applicable to different empirical situations. Hence the
idea to collect all z such that P(z) living in all possible worlds'! in one
big proper class EXTp . But this is a misleading idea, in my view. For
it doesn’t take it into account that any such x must be an individual
to begin with, so something like Keranen’s Identity Schema or another
kind of individuating mechanism is required in every particular case. In
different worlds (different theoretical settings) such mechanisms can be
different. So as a general scheme appropriate for mathematics and logic
we should rather conceive of the extension of a given predicate P as func-
tion EXTp(W) depending on possible world W (in the simplest case —
i.e., on a given “universal” set S). In other words the extension of a gi-
ven predicate should be thought of as variable (except particular cases
when the extension is provably constant, in particular, empty). I cannot
develop this point further in this paper but only remark that the sug-
gested view justifies the traditional strict distinction between concepts
and their extensions.

Since the “class of all finite classes” F' is a proper class but not a
set Russell’s definition of natural number doesn’t go through (using this
definition one couldn’t ever talk about classes of numbers). The standard
replacement is this : one first defines ordinal numbers as particular sets
constructed by means of ZF or another similar theory, and then identifies
cardinal numbers with particular ordinal numbers. In the finite case
every ordinal number is also a cardinal number, so the difference between
ordinals and cardinals can be neglected. Thus every natural number n is
identified (by definition) with a particular set. Then one says that finite
set s “has n elements” (or “has cardinality n”) when sets s and n are

11«All possible worlds” is another example of ill-defined class.
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equivalent (in the sense of the Humean equivalence) 2.

This standard definition differs strikingly from what Frege looked for
in [Frege 1884]. To define the number 5, for example, as {{{{{0}}}}}
or alternatively as {0, {0, {0,{0,{0}}}}} is not very unlike defining 5
as the set of fingers at the right hand of the Pope. Definitions of this
sort certainly cannot be seen as realizing Frege’s intention to grasp the
meaning of n as a common feature of all sets having n elements. Since
this intention has been given up the fact that theories like ZF' allow for
different choices of the definition of natural number (like the two just
mentioned) is hardly surprising!®.

Thus in spite of the fact that Frege’s project of providing mathematics
with solid logical foundations triggered very important mathematical
and philosophical developments in 20" century, the initial goals of this
project has not been achieved. I shall not go here for general philosophical
pros and contras Frege’s basic assumption of the universal character
and the uniqueness of the identity concept. But I shall challenge this
assumption presenting some alternative views, including those associated
with some recent mathematical developments. Before doing this let me
mention another Frege’s idea relevant to the present discussion.

6 Definitions by Abstraction

To pursue his project of reducing the various informal meanings of
“the same” in mathematics to a standard notion of identity captured in a
universal logic Frege proposed the method of “definition by abstraction”.
In [Frege 1884] the author gives the following example of such definition :

“The judgment “line a is parallel to line b, or, using symbols a//b ,
can be taken as identity. If we do this, we obtain the concept of direction,
and say : “the direction of line a is identical with the direction of line b”.
Thus we replace the symbol // by the more generic symbol =, through
removing what is specific in the content of the former and dividing it
between a and b.” (quoted by [Frege 1964], p. 74¢, italic mine)

Notice that the procedure as described here by Frege involves a
change of notation : in the formula a=b the symbols a, b no longer stand
for lines but denote the same direction. Calling this formal procedure
definition by abstraction Frege suggests its interpretation. The idea is
that the procedure picks out a property common to all members of a gi-
ven equivalence class. As our earlier quotations from [Frege 1884] clearly

12For details see [Bernays 1958] or any modern textbook on the Set theory.
13 Benaceraff 1965]
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show, in treating an equivalence E “as identity” Frege does not mean to
replace identity by something else. He aims at the exact opposite : to
introduce identity where mathematicians usually use only equivalencies.

Definition by abstraction is problematic from the logical point of
view!* (Frege himself gives it up after a thorough analysis). But I want
to stress a different point. Even if definition by abstraction were justified
logically it would not provide what a mathematician normally looks for.
Frege’s “direction” (not to be confused with orientation!) is hardly an
interesting mathematical notion; this concept might play at most an
auxiliary role in geometry. The idea of a family of parallel lines does
the same job as Frege’s abstract direction but is more convenient and
more intuitive'®. Similarly it is more convenient to think of a natural
number as a family of equal “doubles” rather than a unique abstract
object. Such abstract numbers would be much like Plato’s ideal numbers
as distinct from the usal mathematical numbers. Let me shortly present a
reconstruction of Plato’s view on mathematics which gives an interesting
alternative to the Frege’s view.

7 Plato

The usual talk about “copies” of mathematical objects (see section
5 above) carries echoes from Plato. A glance at Plato’s philosophy of
mathematics'® shows some features which might be attractive for a ma-
thematician resistant to the logical regimentation of talk of identity in
different contexts proposed by Frege and Russell. If I understand Plato
correctly, according to him identity applies only to the immutable ideas,
and only ideas exist. (So Plato’s view in this respect is in accord with
Quine’s dictum about “no entity without identity”.) Material things don’t
exist but become (they change, come into and go out of being) and hence
have no proper identities : this is another possible way out of the Pa-
radox of Change. Mathematical things occupy an intermediate position
between material stuff and ideas : they involve a weaker sort of beco-
ming and a softer form of identity. In the case of numbers such “soft
identity” is equality. Things in the three layers of Plato’s ontology are
partially ordered by “distorted copying” where ideas are the maximal

14 Gee [Scholz & Schweitzer 1935] for a historical survey and further references.

151n section 13 below I shall show that family in this context may mean something
else than just a class.

16Not to be confused with “Mathematical Platonism” in the sense of [Balaguer
1998 and many others, which has little if anything to do with historical Plato. For
an introduction to Plato’s philosophy of mathematics see [Pritchard 1995].
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elements, mathematical objects are distorted copies of ideas, and ma-
terial objects are distorted copies of mathematical objects (and hence
also of ideas). The distortion of self-identical ideal numbers amounts
to their replacement by families of equal mathematical numbers. For
example, there is a unique ideal number 3 and an indefinite number of
its equal mathematical copies. To put it in the current jargon numbers
in mathematics are defined up to equality but not up to identity'”. I
cannot provide here a full justification of this reading of Plato and give
only the following hints referring to my [Rodin 2003a] for a systema-
tic treatment. There are multiple passages in Plato where he speaks of
“X itself”, “X (thought of) through itself” (ko avrw) and “Idea of X”
interchangeably or explains the latter through the former. For example
in Symposium (210-211) Plato does this with the notion of Beauty, and
in Phedon (96-103) with number 2'8. T interpret these passages in the
sense, which seems me straightforward : the notion of “being identical to
itself” applies to ideas but not to material things, nor to mathematical
objects. To see that Plato’s “idea of 2”7 is indeed something else than
mathematical number see last chapters of Aristotle’s Metaphysics where
the author criticizes the “Unwritten doctrine” developed by Plato in the
later period of his life [Findlay 1974]. Here the distinction between ideal
and mathematical numbers is made explicit. Aristotle stresses the fact
that each ideal number is unique while their mathematical copies are
many (Met. 987b) and the fact that ideal numbers are not a subject of
arithmetical operations (Met. 1081a—~1082b).

Thus unlike Frege Plato does not suppose that the notion of identity
applies to whatever there is (or whatever occurs) indiscriminately. Ins-
tead Plato thinks of identity as a specific property of things he calls ideas
and points to the fact that in mathematics the identity requirement is
relaxed. In what follows I shall show that this Platonic insight is parti-
cularly appealing in the context of our contemporary Category-theoretic
mathematics.

17So Plato hints at the following division of labor : mathematicians work on equali-
ties whilst philosophers take care of identities. This sounds like a veritable description
of what mathematicians and philosophers like Frege or myself are doing for centuries !

18Tn this dialog Socrates rejects the view that 2 is essentially the sum of two units
pointing to the fact that 2 can be equally obtained through division of a given unit
into two halves. Since each of the two operations is the reverse of the other none of
them can be viewed as bringing 2 about. So one needs first to think of 2 “as it is”
independently of operations of this sort.
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8 Relative Identity

A more recent alternative to Frege’s view on identity is given by
the theory of Relative Identity due to Geach ([Geach 1972], ch.7). Re-
markably this theory is motivated by the same sort of mathematical
examples as Frege’s definition by abstraction. Like Frege Geach seeks to
give a logical sense to mathematical talk “up to” a given equivalence F
through replacing F by identity but unlike Frege he purports, in doing
s0, to avoid the introduction of new abstract objects (which in his view
causes unnecessary ontological inflation). The price for the ontological
parsimony is Geach’s repudiation of Frege’s principle of a unique and
absolute identity for the objects in the domain over which quantified va-
riables range. According to Geach things can be same in one way while
differing in others. For example two printed letters aa are same as a type
but different as tokens. In Geach’s view this distinction does not commit
us to a-tokens and a-types as entities but presents two different ways
of describing the same reality. The unspecified (or “absolute” in Geach’s
terminology) notion of identity so important for Frege is in Geach’s view
incoherent!?.

Geach’s proposal appears to account better for the way the notion
of identity is employed in mathematics. It meshes particularly well with
how the notion of identity is usually understood in Category theory :

“In a category, two objects can be “the same in a way” while still
being different.” ([Baez & Dolan 1998], p.7)

But from the logical point of view the notion of relative identity re-
mains highly controversial. Let x, y be identical in one way but not in
another, or in symbols : Id(z, y)&—Id’(x, y). The intended interpreta-
tion assumes that x in the left part of the formula and x in the right
part have the same referent, where this last (italicized) same apparently
expresses absolute not relative identity. So talk of relative identity ar-
guably smuggles in the usual absolute notion of identity anyway. If so,
there seems good reason to take a standard line and reserve the term
“identity” for absolute identity.

We see that Plato, Frege and Geach propose three different views
of identity in mathematics. Plato notes that the sense of “the same” as
applied to mathematical objects and to the ideas is different : properly
speaking, sameness (identity) applies only to ideas while in mathematics
sameness means equality or some other equivalence relation. Although
Plato certainly recognizes essential links between mathematical objects

9For recent discussion see [Deutsch 2002]
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and Ideas (recall the “ideal numbers”) he keeps the two domains apart.
Unlike Plato Frege supposes that identity is a purely logical and domain-
independent notion, which mathematicians must rely upon in order to
talk about the sameness or difference of mathematical objects, or any
other kind at all. Geach’s proposal has the opposite aim : to provide a
logical justification for the way of thinking about the (relativized) notions
of sameness and difference which he takes to be usual in mathematical
contexts and then extend it to contexts outside mathematics :

“Any equivalence relation ...can be used to specify a criterion of
relative identity. The procedure is common enough in mathematics : e.g.
there is a certain equivalence relation between ordered pairs of integers by
virtue of which we may say that z and y though distinct ordered pairs,
are one and the same rational number. The absolute identity theorist
regards this procedure as unrigorous but on a relative identity view it is
fully rigorous.” ([Geach 1972], p.249)

Let me now present a different view on identity suggested by mathe-
matics.

9 Relations versus Transformations

The replacement of the equivalence xEy by the identity x = y pro-
posed by Frege allows for a stronger interpretation than Frege gave in
his account of abstraction. Namely, E can be interpreted as a reversible
transformation, which turns x into y and vice versa, and the identity
= as identity through this transformation. In the case of congruence the
transformation is (Euclidean) motion : y is the same object 2 but subject
to translation and/or rotation in Euclidean space. Here z and y are said
to be the same in the same sense in which, for example, an adult yester-
day and today is the same person. So we think here of a given triangle
in much the way we think of a substantial continuant — as an entity
capable of changing its states and/or positions. Such a “substantialist”

interpretation works also for Frege’s example of parallel lines?’.

The substantialist reinterpretation of mathematical relations may
look like an exercise in old-fashioned metaphysics but it appears surpri-
singly fruitful from the mathematical point of view. Given an equivalence
xFEy there are, generally speaking, many distinguishable transformations
turning x into y while zEy only says that one such transformation exists.
So here the underlying naive metaphysics matters mathematically.

20For a modern account of the notion of substance and of identity through change
see [Wiggins 1980]
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The difference becomes particularly evident in the case of (global)
reversible transformations of a given geometrical space. In the language
of relations the existence of such transformations amounts only to the
claim that a given space is equivalent to itself. But in fact such trans-
formations contain the most basic information about the corresponding
space as it was first recognized by Klein?!.

It is not the notion of a “substantial form” surviving through trans-
formations that is the major issue in the new framework for the study of
geometrical structure proposed by Klein. Rather there is something of
a different sort, which also remain unchanged through the transforma-
tions. That something is the structure(s) or forms of the transformations
themselves. I refer to the fact that reversible geometrical transformations
like Euclidean motions form algebraic groups under composition. This
fact remains completely hidden from view when one speaks about equi-
valences as relations. Thus the traditional metaphysics of substance and
form fulfills a mathematical need which the new Frege-Russell metaphy-
sics does not — whatever might be said in favor of the latter against the
former for philosophical reasons.

Let me next specify some terminology, which will be useful for what
follows. We have considered three different ways of thinking of what is
involved in operating with an (arbitrary) equivalence relation xEy.

1) Extension Consider equivalence classes formed of those things
equivalent under the relation F.

2) Abstraction : Replace the relation xEy by identity z = y, and
read z, y anew as standing for a (relational) property common to
all and only members of the same equivalence class under E.

3) Substantiation. Think of the given relation as a reversible trans-
formation of relata into each other, and read E as identity through
this transformation.

In the case of Humean relation H one may proceed from 1) to 3)
through the following steps. Given certain class of classes x, y, ... equi-
valent by H

e think of the one-one correspondences between elements of given

classes x, y as reversible transformations (isomorphisms) f, g...
turning elements of x into elements of y and conversely (reversibi-
lity implies that different elements of x turn into different elements

of y and vice versa)??;

21[Klein 1872]

22Noticeably such a reading is found already in [Cantor 1895] where he says : “es
verwandelt sich dabai M in N” to the effect that elements of a source set M are
replaced one-by-one by elements of an equivalent target set N.
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e think of x, y as different states of the same underlying substratum
X, and think of (auto)morphisms f, g, ... as changes of X ;

e similarly identify all classes equivalent to = and y with X.

A non-trivial fact, which makes mathematical sense of this meta-
physical exercise, is that the automorphisms of X form a group called
its permutation group or symmetric group. To see better what we gain
and what we might lose in switching from relations to transformations
consider the following table :

Extensional reading

Substantional reading

we write x = y for
“class x is equivalent
(isomorphic) to class

we write f: X — X or simply f for
an isomorphism from a class X to itself
(automorphism)

y77
= is an equivalence
relation ; this means
that :

Automorphisms of X form a group;
this means that :

= is transitive : z =y
and y = z implies
T =2z.

given automorphisms f, g there exists a
unique automorphism gf resulting
from the application of g after f.

= is reflexive : every
class x is isomorphic to
itself : x = x

there exist an identity automorphism 7
such that 1 f = f1 = f for any f

= is symmetric : if
x=ytheny ==z

every atomorphism f has an inverse
f~lsuchthat ff~'=f"1f=1

The analogy between the two columns of the table characterizing a
conceptual shift between the “language of relation” and the “language of
transformations” is, of course, informal and incomplete?3. Taking a more
formal line one can note that everything told above about transforma-
tions (and in particular the above definition of group) can be coded into
the language of relations : one doesn’t need E for it but does need a three-
place relation between elements of the group (i.e. transformations). The
converse is perhaps less known but not less straightforward : the notion of
n-place relation can be defined in terms of transformations (morphisms)
in the standard category-theoretic settings?*. However since it is not
immediately clear what these formal remarks bring to our understan-
ding of the conceptual difference between relations and transformations

23Remark the lack of the associativity condition in the right column : it is not clear
what counterpart it might have on the left side.
24[Borceux 1994, v.2 p.101].
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I leave the analogy as it stands and ask the following question : Does the
approach outlined above provide indeed a viable alternative to Frege’s
project of settling the question of identity in mathematics by external
logical means ?

On the one hand, one may claim we have here a new formal concept
of identity as the unit of a group of transformations, which meshes well
with the metaphysical intuition that any changing entity contains a core
invariant through changes. But on the other hand, it is not clear whether
this group-theoretic identity has anything to do with the logical notion
of identity, which was Frege’s concern. For one may argue that the unity
of a group is just a particular mathematical object which needs identity
conditions of its own. Remark that in order to define a group of trans-
formations f, g, h,..., and in particular to distinguish its unit 1, one
still needs the “usual”’ equality = which appears every time one writes
composition of transformations (an action of group operation) fg = h.
So one may argue that like everywhere in mathematics it is = but not
1 which functions as identity here.

This is quite a serious objection. Let’s see how it can be at least
partly met through upgrading the concept of group to that of category.

10 Categorification or How to Think Circle ?

Arguably the best way to explain what is circle is to show one (see
Fig. 3).

Fig. 3
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However this would hardly work unless you have seen some circles before.
For otherwise you wouldn’t know to which features of the shown picture
I'm trying to attract your attention. A way to make this clear is to show
many circles of different size, color, etc., so your capacity for abstraction
would allow you to grasp common features of all these things. (It is
also helpful to demonstrate some figures like ovals, which look much like
circles but are not, so you could also grasp the difference).

Fig.4

Computer educational media allow for a different option : instead of
showing you different circles I might show a moving circle changing its
color and size but not its shape (unfortunately I cannot do this in the
printed paper).

The two options just mentioned correspond to what I called in the
previous section extension and substantiation of a given concept. Spea-
king in a more abstract manner, in the former case we have a class of
objects instantiating the given concept while in the latter case we have
just one object of the given type provided with a group of transforma-
tions. Now remark that mathematicians usually need both these ways
of representation of their concepts : they need many different objects of
any given type to play with (many circles, for examples), and they also
need to transform these objects. Just like in the everyday life in mathe-
matics people deal with many changing and moving things of each kind
but not just one. But to the contrary to what one might expect from
a strict science ambiguities about identity of changing objects are even
more common in mathematics than in the everyday life. One should be
a philosopher to wonder if yesterday and today I am the same guy or
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invent examples like The Ship of Theseus. But in mathematics like in
the world of Ovidius’ Metamorphoses [Ovidius 2004] such examples are
found everywhere. Given two circles C, C’ one is always allowed to think
of C’ as a transformed version of C' making no commitment about pre-
servation of identity through the change similar to those we are usually
making in the case of pets and persons. We are so accustomed to these
ambiguities through the school education that rarely pay any attention
to them. I can quite understand Frege’s concern about this issue even if
I’'m not sympathetic with his attempts to improve on it.

From a metaphysical viewpoint taken in the previous section ex-
tension and substantiation look like two incompatible options?® howe-
ver there is the following obvious way to combine them mathemati-
cally. Given a class of (immutable) circles, for example, provide them
with transformations (transforming them into each other and to them-
selves) without collapsing the circles into one. This construction involves
an important choice : one should somehow distinguish between self-
transformations of any given object and transformations between dif-
ferent objects. But in most cases like in the case of circles on Euclidean
plane this choice can be made rather naturally : for example, in the case
of circle one may naturally opt for considering only rotations of circles
around their centers as self-transformations of the circles. Although any
particular choice of this sort is questionable an important advantage of
the construction is that it requires to make such choices explicitly.

To complete the definition of category of circles C' there remains only
very few things to say. The transformations (of both kinds) are compo-
sed in the usual way (so the associativity of the composition is assumed)
but since the transformations involve different objects one should keep
track of what is transformed : transformations f, g are composable only
if the target (codomain) of f coincides with the source (domain) of g.
Finally with every circle A we associate a special self-transformation 14
called identity of A and having the following property : f14 = f and
149 = g for any transformations f, g such that compositions f14 and
149 exist. Denoting circles by capital letters A, B, C' and transforma-
tions by arrows we get the following diagram (see Fig. 5) :

25Think about the ongoing ontological debate between 3D and 4D ontologies other-
wise referred to as endurantism and pendurantism. For a recent discussion see [McKin-
non 2002].
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Ia
() ()
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Fig 5

Notice that (to the contrary to what Fig.5 might suggest) given circles
A, B there are, generally speaking many transformations (a class of
transformations) from A to B. In particular (in addition to 14) there is
a class of rotations transforming circle A into itself.

In order to get a general definition of category from this example we
need only to replace circles by abstract objects and talk about morphisms
rather then transformations. Thus a category comprises :

e Class of its objects A, B, C, ...;

e For each ordered pair of objects A, B class of morphisms

f:A—-B g:A— B,... from Ato B;given f: A — B, Ais
called domain of f and B is called codomain of f;

e Composition ¢gf of morphisms f, g such that the codomain of f
equals the domain of g (see the above diagram) ; the composition
is associative : h(gf) = (hg)f = hgf;

e Identity morphism 74 associated with each object A and defined
by the condition : for any morphisms f, g, 1af = f and gls =g
(provided the compositions 14 f,g 14 exist).

When in a categorical diagram any arrow A — C equals to any other
arrow between A and C obtained through composition of arrows shown
at this diagram (like at Fig.5) the diagram is said to be commutative.

Notice that our category of circles C has the following additional
property not assumed in the general definition of category : all its mor-
phisms (transformations) are reversible . The reversibility is a basic pro-
perty of all usual geometrical transformations like motion or scale trans-
formation in virtue of which such transformations form groups. In the
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category-theoretic terms just introduced the reversibility of transforma-
tion (morphism) f : A — B amounts to existence of transformation
(morphism) g : B — A (called the reverse of f) such that gf = 14 and
fg = 1p. In Category theory this property is taken as the definition
of isomorphism, so isomorphisms are reversible morphisms. A category
like C' such that all its morphisms are isomorphisms is called groupoid.
Thinking of objects of a groupoid “up to isomorphism” one gets a group.
(So group is a category with only one object such that all its morphisms
are isomorphisms.) However such identification causes a lost of infor-
mation, namely the lost of distinction between morphisms of objects to
themselves (automorphisms) and morphisms of objects to other objects.
Thus groupoids provide an important counter-example against the wide-
spread belief according to which in categories all isomorphic objects can
be always viewed as identical (see the next section).

The full strength of the notion of category is revealed through the
case when morphisms between objects are not all reversible, that is, are
not all isomorphisms. A basic example is the category of sets having sets
as objects and functions between sets as morphisms. Further examples
are obtained through equipping sets with various structures like group
structure or topological structure. Then morphisms are required to “pre-
serve” or “respect” the corresponding structure : so in the category of
groups morphisms are homomorphisms of groups, and in the category of

topological spaces morphisms are continuous transformations?S.

Thus the upgrade of the notion of group up to that of category in-
volves two independent steps : (i) introduction of multiple identities
(multiple objects) instead of unique identity (unique object), and (ii)
allowing for non-reversible morphisms. This upgrade can be shown with
the following diagram?” :

26Recall the definitions. Homeomorphism between groups G, G’ is function f bet-
ween underlying sets of G, G’ such that if a b = c in G then f(a) ® f(b) = f(c) in
G’, where * and ® are group operations in G and G’ correspondingly. Continuous
transformation f : T — T’ between two topological spaces is a function between
underlying sets of T, T’ such that any inverse image of an open in 7" is open in T
Notice that the talk of ‘preservation of structure’ is at least partly misleading because
it too easily makes one think about homomorphisms as if they were isomorphisms.
Consider the case of group homomorphism f such that f(a) = f(b) = f(c) = g :
the “structure” of group G is not preserved here in anything like the usual sense of
the word but reduced to group unit. The talk of “respect” of structure is less popular
but in my view better fits its intended meaning.

27In the standard set-theoretical setting monoid is defined as set M provided with a,
binary operation and unit. Unlike the case of group the existence of inverse elements
is not required.
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Groups Groupoids

Monoids Categories

Fig 6

Examples of categories given so far are concrete categories. This means
that objects of such categories are specified in advance (usually this
means that they are construed a la Bourbaki as structured sets), so a
category could be seen as a structure over and above a class of its specific
objects. However the Category theory allows for a different approach :
starting with the general notion of category one specifies its algebraic
properties to the effect that the structure of morphisms between objects
and their compositions determines properties of these objects. (A spe-
cification of a given abstract category amounts to the requirement that
certain morphisms exist and certain diagrams commute.) In particular a
properly specified abstract category “becomes” the category of sets [Law-
vere 1964] in the sense analogous to that, in which logical variables in
axiomatic systems like ZF “become” sets under its intended interpreta-
tion. I cannot go here for details but mention these facts in order to stress
that the idea of “replacement of relations by transformations” is pushed
much further forward in Category theory than in Group theory. So the
argument according to which transformations unlike relations have no-
thing to do with logic and with identity in the category-theoretic context
doesn’t go through, or at least doesn’t go through straightforwardly.

11 Identity and Isomorphism

The mathematical notion of category just introduced makes para-
doxes of identity of mathematical objects discussed in the beginning
of this paper more explicit than usual. Consider the category of (all)
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groups G, for example, and take Sy (symmetric group with two ele-
ments : unit and involution) as an example of group. Outside G one
may think about Sy either as a particular object (the symmetric group
with two elements) or as kind of (isomorphic) objects dependently on
a given context just like one does it with numbers, circles and what-
not. However since G is supposed to comprise all groups (whatever this
might mean) the switching between different senses of “the” cannot any
longer remain unnoticed. Similar problems arise in abstract categories.
The notion of terminal object defined as object having exactly one inco-
ming morphism from each object of a given category (including itself)
is a typical example. This definition immediately implies that any two
terminal objects are isomorphic, and moreover that there is exactly one
isomorphism between any two such objects. In any reasonable context
(I don’t know about exceptions) terminal objects can be identified “up
to unique isomorphism”, and this is exactly what people do. This iden-
tification cannot be hidden by switching to a new context and should
be mentioned explicitly. Having no suitable theory of identity in hands
category-theorists often justify their liberal use of the equality sign by
remarks like this one taken from [Fourman 1977]. Referring to a formula
involving equality the author makes the following reservation :

“Strictly speaking the “canonical” isomorphisms. .. are necessary (ins-
tead of equality — A.R.) ... Having realized this it is best, in the interests
of clarity, to forget them.” (p. 1076)

The fact that isomorphic objects are often (albeit not always) regar-
ded as identical in categorical contexts was used by some philosophers as
an evidence supporting the claim that Category theory provides “a fra-
mework for mathematical structuralism” (see [Landry & Marquis 2005]
for a recent summary of continuing discussion on this issue in Philo-
sophia Mathematica). Mathematical structuralism is, roughly, the view
according to which the identity up to isomorphism is the only kind of
identity available for mathematical objects. This view squares well with
what mathematicians say in informal remarks like the following :

“The recursive weakening of the notion of uniqueness, and therefore
of the meaning of “the”, is fundamental to categorification.” ([Baez &
Dolan 1998], p.24)

or

“The basic philosophy is simple : never mistake equivalence for equa-
lity” (ibid., p.46, italic of the authors)

Notice that the “philosophy” suggested by Baez & Dolan here is in
accord with my reconstruction of Plato’s views given above and exactly
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the opposite to Frege’s attempts aiming to strengthening “the meaning
of “the”” in mathematics?®. I shall not discuss here mathematical struc-
turalism and its relationships with Category theory but remark that ma-
thematically speaking the issue is far from being straightforward. Notice
that in the standard categorical setting explained above the identity “up
to isomorphism” doesn’t apply to all morphisms. To define the notion
of terminal object and the very notion of isomorphism (as reversible
morphism) one needs to know precisely which morphisms are equal and
which are not. So equalities in categories cannot be simply dispensed
with and replaced by isomorphisms in any obvious way.

Another part of the same problem concerns isomorphism of cate-
gories. It has been widely observed that although this notion is easily
definable it is quite “useless” (|Gelfand & Manin 2003], p.70). Take cate-
gory G of (all) groups for example. Isomorphic copy G’ of G cannot be
anything else but the ( 7) category of groups. But as far as G is supposed
to comprise all groups (including all isomorphic groups) the talk of iso-
morphic copies of G comprising all these groups once again doesn’t make
sense (or even is contradictory is “all” is taken seriously). For this reason
equivalence of categories is defined as a weaker relation than isomor-
phism. To give strict definitions we need the notion of functor, which is
morphism between categories respecting the basic categorical structure
in the same sense in which homomorphisms of groups respect the ba-
sic group structure. Then isomorphism of categories is defined as usual
(as reversible functor). To define the equivalence between categories we
need also the notion of natural transformation, which is morphism bet-
ween functors sharing domain and codomain. A natural isomorphism
is reversible natural transformation. Now functor F' : A — B is called
equivalence if there exist functor G : B — A (called quasi-inverse of F)
such that GF' is isomorphic to the identity of A and F'G is isomorphic
to the identity functor of B?9.

The equivalence of categories so defined preserves isomorphisms in
categories but doesn’t preserve identities. This suggests the following
view : the “real” sameness of objects in a category is isomorphism but
not equality and the “real” sameness of categories is their equivalence but
not isomorphism. However we need equality and identity morphisms (in
particular, identity functors) in order to define these notions. So a more

28Since Frege interpreted this replacement of equivalences by equality as abstrac-
tion, this gives an interesting possibility to account for abstraction in terms of deca-
tegorification introduced in [Baez & Dolan 1998| further on.

29For details see Gelfand & Manin 2003, ch. 2 or any introductory text in Category
theory.
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precise analysis is in order before making any philosophical judgement
about identity in categories.

12 Equality Relation and Identity
Morphisms

Just like a group a category comprises two very different identity-
related elements : the “usual” mathematical equality and identity mor-
phisms. (Remind that groups can be viewed as a special case of catego-
ries, namely as categories having only one object and such that all their
morphisms are isomorphisms.) As T mentioned in the end of section 10
in a category-theoretic context a relevance of the notion of identity mor-
phism to logic cannot be ruled out on a general ground. However in order
to claim such relevance we need to be more specific. Let me try to show
what is going on with logic in categories without entering into details.

With a suitable category T' (noticeably with a topos) one may asso-
ciate logical calculus L called internal language of T to the effect that
each formula provable in L corresponds to certain commutative diagram
in T (soundness)®’. T is a semantic for L in the usual sense but T may
also represent certain features of L that the usual (Tarskian) semantic
doesn’t, for example, the truth-values. This gives reason for the rever-
sal of the usual point of view on semantic and syntax and explains the
term “internal” : L may be viewed as a secondary structure (or even
just a symbolic convention) associated with T and reflecting specific
features of T rather than a self-standing syntactic construction waiting
for an interpretation. L brings with itself identity predicate = while the
construction of T comprises the “external” ( “usual”’) equality = from
the outset. The “adjustment” of L to T' makes = and = interchangeable.
However this doesn’t mean that = (or =) gets “internalized” in the same
sense in which people speak about internalization of truth-values and
logical connectives : the internalization of logic in a category amounts to
representation (or replacement) of the usual logical syntax by categori-
cal constructions while = is not a categorical construction but just the
“usual” mathematical equality ! Identity morphisms of T' are not used
for representing =. Thus we can see that the standard “internalization
of logic in a topos” with an internal language has indeed no bearing
on the identity issue. Although the idea to account for identity in ca-
tegorical terms cannot be ruled out on a general ground the standard

30See for example [McLarty 1992].
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device of “internal logic” doesn’t realize this idea. Let’s look for different
possibilities.

13 Fibred Categories

The following discussion is based on [Bénabou 1985]. The idea is
the following. Recall that categories have been introduced in section
10 as classes of a certain kind. Which properties of classes are used in
the “naive” Category theory ? Let category C be our “object of study”
and category B be our “optical instrument” for studying C. B can be
thought of as category S of sets however we can also consider different
possibilities, in particular abstractly defined toposes. Following Bénabou
I shall call objects of B sets (remembering that they could be somewhat
different than usual sets) and call classes of morphisms or objects of C
families. (In what follows families will reappear as multiplicities of a
different sort than classes.) Now given a set I (an object of B) we may
master category C(I) called fiber over I whose objects and morphisms
are families of objects and morphisms of C indexed by elements of I, that
is, families of the form X = (X;) and f = (f; : X; — Y;) where i € I.
Bénabou remarks that speaking about categories naively we assume more
than this, so we cannot just fix some sufficiently large set I and use it
for indexing every time when this is needed. Namely, we also assume the
possibility of re-indexing : given families X = (X;), Y = (Y}) in C where
i € 1,5 € J and morphism v : J — I in B we assume that family of
objects X,,(; and family of morphisms f = (f; : Y; — X,(;)) is uniquely
defined and “behaves properly”. This allows us to extend C(I) through
introducing new category Fam(C) of families of C where objects are
families of objects of C' indexed by different sets and morphisms are pairs
of the form (u, f) where u and f are as just described. Morphisms of the
form f = (f; : X; — Y;) we identify with (idy, f) where id; is identity
morphism of I in B. The composition of morphisms in Fam(C) is
defined in the obvious way. We equipe the construction with projection
functor pc which sends every family of objects of C' to the set by which
this family is indexed and every morphism (u, f) between families to
morphism u between sets : po : (X;) — I, (u, f) — u.

Now suppose that we know what equality is in Fam(C) and in B
but not in C'. This implies that we cannot think of families (of objects
and morphisms of C) extensionally as usual. In particular given a family
X = (X;) where ¢ € I and morphism u : J — I in B we cannot
define another family Y = (Y}) by saying that Y; = X,,(;) because the
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latter equality doesn’t make sense for us. Nevertheless we can achieve
the same effect through requiring certain properties of Fam(C) and pc.
What we need for it is to characterize morphism ¢, x) = (u, (idy;)) in
Fam(C) without using equality in C'; (idy ;) to be the family of identity
morphisms of objects Y = (Xy;)) in C. Given u: J — I and X = (X;)
 is characterized up to unique isomorphism by the following property
(i) : for any morphism ¢ = (v, g) with codomain X in Fam(C) and
any v’ such that v = wv’ in B there exist in Fam(C) a unique 1/
such that ¢ = ¢p’ and pe(¢p’) = v’. In addition morphisms of the form
© = (u, (idy;)) satisfy the functoriality conditions (ii) : ¢, x) = idx
(identity morphism of family X), and @ (., x) = @(u, x)¥(, v) for each
v : K — J. Now we use these properties as definition of abstract functor
p: F — B called fibration over B (or fibred category over B) in the
case when only the property (i) is taken into account, and called split
fibration over B in the case when in addition for each pair (X, u: J —
p(X)) one makes a particular choice of ¢, x) (called splitting) satisfying
functoriality conditions (ii). Thus equality in a category can be defined
as splitting of fibration over an appropriate base. Noticeably given a
fibration its splitting might not exist or be not unique. I refer the reader
for further details to [Bénabou 1985].

Bénabou’s theory of equality in categories allows for regarding objects
and morphisms of a given category as families rather than bold indivi-
duals ; these families can be occasionally split into elements through a
(split) fibration in different ways dependently of the choice of base. Such
splitting is reverse operation with respect to the informal identification
of isomorphic objects and morphisms mentioned in the section 11, and
unlike the latter it is performed more rigorously and more “categorical-
ly”. This reversal is remarkable : it shows that given the definition of
equality through split fibration families are no longer thought of as ex-
tensional multiplicities, that is, as classes. Recall however that given a
fibration p : F — B categories F, B are construed in the usual way
and in particular assume the “usual” equality of morphisms and objects,
so the internalized equality relates only to hypothetical category C such
that F = Fam(C). This situation is quite analogous to that in the
Model theory when a formal theory is interpreted in a semantical struc-
ture construed independently of this theory either informally or with
the help of a meta-theory. As Bénabou stresses in the end of his paper
such “meta-equality” is indispensable “unless you do something different
from Category theory”. In the end of the following section I shall argue
that this “something different” can be a real option (however I shall not
pursue it in this paper).
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14 Higher Categories

Given objects A, B of category C consider class Hom(A, B) of mor-
phisms f, g, ... of the form A — B. Then turn Hom(A, B) into a new
category formally introducing morphisms of the form « : f — g (that
is, morphisms between morphisms of C). Do this for all pairs of ob-
jects of C. Observe that morphisms « can be composed in two different
compatible ways shown at the below diagram :

f f

g lo
AWB AB

h

vertical composition

£ I £f
(e e e e
g g g's

horizontal composition

Fig 7

Requiring now natural equational condition to the effect that all mor-
phisms “work properly” (which I shall not list here) we obtain a 2-

category. It comprises objects A, B ..., morphisms f, g, ... between ob-
jects (the same as in C' ) called in this context I-morphisms, and “mor-
phisms between morphisms” «, 3, ... called 2-morphisms. An example of

2-category which has been around from the very beginning of Category
theory (that is, some 20 years earlier than the abstract notion of 2-
category has been introduced in [Ehresmann 1965]) is 2-category 2-Cat
having (some or all) categories as objects, functors between these cate-
gories as 1-morphisms and natural transformations between the functors
as 2-morphisms. Let me now explain what 2-categories have to do with
the internalization of identity (equality).

Remark that in a 2-category we have not only the usual composition
of 1-morphisms (f: A — B)(g: B— C)=gf: A— C but also functor
F: Hom(A, B)x Hom(B, C) — Hom(A, C) (provided that in cate-
gory Hom¢ having Hom-categories of C as objects Cartesian product
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X is available 31). On 2-morphisms this functor acts as their horizontal
composition (while in Hom-categories 2-morphisms are composed ver-
tically). If functors of the form F' preserve identities in Hom-categories
(2-identities) then equalities in C' may be omitted without any lost. This
means that we don’t even need to define C' as a category but may think
of it as a class of “objects” and “morphisms” between these objects, and
then define composition of these morphisms “from above” through func-
tors like F'. In this case one may speak indeed about “replacement of
relations by morphisms” : 2-identites from Hom-categories make in C
the job of equalities. The situation here is quite analogous to one we’ve
seen in fibred categories : at the top “meta-" level of construction (namely
in Hom-categories and in the category Homce of the Hom-categories)
one uses the “god-given” equality but at the bottom level equalities are
got rid of.

An apparent difference between the two approaches is this : in higher
categories the notion of class is used at all levels including the lowest
one while in fibred categories this notion is used only at the “meta-"
level and at the lower “internalized” level classes are replaced by non-
extensional families. But is the assumption that objects of 2-category
form a class necessary ? Prima facie it is the case. For in order to compose
2-morphisms «, § in a Hom-category (that is, vertically) we need to
check that domain of 3 equals codomain of a.. So 1-morphisms (objects

31Given objects A, B in a category their product A X B is defined up to unique
isomorphism by the following (universal) property : given any object X with mor-
phisms X — A, X — B there exist unique morphism X — A X B such that the
following diagram commutes :

Fig. 8

Check that this works as usual when A, B, X, A X B are sets.



32 Andrei Rodin

of Hom-categories) should form a class of well-distinguishable elements
(provided with a notion of equality allowing for distinguishing them).
Notice that if we take this view then the internalization of equality in
C just described will be only partial : it will apply to equalities of the
form gf = h but not to equalities of the form f = f. However it is easy
to get around this point through identification of 1-morphisms with 2-
identities, so all needed equational conditions could be written in terms
of 2-morphisms. Then one may claim that in C “there is no equality”,
and hence its elements don’t need to form a class.

It should be noted that the common interest of people working in
higher Category theory is not internalization of equality as such but
weakening of equality, that is, finding a rigorous way of “replacing” equa-
lities with certain isomorphisms. This approach is quite natural in the
given context since the requirement that functors of the form F preserve
all 2-identities is unreasonably strong (see section 11). Since we are no
longer obliged to think of C' as a category in the usual sense we get a
room for playing. Instead of imposing on Hom-categories and on Homc¢
equational conditions implied by the assumption that C'is a category we
can use weakened conditions which don’t imply that 2-isomorphisms re-
placing equalities in C' are identities. Such weak 2-categories have been
first introduced in [Bénabou 1967| under the name of bicategories. In
bicategories (i) the usual associativity law h(gf) = (hg)f in C is re-
placed by the requirement of existence of associativity (2-)isomorphism
a: h(gf) — (hg)f (eventually called associator by other authors), and
(ii) the usual axiom of identity f14 = f and Ipf = ffor f: A— B
is replaced by the requirement of existence of unit (2-) isomorphisms
l: flgy — fand r : Igf — f. These isomorphisms are subjects of
equational conditions called coherence laws, which I shall not list here32.

The notion of 2-category allows for a straightforward geometrical
analogy : think of objects as points, of 1-morphisms as oriented lines,
and of 2-morphisms as oriented surfaces bounded by the lines. Whe-
ther we use this analogy (which is more profound than it might appear
at the first glance) or not the notion of 2-category calls for the induc-
tive generalization to the notion of n-category for arbitrary n and fur-
ther to w-category (leaving bigger ordinals apart). The strict (meaning
non-weakened) versions of the notions of n- and w-category look unpro-
blematic : the enrichment of a given category C bringing the notion of
2-morphism explained in the beginning of this section can be easily refor-
mulated as an inductive step bringing the notion of k-morphism provided
with k different kinds of composition ([Leinster 2001], p.8). However the

328ee [Bénabou 1967] or [Leinster 2001], p.9



Identity and Categorification 33

notions of weak n- and w-categories which are more interesting (both pu-
rely mathematically and for applications) are much less obvious. There
are many alternative definitions of weak n- and w-categories around ; ten
of them are presented in [Leinster 2001]. A somewhat different approach
based on introduction of a new kind of morphism rather than relaxing
axioms is presented in [Kock 2005]. A specific obstacle for putting these
things into order, which is not irrelevant to the issue discussed in this
paper, is this : it is not clear which notion of equivalence one should
apply to answer the question whether two given definitions of weak n-
category are equivalent or not. There are obvious reasons to think that
the suitable notion of equivalence should be n-categorical itself but this
makes the reasoning circular. It seems that new conceptual inventions
and not only technical developments are still wanted in this field.

The construction of strict n- (w) category is transparent because it
is built in the strict upward order. However as we have seen in the case
of weak m-categories the opposite downward order of construction gets
involved. In fact the idea of the downward construction is basic for Cate-
gory theory but not specific for its higher-dimensional branch33. At the
same time the core upward inductive construction of n-category (strict
or weak) starting with a class of objects, morphisms between the ob-
jects, morphisms between these morphisms, etc., remains present in all
alternative definitions of this notion. Although the co-presence of these
two opposite orders is ubiquitous in mathematics (think about Eucli-
dean triangles for example3*) it seems that in the case of n-categories
the two orders fail to match each other. As far as we start to build a
n-category from classes of objects and morphisms we tacitly assume a
lot about their identities, so the sense of further “weakening of iden-
tity” through higher-dimensional conditions becomes unclear. For this
and other reasons it seems interesting to figure out a categorical (or
categorical-like) construction which would avoid the classical upward
geometrical concept-building leaving more room for the downward ap-
proach.

From an epistemological viewpoint the case of n-categories with n > 2
is interesting because it no longer allows for thinking of different levels
of the construction along the distinction between the “object level” and
the “meta-level”. When n becomes big the reiteration of “meta-” becomes

33The talk about dimensions refers to the geometrical aspect of the notion of n-
category modestly mentioned above in the main text as an “analogy”.

34T mean the following. To construct a triangle one proceeds in the bottom-up
order : one takes three points and connects them by straight lines. But to define
the notion of triangle, say, as a 3-angled polygon one proceeds in the opposite sense
assuming the notion of polygon first.
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pointless and with n = w it becomes senseless. So we cannot take refuge
at the “meta-level” but must revise our understanding of identity from
the outset. Let me demostrate this with the following simple example.

Remind the “partial categorification” of an isomorphism class of sets
which we have achieved in section 9 : given such a class we considered
all isomorphisms between its member-sets, then identified the sets and
some (but not all) isomorphisms and got a symmetric group. Let it be
finite symmetric group Sy for simplicity. Now we can see that a more
profound alternative to Fregean approach requires turning all sets into a
category. Let us however for the sake of the example improve on Sy in a
different way. Namely, let us categorify it further taking into account iso-
morphisms of Sy, that is, group Aut(Sy) of automorphisms of Sy. Here
we can remark something interesting. Except the trivial cases N = 1 and
N = 2 when there exist only the identity authomorphisms, and except
the “pathological” case N = 6 we have Aut(Sy) = Sy3°. (This latter
equality sign can be read as the isomorphism relation. Considering iso-
morphisms in question explicitly we get Sy back!) So taking into consi-
deration automorphisms of higher order (Aut(Aut(Sy)) = Aut?(Sy)
and so on) brings nothing new : we have Aut™(Sy) = Sy for all n and
all N # 1, 2, 6. Remark that Sy equipped with Aut*(Sy),k=1,2,...n
is a very simple albeit not completely trivial example of strict n-category.
The property of symmetric groups just mentioned is a case of what Baez
and Dolan [Baez & Dolan 1998] call stabilization in n-categories (p.13).

Now we can fix some n, assume the “usual” equality only in Aut™(Sn)
and for k < n write the group operation as ab — ¢ (instead of ab =
¢) claiming that this operation is determined up to isomorphism by
the fact that Aut*(Sy) (in particular, Aut’(Sy) = Sy) is isomorphic
to Aut™(Sn). The elementary character of this construction makes its
downward determination just as easy as the upward one. However it
also makes the whole idea of the reiteration of “levels” plainly redun-
dant : given Aut(Sy) = Sn) our “n-group” is just Sy “up to itself”!
This suggests a different move : instead of describing the group opera-
tion through equational conditions reverse the optic and reconstruct a
notion of equality (identity) on the basis of the operation.

What we can expect to get in this way is “identity up to Sy’ rather
than a universal identity concept suitable for all mathematical and lo-
gical needs. Remark however that identity “up to symmetric group of
isomorphisms” applies to such a fundamental mathematical object as a
class. Thus this particular kind of identity has a very general significance

35[Kurosh 1960, 92]
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in mathematics and logic3®.

15 Conclusion

It might be argued that before a new account of identity is well esta-
blished in mathematics it is premature to start any philosophical discus-
sion about it. I don’t think so. I dare to think that not only philosophers
can find a lot of interesting stuff relevant to their subject in the contem-
porary mathematics but that mathematicians too can be motivated by
new philosophy in their work, moreover if it concerns such a traditional
philosophical issue as identity. This is how things worked for centuries
(including the heroic time of debates on foundations of mathematics at
the edge of 19*" and 20*" centuries), and I cannot see any reason why
in 215% century they should be different. Although philosophical mo-
tivations could and in many contexts certainly should be swept out of
ready-made mathematical theories philosophical reasons often play an
important role in bringing new mathematical theories about. That is
why the fact that the issue of identity in categorical mathematics is not
yet well settled in mathematics gives me reason to discuss it right now
rather than to the opposite.

Paraphrasing [Quine 1966] we can say : one man’s paradox is ano-
ther man’s definition. Considering the invariance through change as a
basic feature (if not a definition) of identity we may avoid the Paradoz
of Change but the price will be the lost of primitive and universal cha-
racter of the identity concept. In my view this price must be paid any-
way. People use the word “same” in many different context-dependent
senses in everyday talks as well as in scientific discourses. What physi-

cists exactly mean talking of the “same experiment”, “same observation”,

“same effect”, “same model”, “same theory”, “same event” or “same parti-
cle” ? The type/token distinction doesn’t give us all needed answers. In
biology and social sciences things become even more complicated. A phi-
losophical approach to the issue requires first of all distinguishing, spe-
cification and theoretic systematization of different senses of the “same”
rather than picking one of them, stipulating it as basic and explaining
away others. I don’t think that Frege is right assuming that the notion of
identity is unique and simple. I think that Plato was more to the point

361 realize the risk of drawing any general conclusion concerning n-categories on
the basis of the example of “symmetric n-group” and suggest the reader to consider
this example on its own rights. Anyway a n-categorical view on symmetric groups
seems me interesting.
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noticing that nothing like the “absolute” identity applies to physical and
mathematical matters, so he had to stipulate a special realm of eternal
Ideas where it might work. But unlike Plato I am rather interested in
identities, which might work in mathematics, physics and other sciences.

We have seen that the issue of identity has been crucial in the deve-
lopment of programs of unification of mathematics since the end of 19th
century. Frege’s attempts to “fix the identity” of natural numbers as
continued by Russell shaped the mainstream philosophy of mathematics
(although hardly the mainstream mathematics) in the XX-th century.
The issue of identity remains central in the current program of catego-
rification of mathematics. The fact that the working concept of identity
in mathematics is weak and diversified noticed by Plato has been inter-
preted by Frege, Russell, and their followers as an evidence of the lack
of rigor in this discipline, and they tried to fix the problem through in-
troduction of a universal logical notion of identity. Categorification, in
contrast, purports to further weakening and diversification of identity
revealing genuinely new mathematics in doing so. Interestingly catego-
rification revives certain philosophical ideas, which during the XX-th
century remained marginal, like Geach’s idea of relative identity. It also
leads to a repudiation of the idea shared by the majority of Analytic phi-
losophers since Frege that the issue of identity must be firmly fixed from
the outset in any serious theoretical enterprise. In the category-theoretic
framework the issue of identity is an issue to be studied (both from a
general point of view and in every particular case) but not one to be
rigidly fixed in advance®7.

Bibliography

ARISTOTLE
Metaphysics (any edition).
BAEZ, JOHN & DOLAN, JAMES
1998  Categorification : arXiv :math.QA /9802029.

BALAGUER, MARK

1998 Platonism and Anti-Platonism in Mathematics, Oxford : Ox-
ford University Press.

37An  extended version of the paper can be found at
http ://arxiv.org/pdf/math.CT/0509596.



Identity and Categorification 37

BARWISE, JON (ED.)
1977  Handbook of mathematical logic, Amsterdam : North-Holland
Publishing Company.
BENABOU, JEAN
1967 Introduction to bicategories in : [ Bénabou et al. (eds.) Reports
of the Midwest Category Seminar (Lecture Notes in Mathematics,
47), Berlin : Springer,] 1-77.
1985 Fibred Categories and the Foundation of Naive Category Theory,
The Journal of Symbolic Logic, 50, 1, 10-37.
BENACERRAF, PAUL
1965 What Numbers Could Not Be, Philosophical Review, 74, 47-73.

BERNAYS, PAuL
1958  Aziomatic Set Theory North-Holland Publishing Company, Am-
sterdam.
BorcrEUX, FRANCIS
1994  Handbook of Categorical Algebra 2, Cambridge : Cambridge
University Press.
CANTOR, GEORG
1895 Beitraege zur Begrundung der transfiniten Mengenlehre Math.
Ann. .46, 481-512. Quoted by : Gesammelte Abhandlungen mathe-
matischen und philosophischen Inhalts, Berlin : Springer, 1932.
DEUTSCH, HARRY
2002 Relative Identity in : Stanford Encyclopedia of Philosophy
(http ://plato.stanford.edu).
EHRESMANN, CHARLES
1965 Catégories et Structures, Paris : Dunod .

FiNnDLAY, JOHN. N.
1974 Plato : The Written and Unwritten Doctrines, London : Rout-
ledge.
FoUrRMAN, MICHAEL
1977 The Logic of Topoi in [Barwise 1977], 1053-1090.

FRAENKEL, ABRAHAM
1966 Set Theory and Logic, London : Addison-Wesley.



38 Andrei Rodin

FREGE, GOTLOB

1884 Die Grundlagen der Arithmetik, Breslau : W. Koebner (Quoted
by English translation by M. Furth : The basic laws of Arithmetic,
Berkeley & Los Angeles : California Press 1964).

1903  Grundgesetze der Arithmetik, Jena : Verlag Hermann Pohle,
Band IT; reprinted Hildesheim : Olms, 1962.
FRENCH, STEVEN AND KRAUSE, DECIO
2006 Identity in Physics, Oxford : Oxford University Press.

GEACH, PETER T.
1972  Logic Matters, Oxford : Basil Blackwell.

GELFAND, SERGEI I. AND MANIN, YURY I.
2003 Methods of Homological Algebra, Berlin et al. : Springer.

HuME, DavID

A treatise of human nature (any edition).

KERANEN, JUKKA

2001 The Identity Problem for Realist Structuralism, Philosophia
Mathematica, 9, 308-330.

KLEIN, FELIX

1872  Vergleichende Betrachtungen ueber neuere geometrische For-
schungen (“Erlanger Programm”), Erlangen : Deichert.

Kock, JoAcHIM
2005  Weak identity arrows in higher categories, arXiv :math.CT/0507116.

KURrROSH, ALEXANDR G.
1960 The Theory of Groups, New York : Chelsea Publishing Com-
pany.
LANDRY, ELAINE AND MARQUIS, JEAN-PIERRE
2005 Categories in Context : Historical, Foundational, and Philoso-
phical, Philosophia Mathematica, 13, 1-43.
LAWVERE, F. WILLIAM

1964 An Elementary Theory of the Category of Sets, Proceedings of
the National Academy of Sciences U.S.A., 52, 1506-1511.

LEINSTER, TOM
2001 A Survey of Definitions of n-Category, arXiv :math.CT/0107188.



Identity and Categorification 39

Lucas, JouN R.
1973  Treatise on Time and Space, London : Methuen & Co.
McKINNON, NEIL
2002 The Endurance/Perdurance Distinction, Australasian Journal
of Philosophy, 80, 3, 288-306.
McLARTY, COLIN
1992 Elementary Categories, Elementary Toposes, Oxford : Claren-
don Press.
Ovipius, NAso P.
2004 Metamorphoses (ed. by Richard J. Tarrant), Oxford : Claren-
don Press.
PRITCHARD, PAUL
1995 Plato’s philosophy of mathematics, International Plato Studies
5, Sankt Augustin : Academia Verlag.
QUINE, WILLARD V.O.
1966 The Ways of Paradox, in [Quine, W.V.O. The Ways of Paradox
and Other Essays, New-York : Random House|, 3-20.
RUSSELL, BERTRAND
1903 The Principles of Mathematics, London : George Allen & Un-
win Ltd.
SCHOLZ, HEINRICH UND SCHWEITZER, HERMANN
1935  Die sogenannten Definitionen durch Abstraktion, Leipzig : Felix
Meiner.
WIGGINS, DAVID

1980 Sameness and substance, Oxford : Blackwell.



40



