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Logic Colloquium ’17, the annual European Summer Meeting of the Association of
Symbolic Logic, was hosted by the University of Stockholm. It formed part of a three week
Logic in Stockholm 2017 event, which also featured the Third Nordic Logic Summer School
(NLS 2017) and the The 26th Annual Conference of the European Association for Computer
Science Logic (CSL 2017). The meeting took place from August 14th to August 20th, 2017,
at the main campus of the university. Logic Colloquium 2017 was organized and hosted
jointly by the Departments of Mathematics and Philosophy at Stockholm University and
also supported by the KTH Royal Institute of Technology.

Major funding for the conference was provided by the Association for Symbolic Logic
(ASL), the US National Science Foundation, Stockholm University, Prover Technology,
Stockholm City Hall, and the G.S. Magnuson Foundation.

The success of the meeting was due largely to the excellent work of the Local Organizing
Committee under the leadership of the Co-Chairs, Valentin Goranko and Erik Palmgren,
from the University of Stockholm. The other members were Stefan Buijsman, Mads Dam,
Jacopo Emmenegger, Dilian Gurov, Sven-Ove Hansson, Eric Johannesson, Vera Koponen,
Johan Lindberg, Roussanka Loukanova, Peter LeFanu Lumsdaine, Anders Lundstedt, Karl
Nygren, Peter Pagin, and Dag Westerståhl.

The Program Committee consisted of Rod Downey (University of Wellington), Mirna
Džamonja (University of East Anglia, Chair), Ali Enayat (University of Gothenburg),
Fernando Ferreira (University of Lisbon), Valentin Goranko (Stockholm University),
Martin Hils (University of Münster), Sara Negri (University of Helsinki), Assaf Rinot
(Bar-Ilan University), and Igor Walukiewicz (University of Bordeaux).

The conferences centered on the classical subjects ofmathematical and philosophical logic,
as well as on many connections between these subjects and computer science. A distinctive
feature of the conference was a special LC2017-CSL2017 highlight session organized on the
morning of August 20th, at which each of the two conferences invited two highlight speakers
to present highlights of their subject intended for the broader community represented by the
two conferences. The speakers at this session were as follows:
Verónica Becher (University of Buenos Aires), Normal numbers, logic and automata.
Phokion Kolaitis (University of California Santa Cruz and IBM Research-Almaden),

Schema mappings: structural properties and limits.
Pierre Simon (University of California at Berkeley), Recent directions in model theory.
Wofgang Thomas (RWTH Aachen), Determinacy of infinite games: perspectives of the

algorithmic approach.
The program featured two 3-hour tutorials and eleven plenary lectures. There was a

special session on Category Theory and Type theory in honor of Per Martin-Löf on his
75th birthday, and special sessions on Computability, History of Logic, Model Theory,
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212 LOGIC COLLOQUIUM ’17

Philosophical Logic, Proof Theory, and Set Theory. There were 246 participants, and ASL
travel grants were awarded to 29 students and recent Ph.D.’s.
The following tutorial courses were given:

Patricia Bouyer-Decitre (LSV, ENS Cachan), On the verification of timed systems—and
beyond.
Mai Gehrke (University of Paris Diderot (Paris 7)),On stone duality in logic and computer

science.

The following invited plenary lectures were presented:

David Asperó (University of East Anglia), Generic absoluteness for Chang models.
Alessandro Berarducci (University of Pisa), Surreal differential calculus.
Elisabeth Bouscaren (University of Paris Sud (Paris XI)), A stroll through some important

notions of model theory and their applications in geometry.
Christina Brech (University of São Paulo), Families on large index sets and applications to

Banach spaces.
Sakaé Fuchino (Kobe University), Set-theoretic reflection of mathematical properties.
Denis Hirschfeldt (University of Chicago), Computability theory and asymptotic density.
Wilfrid Hodges (British Academy),Avicenna sets up a modal logic with a Kripke semantics.
Emil Jeřábek (Czech Academy of Sciences), Counting in weak theories.
Per Martin-Löf (Stockholm University), Assertion and request.
Dag Prawitz (Stockholm University), Gentzen’s justification of inferences and the ecumeni-

cal systems.
Sonja Smets (University of Amsterdam), The Logical basis of a formal epistemology for

social networks.

The conference featured a rich social program, including a reception in the StockholmCity
Hall, excursions, and a conference dinner. More information about the meeting can be found
at the conference website: https://www.math-stockholm.se/en/konferenser-och-akti/logic-
in-stockholm-2/logic-colloquium-201/logic-colloquium-2017-august-14-20-1.717657.

Abstracts of invited and contributed talks given in person or by title by members of the
Association follow.

For the Program Committee
Mirna Džamonja

Abstracts of Invited Talks

� DAVID ASPERÓ, Generic absoluteness for Chang models.
School of Mathematics, University of East Anglia, Norwich Research Park, Norwich NR4
7TJ, UK.
E-mail: d.aspero@uea.ac.uk.
URL Address: https://archive.uea.ac.uk/∼bfe12ncu/
The main focus of the talk will be on extensions of Woodin’s classical result that, in the

presence of a proper class of Woodin cardinals, CV� and CV
P

� are elementally equivalent for
every set—forcing P (where Cκ denotes the κ-Chang model).
1. In the first part of the talk I will present joint work with Asaf Karagila in which we

derive generic absoluteness for C� over the base theory ZF +DC.
2. Matteo Viale has defined a strengthening MM+++ of Martin’s Maximum which, in

the presence of a proper class of sufficiently strong large cardinals, completely decides the
theory of C�1 modulo forcing in the class Γ of set—forcing notions preserving stationary
subsets of �1; this means that if MM+++ holds, P ∈ Γ, and P forces MM+++, then CV�1
and CVP�1 are elementarily equivalent. MM+++ is the first example of a “category forcing
axiom.”
In the second part of the talk I will present some recent joint work with Viale in which

we extend his machinery to deal with other classes Γ of forcing notions, thereby proving

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2018.13
Downloaded from https://www.cambridge.org/core. Higher School of Economics (Moscow), on 04 Sep 2018 at 07:14:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2018.13
https://www.cambridge.org/core


LOGIC COLLOQUIUM ’17 213

the existence of several mutually incompatible category forcing axioms, each one of which is
complete for the theory of C�1 , in the appropriate sense, modulo forcing in Γ.

� ALESSANDRO BERARDUCCI, Surreal differential calculus.
Department of Mathematics, University of Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa,
Italy.
E-mail: alessandro.berarducci@unipi.it.
I will report on joint surreal work with Vincenzo Mantova. We recall that Conway’s

ordered field of surreal numbers contains both the real numbers and the ordinal numbers.
The surreal sum and product of two ordinals coincide with the Hessenberg sum and product,
and Cantor’s normal form of ordinals has a natural extension to the surreals. In [1] we proved
that there is a meaningful way to take both the derivative and the integral (antiderivative)
of a surreal number, hence in particular on an ordinal number. The derivative of the ordinal
number omega is 1, the derivative of a real number is zero, and the derivative of the sum
and product of two surreal numbers obeys the expected rules. More difficult is to understand
what is the derivative of an ordinal power of omega, for instance the first epsilon-number,
but this can be done in a way that reflects the formal properties of the derivation on a Hardy
field (germs of nonoscillating real functions). In [2] we showed that many surreal numbers
can indeed be interpreted as germs of differentiable functions on the surreals themselves, so
that the derivative acquires the usual analytic meaning as a limit. It is still open whether we
can interpret all the surreals as differentiable functions, possibly changing the definition of
the derivative.
[1] A. Berarducci and V.Mantova, Surreal numbers, derivations and transseries. Journal

of the European Mathematical Society, to appear, arXiv:1503.00315, p. 47.
[2] , Transseries as germs of surreal functions, arXiv:1703.01995, p. 44.

� ELISABETH BOUSCAREN, A stroll through some important notions of model theory and
their applications in geometry.
Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Univ. Paris-Saclay, 91405
Orsay, France.
E-mail: elisabeth.bouscaren@math.u-psud.fr.
In this talk, we will try to explain the use of some important model-theoretic notions,

focusing on the model-theory of finite rank groups and on the notion of orthogonality. Their
use in applications to algebraic geometry will be gently illustrated by some examples. This
talk is partly inspired by a series of recent joint articles with Franck Benoist (Paris-Sud) and
Anand Pillay (Notre-Dame), giving new model theoretic proofs of the original results of
Ehud Hrushovski on the Mordell–Lang Conjecture for function fields (1994).

� DENIS HIRSCHFELDT, Computability theory and asymptotic density.
Department of Mathematics, The University of Chicago, 5734 S. University Ave., Chicago,
IL 60637, USA.
E-mail: drh@math.uchicago.edu.
URL Address: www.math.uchicago.edu/∼drh.
The notion of generic-case complexity was introduced by Kapovich, Myasnikov, Schupp,

and Shpilrain to study problems with high worst-case complexity that are nevertheless easy
to solve in most instances. They also introduced the notion of generic computability, which
captures the idea of having a partial algorithm that halts for almost all inputs, and correctly
computes a decision problem whenever it halts. Jockusch and Schupp began the general
computability-theoretic investigation of generic computability and also defined the notion of
coarse computability, which captures the idea of having a total algorithm that might make
mistakes but correctly decides the given problem for almost all inputs (although this notion
had been studied earlier in Terwijn’s dissertation). Two related notions, which allow for
both failures to answer and mistakes, have been studied by Astor, Hirschfeldt, and Jockusch
(although one of them had been considered in the 1970’s by Meyer and by Lynch). All of
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214 LOGIC COLLOQUIUM ’17

these notions lead to notions of reducibility and associated degree structures. I will discuss
recent and ongoing work in the study of these reducibilities.

� PER MARTIN-LÖF, Assertion and request.
Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden.
E-mail: pml@math.su.se.
Think of the content of an assertion as something that is to be done: let us call it a task.

Peirce’s explanation of the speech act of assertion as the assuming of responsibility then takes
the form: by making an assertion, you assume the responsibility, or duty, of performing the
task which constitutes the content of the assertion, when requested to do so by the hearer.
Thus a duty on the part of the speaker appears as a right on the part of the hearer to re-
quest the speaker to perform his duty: this is an instance of what is called the correlativity
of rights and duties, a fundamental principle of deontological ethics which can be traced
back to Bentham. In logic, it appears as the correlativity of assertions and requests. Since
nothing but assertions appear in the usual inference rules of logic, there arises the question
of what the rules are that govern the correlative requests. In the case of constructive type
theory, they turn out to be the rules which bring the meaning explanations for the various
forms of assertion to formal expression. Thus, in analogy with Gentzen’s dictum that the
propositional operations, the connectives and the quantifiers, are defined by their introduc-
tion rules, we may say that the forms of assertion are defined by their associated request
rules.

� DAG PRAWITZ, Gentzen’s justification of inferences and the ecumenical systems.
Department of Philosopy, Stockholm University, 106 91 Stockholm, Sweden.
E-mail: dag.prawitz@philosophy.su.se.
Some of the different proposals for how to make precise Gentzen’s way of justifying

the introduction and elimination rules of natural deduction are briefly surveyed. A crucial
question is whether the justification is applicable only to inferences occurring in intuitionistic
logic or can be extended also to inferences occurring in classical logic. I shall argue that it is
extendible to classical inference rules but that for some logical constants the introduction rules
must vary depending on whether the constant is read classically or intuitionistically—when
the constant is read classically the rule must be weaker than when it is read intuitionistically.
Respecting this condition, it is possible to allow classical and intuitionistic logical constants

in one and the same system, a system that we may call the ecumenical system. In this system
the usual elimination rules for some logical constants do not hold when the constant is
read classically. Modus ponens is an example—it is not valid generally when implication is
read classically but remains valid when also all of the constants of the subformulas of the
implication are read classically.

� SONJA SMETS, The logical basis of a formal epistemology for social networks.
ILLC, University of Amsterdam, Science Park 107, Amsterdam, The Netherlands.
E-mail: S.J.L.Smets@uva.nl.
In this presentation I focus on a logical–philosophical study of group beliefs and col-

lective “knowledge”, and their dynamics in communities of interconnected agents capable
of reflection, communication, reasoning, argumentation, etc. In particular, the aim is to
study belief formation and belief diffusion (doxastic influence) in social networks, and to
characterize a group’s “epistemic potential”. This covers cases in which a group’s ability to
track the truth is higher than that of each of its members (the “wisdom of the crowds”:
distributed knowledge, epistemic democracy, and other beneficial forms of belief aggregation
and deliberation), as well as situations in which the group’s dynamics leads to informational
distortions (the “madness of the crowds”: informational cascades, “groupthink”, the curse
of the committee, pluralistic ignorance, group polarization, etc). I look at several logical
formalisms that make explicit various factors affecting the epistemic potential of a group: the
agents’ degree of interconnectedness, their degree of mutual trust, their different epistemic
interests (their “questions”), their different attitudes towards the available evidence and its
sources, etc. In this presentation I refer to a number of recent articles (1,2,3,4,5,6), that

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2018.13
Downloaded from https://www.cambridge.org/core. Higher School of Economics (Moscow), on 04 Sep 2018 at 07:14:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2018.13
https://www.cambridge.org/core


LOGIC COLLOQUIUM ’17 215

make use a variety of formal tools ranging from dynamic epistemic logics and probabilistic
logics. I conclude with some philosophical reflections about the nature and meaning of group
knowledge, as well as about the epistemic opportunities and dangers posed by informational
interdependence.
[1] A. Achimescu, A. Baltag, and J. Sack, The probabilistic logic of communication and

change. The Journal of Logic and Computation, (2016), no. 07.
[2] A. Baltag, R. Boddy, and S. Smets, Group Knowledge in Interrogative Epistemol-

ogy, Outstanding Contributions to Logic Series, volume dedicated to J. Hintikka, Springer,
forthcoming, 2017.
[3] A. Baltag, Z.Christoff, J. U.Hansen, and S. Smets, Logical models of informational

cascades, Logic Across the University: Foundations and Applications, Proceedings of the Ts-
inghua Logic Conference, vol. 47 (J. van Benthem and F. Liu, editors), College Publications,
Beijing, 2013, pp. 405–432.
[4] A. Baltag, Z. Christoff, R. K. Rendsvig, and S. Smets, Dynamic epistemic logics

of diffusion and prediction in social networks (extended abstract), Pre-Proceedings of LOFT,
2016 (G. Bonanno, W. van der Hoek, and A. Perea, editors), Maastricht, 2016.
[5] F.Liu, J. Seligman, and P.Girard, Logical dynamics of belief change in the community.

Synthese, vol. 191 (2014), no. 11, pp. 2403–2431.
[6] S. Smets and F. R. Velasquez-Quesada, How to make friends: A logical approach to

social group creation,Proceedings of the Sixth International Workshop LORI, 2017 (A. Baltag
and J. Seligman, editors), Maastricht, 2017.

Abstracts of Tutorials

� PATRICIA BOUYER, On the verification of timed systems—and beyond.
LSV, CNRS & ENS Paris-Saclay, 61 avenue du Président Wilson, 94230 Cachan, France.
E-mail: bouyer@lsv.fr.
URL Address: http://www.lsv.fr/∼bouyer/.
Towards the development of more reliable computerized systems, expressive models are

designed, targeting application to automatic verification (model-checking). As part of this
effort, timed automata have been proposed in the early nineties [2] as a powerful and suitable
model to reason about (the correctness of) real-time computerized systems. Timed automata
extend finite-state automata with several clocks, which can be used to enforce timing con-
straints between various events in the system. They provide a convenient formalism and enjoy
reasonably efficient algorithms (e.g., reachability can be decided using polynomial space),
which explains the enormous interest that they provoked in the community of formal meth-
ods. Timed games [4] extend timed automata with a way of modelling systems interacting
with external, uncontrollable components: some transitions of the automaton cannot be
forced or prevented to happen. The reachability problem then asks whether there is a strategy
(or controller) to reach a given state, whatever the (uncontrollable) environment does. This
problem can also be decided, in exponential time.
Timed automata and games are not powerful enough for representing quantities like

resources, prices, temperature, etc. Themore generalmodel of hybrid automata [14] allows for
accurate modelling of such quantities using hybrid variables. The evolution of these variables
follow differential equations, depending on the state of the system, and this unfortunately
makes the reachability problem undecidable, even in the very restricted case of stopwatches
(stopwatches are clocks that can be stopped, and hence, automata with stopwatches only are
the simplest hybrid automata one can think of).
Weighted (or priced) timed automata [3,5] and games [1,9,16] have been proposed in the

early 2000’s as an intermediary model for modelling resource consumption or allocation
problems in real-time systems (e.g., optimal scheduling [6]). As opposed to (linear) hybrid
systems, an execution in a weighted timedmodel is simply one in the underlying timedmodel:
the extra quantitative information is just an observer of the system, and it does not modify
the possible behaviours of the system.
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In this tutorial, we will present basic results concerning timed automata and games,
and we will further investigate the models of weighted timed automata and games. We
will present in particular the important optimal reachability problem: given a target loca-
tion, we want to compute the optimal (i.e., smallest) cost for reaching a target location,
and a corresponding strategy. We will survey the main results that have been obtained on
that problem, from the primary results of [3,5,7,8,13,15,17] to the most recent develop-
ments [10,11]. We will also mention our new tool TiAMo, which can be downloaded at
https://git.lsv.fr/colange/tiamo. We will finally show that weighted timed automata
and games have applications beyond that of model-checking [12].
[1] R. Alur, M. Bernadsky, and P. Madhusudan, Optimal reachability in weighted

timed games, Proceedings of the 31st International Colloquium on Automata, Languages and
Programming (ICALP’04) (J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sannella, editors),
Lecture Notes in Computer Science, vol. 3142, Springer, Turku, Finland, 2004, pp. 122–133.
[2] R. Alur and D. L. Dill, A theory of timed automata. Theoretical Computer Science,

vol. 126 (1994), no. 2, pp. 183–235.
[3] R. Alur, S. La Torre, and G. J. Pappas, Optimal paths in weighted timed automata,

Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01) (M. D. Di Benedetto and A. L. Sangiovanni-Vincentelli, editors), Lecture Notes
in Computer Science, vol. 2034, Springer, Rome, Italy, 2001, pp. 49–62.
[4] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis, Controller synthesis for timed au-

tomata, Proceedings of the IFAC Symposium on System Structure and Control, Elsevier Sci-
ence, 1998, pp. 469–474.
[5] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and

F.Vaandrager,Minimum-cost reachability for priced timed automata, Proceedings of the 4th
International Workshop on Hybrid Systems:Computation and Control (HSCC’01) (M. D. Di
Benedetto and A. L. Sangiovanni-Vincentelli, editors), Lecture Notes in Computer Science,
vol. 2034, Springer, Rome, Italy, 2001, pp. 147–161.
[6] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, Optimal scheduling using priced

timed automata. ACM Sigmetrics Performancs Evaluation Review, vol. 32 (2005), no. 4,
pp. 34–40.
[7] P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin, On the optimal reachability

problem. Formal Methods in System Design, vol. 31 (2007), no. 2, pp. 135–175.
[8] P. Bouyer, T. Brihaye, and N. Markey, Improved undecidability results on weighted

timed automata. Information Processing Letters, vol. 98 (2006), no. 5, pp. 188–194.
[9] P. Bouyer, F. Cassez, E. Fleury, andK. G. Larsen,Optimal strategies in priced timed

game automata, In Proceedings of the 24th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’04) (K. Lodaya and M. Mahajan, editors),
Lecture Notes in Computer Science, vol. 3328, Springer, Chennai, India, 2001, pp. 148–160.
[10] P. Bouyer, M, Colange, and N. Markey, Symbolic optimal reachability in weighted

timed automata, Proceedings of the 28th International Conference on Computer Aided Verifi-
cation (CAV’16)—Part I (S. Chaudhuri and A. Farzan, editors), Lecture Notes in Computer
Science, vol. 9779, Springer, Toronto, Canada, 2016, pp. 513–530.
[11] P. Bouyer, S. Jaziri, and N. Markey, On the value problem in weighted timed games,

Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15)
(L.Aceto andD. de Frutos-Escrig, editors), LIPIcs, vol. 42, Leibniz-Zentrum für Informatik,
Madrid, Spain, 2015, pp. 311–324.
[12] P. Bouyer, N. Markey, N. Perrin, and P. Schlehuber, Timed automata abstrac-

tion of switched dynamical systems using control funnels, Proceedings of the 13th International
Conference on FormalModeling and Analysis of Timed Systems (FORMATS’15) (S. Sankara-
narayanan and E. Vicario, editors), Lecture Notes in Computer Science, vol. 9268, Springer,
Madrid, Spain, 2015, pp. 60–75.
[13] T. Brihaye, V. Bruyère, and J.-F. Raskin, On optimal timed strategies, Proceedings

of the 3rd International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’05) (P. Pettersson and W. Yi, editors), Lecture Notes in Computer Science,
vol. 3821, Springer, Uppsala, Sweden, 2005, pp. 49–64.
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[14] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, What’s decidable about
hybrid automata? Journal of Computer and System Sciences, vol. 57 (1998), no. 1, pp. 94–124.
[15]K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson,

and J. Romijn, As cheap as possible: Efficient cost-optimal reachability for priced timed au-
tomata, Proceedings of the 13th International Conference on Computer Aided Verification
(CAV’01) (G. Berry, H. Comon, and A. Finkel, editors), Lecture Notes in Computer Sci-
ence, vol. 2102, Springer, Paris, France, 2001, pp. 493–505.
[16] S. La Torre, S. Mukhopadhyay, and A. Murano, Optimal-reachability and con-

trol for acyclic weighted timed automata, Proceedings of the 2nd IFIP International Confer-
ence on Theoretical Computer Science (TCS 2002) (R. A. Baeza-Yates, U. Montanari, and
N. Santoro, editors), IFIP Conference Proceedings, vol. 223, Kluwer, Montréal, Canada,
2007, pp. 485–497.
[17] J. I. Rasmussen, K. G. Larsen, and K. Subramani, On using priced timed automata

to achieve optimal scheduling. Formal Methods in System Design, vol. 29 (2006), no. 1,
pp. 97–114.

� MAI GEHRKE, On Stone duality in logic and computer science.
CNRS, France.
E-mail: mgehrke@irif.fr.
URL Address: https://www.irif.fr/∼mgehrke/.
Stone duality shows that the category of bounded distributive lattices∗ is dually equivalent

to a certain category of topological spaces. This duality underlies many connections between
algebra and geometry or topology in mathematics. In logic, it is central to correspondences
between syntax and semantics. More recently, it has been realised that Stone duality plays
a central role in more algorithmic questions such as the decidability of certain classes of
languages in automata theory.
In this three part tutorial, the first lecture will provide an introduction to Stone duality

with an overview of its different versions and their applications. The second lecture will focus
on applications in semantics and will introduce duals of certain functors, such as the Vietoris
functor, which corresponds to classical quantification. The third lecture will concentrate on
applications in the theory of formal languages and, in particular, on the notion of ultrafilter
equations as a tool for separating complexity classes. The articles [1] and [2], which are geared
to computer scientists rather than logicians, provide a survey on Stone duality and a gentle
introduction to the applications in formal language theory, respectively.

∗The algebras corresponding to the “and”, “or”, “true”, and “false” fragment of classical
propositional logic.
[1]M. Gehrke, Duality in computer science, Logic in Computer Science (M. Grohe,

E. Koskinen, and N. Shankar, editors), ACM, Columbia University, New York City, NY,
USA, 2016, pp. 12–26.
[2]M. Gehrke and A. Krebs, Stone duality for languages and complexity. Association

for Computing Machinery Special Interest Group on Logic (ACM SigLog) and Computation
News, vol. 4, no. 2, pp. 23–53.

Abstracts of the Joint Session of CSL2017 and LC2017

� VERÓNICA BECHER, Normal numbers, logic and automata.
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires & CONICET. Pabellón I, Ciudad Universitaria, C1428EGA Buenos Aires,
Argentina.
E-mail: vbecher@dc.uba.ar.
URL Address: http://www.dc.uba.ar/people/profesores/becher/.
Flip a coin a large number of times and roughly half of the flips will come up heads and half

will come up tails.Normalitymakes analogous assertions about the digits in the expansion of
a real number. Precisely, let b be an integer greater than or equal to 2. A real number is normal
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to base b if each of the digits 0, 1, . . . , b− 1 occurs in its expansion with the same asymptotic
frequency 1/b, each of the blocks of two digits occurs with frequency 1/b2, each of the blocks
of three digits occurs with frequency 1/b3, and so on, for every block length. A number is
absolutely normal if it is normal to every base. Émile Borel [10] defined normality more than
one hundred years ago to formalize a basic feature of randomness for real numbers. Many
of his questions are still open, such as whether any of �, e, or

√
2 is normal in some base, as

well as his conjecture that the irrational algebraic numbers are absolutely normal [11].
In this talk I will highlight some theorems on normal numbers proved with tools from

computability theory, automata theory, and descriptive set theory and I will point out some
open questions.
From computability theory: Alan Turing was the first. He gave an effective version of

Borel’s theorem showing that almost all numbers (in the sense of Lebesgue measure) are
absolutely normal. Based on this construction Turing gave the first algorithm to compute
an absolutely normal number [4,23]. A current research line aims to effectivize results in
number theory and give algorithms to compute absolutely normal numbers that have also
some other mathematical properties [6,12,18,22]. It is an open question whether there exists
a fast algorithm that computes an absolutely normal number with fast speed of convergence
to normality [7,17,20].
From automata theory: To regard normality from the point of view of finite automata we

must consider expansions in a single base. So, we fix a base andwe speak of normal sequences.
V. Agafonov [1] established that a sequence is normal exactly when any subsequence selected
by a finite automata is normal (see also [19]). Besides, normal sequences admit characteri-
zations analogous to those for Martin-Löf random sequences [15], but using finite automata
instead of Turing machines. C.P. Schnorr and H. Stimm [21] established that a sequence is
normal exactly when no martingale defined by a finite automaton can make infinite profit.
Dai, Lathrop, Lutz, and Mayordomo [14] obtained that a sequence is normal exactly when
it can not be compressed by one-to-one finite automata with input and output (finite trans-
ducer). This characterization holds for various enrichments of finite automata [3,13]. An
open question is whether normal sequences can be compressed by deterministic push-down
automata.
From descriptive set theory. The set of real numbers normal to base 2, as a subset of

the set of all real numbers, is complete at the third effective level of the Borel Hierar-
chy [16]. So is the set of absolutely normal numbers [5]. This gives another proof that
the set of absolutely normal real numbers is different from the set of Martin-Löf ran-
dom numbers, since this is just complete at the second level of the Borel Hierarchy. The
set of real numbers that are normal to some base is complete at the fourth level of the
Borel Hierarchy, both effective and noneffective [8]. This implies that there is no logical
dependence between normality to different bases, other than multiplicative dependence.
Recently Airey, Mance, and Jackson [2] proved that the subset of real numbers that pre-
serve normality to a given base under addition is complete at the third level of the Borel
Hierarchy.
[1] V. N. Agafonov, Normal sequences and finite automata. Soviet Mathematics Doklady,

vol. 9 (1968), pp. 324–325.
[2]D. Airey, B.Mance, and S. Jackson, Some complexity results on sets related to normal

numbers, 2016, arXiv:1609.08702.
[3] V.Becher,O.Carton, andP.A.Heiber,Normality and automata. Journal of Computer

and System Sciences, vol. 81 (2015), no. 8, pp. 1592–1613.
[4] V. Becher, S. Figueira, and R. Picchi, Turing’s unpublished algorithm for normal

numbers. Theoretical Computer Science, vol. 377 (2007), pp. 126–138.
[5] V. Becher, P. A. Heiber, and T. Slaman, Normal numbers and the Borel hierarchy.

Fundamenta Mathematicae, vol. 226 (2014), pp. 63–77.
[6] , A computable absolutely normal Liouville number.Mathematics of Computa-

tion, vol. 84 (2015), no. 296, pp. 2939–2952.
[7] V. Becher, A.-M. Scheerer, and T. Slaman, On absolutely normal numbers and their

discrepancy estimate. Acta Arithmetica, to appear, 2017, arXiv:1702.04072.
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[8] V. Becher and T. Slaman, On the normality of numbers to different bases. Journal of
the London Mathematical Society, vol. 90 (2014), no. 2, pp. 472–494.
[9] V. Becher and S. Yuhjtman, On absolutely normal and continued fraction normal

numbers, 2017, arXiv:1704.03622.
[10] É. Borel, Les probabilités d’enombrables et leurs applications arithmétiques.

Supplemento di Rendiconti del Circolo Matematico di Palermo, vol. 27 (1909),
pp. 247–271.
[11] , Sur les chiffres décimaux

√
2 et divers problémes de probabilités en chaı̂ne.

Comptes rendus de l’Académie des Sciences de Paris, vol. 230 (1950), pp. 591–593.
[12] C. Calude and L. Staiger, Liouville, computable, Borel normal and Martin-Löf ran-

dom Numbers. Theory of Computing Systems, to appear, 2017.
[13] O. Carton and P. A. Heiber, Normality and two-way automata. Information and

Computation, vol. 241 (2015), pp. 264–276.
[14] J. Dai, J. Lathrop, J. Lutz, and E. Mayordomo, Finite-state dimension. Theoretical

Computer Science, vol. 310 (2004), pp. 1–33.
[15] R.Downey andD.Hirschfeldt,Algorithmic Randomness and Complexity, Springer,

2010.
[16]H. Ki and T. Linton, Normal numbers and subsets of N with given densities.

Fundamenta Mathematicae, vol. 144 (1994), pp. 163–179.
[17] J. Lutz and E. Mayordomo. Computing absolutely normal numbers in nearly linear

time, 2016, arXiv:1611.05911.
[18]M.Madritsch, A.M. Scheerer, andR. Tichy, Computable absolutely Pisot normal

numbers. Acta Aritmetica, to appear, 2017, arXiv:1610.06388.
[19]W.Merkle and J. Reimann, Selection functions that do not preserve normality. Theory

of Computing Systems, vol. 39 (2006), no. 5, pp. 685–697.
[20] A.-M. Scheerer, Computable absolutely normal numbers and discrepancies.

Mathematics of Computation, to appear, 2017, arXiv:1511.03582.
[21] C.P.SchnorrandH.Stimm,EndlicheAutomatenundZufallsfolgen.Acta Informatica,

vol. 1 (1972), pp. 345–359.
[22] R.Stoneham,Ageneral arithmetic construction of transcendental non-Liouville normal

numbers from rational fractions. Acta Arithmetica, vol. XVI (1970), pp. 239–253. Errata in
Acta Arithmetica vol. XVII (1971).
[23] A. Turing, A note on normal numbers, Collected Works of Alan M. Turing, Pure

Mathematics, North Holland, 1992, pp. 117–119. Notes of editor pp. 263–265.

Abstracts of the Special Session on
Category theory and type theory in honor of
Per Martin-Löf on his 75th birthday

� THIERRY COQUAND, Univalent Type Theory.
Chalmers tekniska högskola, Data- och informationsteknik, University of Gothenburg,
Rännvägen 6, 41296 Göteborg, Sweden.
E-mail: Thierry.Coquand@cse.gu.se.
The notion of sheaf models, which can be traced back to the studies of Beth and Kripke,

is an important tool for metamathematical analysis of higher order logic. The problem for
the generalization of such interpretations to dependent types is for the interpretation of
universes, and this is precisely for this reason, in another context, that the notion of stacks
was introduced. I will present a possible generalization for models of univalent type theory,
i.e., dependent type theorywhere the univalence axiom holds, andwhere we have an operation
of propositional truncation. This can be used in particular to show that such a type theory is
compatible with continuity principles, and that it does not prove the principle of countable
choice.
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� RICHARDGARNER, Polynomials and theories.
Department of Mathematics, Macquarie University, NSW 2109, Australia.
E-mail: richard.garner@mq.edu.au.
A basic tenet of Martin-Löf type theory [2] is that types are inductively generated by

their elements. This idea finds clearest expression in theW-types and the more general tree
types [3]; categorically, these admit characterisation as initial algebras for certain polynomial
endofunctors of the category of types over a given context. The calculus of polynomial endo-
functors is interesting in its own right, with application in combinatorics, algebraic topology,
and computer science; a key organising principle is that polynomial functors between the
slices of a locally cartesian closed category form into a bicategory whose composition is given
by substitution of multivariate polynomials [1].
The notion of bicategory also crops up in a very deep observation of Walters [4]: namely,

that the theory of categories enriched over a monoidal category admits generalisation to
a theory of categories enriched over a bicategory. This is closely bound up with what is
sometimes called indexed or variable category theory, that is, category theory relative to
a base category that acts as a surrogate for the category of sets. In this talk, we consider
the natural question: what are categories enriched over the bicategory of polynomials? The
answer turns out to be quite interesting: they encode notions of Lawvere theory and prop
appropriate to the indexed setting.
[1]N. Gambino and J. Kock, Polynomial functors and polynomial monads,Mathematical

Proceedings of the Cambridge Philosophical Society, vol. 154 (2013), pp. 153–192.
[2] P. Martin-Löf, Intuitionistic type theory, Studies in Proof Theory, vol. 1, 1984.
[3]K. Petersson and D. Synek, A set constructor for inductive sets in Martin-Löf’s type

theory, Lecture Notes in Computer Science, vol. 389, 1989, pp. 128–140.
[4] R. F. C. Walters, Sheaves and Cauchy-complete categories. Cahiers de Topologie et

Geométrie Différentielle Catégoriques, vol. 22 (1981), pp. 283–286.

� ANDRÉ JOYAL,On some categorical aspects of homotopy type theory.
Département de mathématiques, UQAM, C.P. 8888, Succursale Centre-ville, PK-5151,
Montréal, QC H3C 3P8, Canada.
E-mail: joyal.andre@uqam.ca.
Few things can better illustrate the unity of mathematics than the homotopy interpretation

ofMartin-Löf type theory (Awodey-Warren, Voevodsky) and the discovery of the univalence
axiom (Voevodsky). Homotopy Type Theory is the new field of mathematics springing from
these discoveries. There are good evidences that Hott can contribute effectively to homotopy
theory and to higher topos theory: nontrivial homotopy groups of spheres were computed by
Brunerie and a new proof of a fundamental result of homotopy theory (the Blakers–Massey
theorem) was discovered (and verified in Agda) by Favonia, Finster, Licata, and Lumsdane.
The theorem was generalised by Anel, Biedermann, Finster, and the author, and applied
to Goodwillie’s calculus [arxiv/1703.09050/1703.09632]. The [ABFJ] articles are written
in mathematical creole, a blend of homotopy theory, infty-category theory, category theory
and type theory, but a formal verification in Agda by Finster and Licata is on the way. It
is clear that category theory serves as an intermediate between type theory and homotopy
theory [ALV/arxiv/1705.04310][CCHM/arxiv/1611.02108][LS/arxiv/1705.07088]. The
basic aspects of the theory of infty-categories were recently formalised in Hott by Riehl and
Shulman. The syntactic category of type theory happens to be a path category in the sense of
Van den Berg. The notion of tribe, introduced independently by Shulman and the author, is
somewhat simpler, but not every path category is a tribe. However, every fibration category
is equivalent (in the sense of Dwyer–Kan) to a tribe by a construction of Cisinski and by
the work of Szumilo and of Kapulkin. I will sketch the homotopy theory of tribes and of
simplicial tribes.

� VLADIMIR VOEVODSKY,Models, interpretations and the initiallity conjectures.
School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA.
E-mail: vladimir@ias.edu.
URL Address: https://www.math.ias.edu/vladimir/home.
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Work on proving consistency of the intensional Martin-Löf type theory with a sequence
of univalent universes (MLTT+UA) led to the understanding that in type theory we do not
know how to construct an interpretation of syntax from a model of inference rules. That is,
we now have the concept of a model of inference rules and the concept of an interpretation
of the syntax and a conjecture that implies that the former always defines the latter. This
conjecture, stated as the statement that the term model is an initial object in the category
of all models of a given kind, is called the Initiallity Conjecture. In my talk I will outline
the various parts of this new vision of the theory of syntax and semantics of dependent type
theories.

Abstracts of invited talks in the Special Session on
Computability

� VERÓNICABECHER, JANREIMANN, ANDTHEODOREA. SLAMAN, Irrationality
exponents and effective Hausdorff dimension.
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires & CONICET. Pabellón I, Ciudad Universitaria, C1428EGA Buenos Aires,
Argentina.
E-mail: vbecher@dc.uba.ar.
Department of Mathematics, Pennsylvania State University, 318B McAllister, University
Park, PA 16802, USA.
E-mail: jan.reimann@psu.edu.
Department of Mathematics, The University of California, Berkeley, 719 Evans Hall #3840,
Berkeley, CA 94720-3840, USA.
E-mail: slaman@math.berkeley.edu.
We generalize the classical theorem by Jarnı́k and Besicovitch on the irrationality expo-

nents of real numbers and Hausdorff dimension. Let a be any real number greater than
or equal to 2 and let b be any non-negative real less than or equal to 2/a. We show that
there is a Cantor-like set with Hausdorff dimension equal to b such that, with respect to its
uniform measure, almost all real numbers have irrationality exponent equal to a. We give an
analogous result relating the irrationality exponent and the effective Hausdorff dimension
of individual real numbers. We prove that there is a Cantor-like set such that, with respect
to its uniform measure, almost all elements in the set have effective Hausdorff dimension
equal to b and irrationality exponent equal to a. In each case, we obtain the desired set as a
distinguished path in a tree of Cantor sets.

� KLAUS MEER, Generalized finite automata over the real numbers.
Computer Science Department, Brandenburg University of Technology, Platz der Deutschen
Einheit 1, D-03046 Cottbus, Germany.
E-mail: meer@b-tu.de.
Gandhi, Khoussainov, and Liu introduced and studied a generalized model of finite

automata able to work over arbitrary structures. The model mimics finite automata over
finite structures but has an additional ability to perform in a restricted way operations
attached to the structure under consideration. As one relevant area of investigations for this
model Gandhi et al. identified studying the new automata over uncountable structures such
as the real and complex numbers.
In the talk we pick up this suggestion and consider their automata model as a finite

automata variant in the BSS model of real number computation. We study structural prop-
erties as well as (un-)decidability results for several questions inspired by the classical finite
automata model.
This is joint work with A. Naif.

� ARNO PAULY, Applications of computability theory in topology.
Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium.
E-mail: Arno.M.Pauly@gmail.com.
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Thenotionof the point degree spectrum links�-homeomorphismtypes of second-countable
spaces to substructures of the enumeration degrees.Using the framework of computable anal-
ysis, we can extend Turing reducibility from Cantor space to represented spaces:

Definition 1. We say that x ∈ X is reducible to y ∈ Y (denoted xX ≤T yY), iff there
exists a partial computable function f: ⊆ Y → X with f(y) = x.
If X is second-countable, then the degrees of its points form a substructure of the enumer-

ation degrees, and this substructure (up to products with N and relativization) characterizes
the �-homeomorphism type of X :

Definition 2. We say that X and Y are �-homeomorphic, if there are partitions X =⋃
i∈N
Xi and Y =

⋃
i∈N
Yi such that Xi and Yi are homeomorphic for all i ∈ N.

Motivated by a connection to Banach space theory, Jayne had raised the question how
many �-homeomorphism types of uncountable Polish spaces there are. Arguments from
dimension theory establish that Cantor space 2� and the Hilbert cube [0, 1]� are not �-
homeomorphic, and all other well-known uncountable Polish spaces are �-homeomorphic
to one of these. Whether there are more �-homeomorphism types has been illusive for a long
time. Using recursion-theoretic arguments and the point degree spectrum connection, we can
establish:
Theorem 3. There are uncountably many �-homeomorphism types of uncountable Polish

spaces.
The framework of point degree spectra enables further applications of computability

theory to topology, and also applications in the reverse direction.
This is joint work with Takayuki Kihara. A preprint is available as [2]. A precursor of this

approach is found in [3] by Joseph S. Miller.
[1] J. E. Jayne, The space of class a Baire functions. Bulletin of the AmericanMathematical

Society, vol. 80 (1974), pp. 1151–1156.
[2] T. Kihara and A. Pauly, Point degree spectra of represented spaces, 2014,

arXiv:1405.6866.
[3] J. S. Miller, Degrees of unsolvability of continuous functions. The Journal of Symbolic

Logic, vol. 69 (2004), no. 2, pp. 555–584.

� MARIYA I. SOSKOVA, Characterizing the continuous degrees.
Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr, Madison,
WI 53703, USA.
E-mail: msoskova@math.wisc.edu.
The continuous degrees were introduced by J. Miller [3] as a way to capture the effective

content of elements of computable metric spaces. They properly extend the Turing degrees
and naturally embed into the enumeration degrees. Although nontotal (i.e., non-Turing)
continuous degrees exist, they are difficult to construct: every proof we know invokes a
nontrivial topological theorem.
In 2014 Cai, Lempp, Miller, and Soskova discovered an unusual structural property of

the continuous degrees: if we join a continuous degree with a total degree that is not below
it then the result is always a total degree. We call degrees with this curious property almost
total. We prove that the almost total degrees coincide with the continuous degrees. Since the
total degrees are definable in the partial order of the enumeration degrees [1], this implies
that the continuous degrees are also definable. Applying earlier work of J. Miller [3] on the
continuous degrees, this shows that the relation “PA above” on the total degrees is definable
in the enumeration degrees.
In order to prove that every almost total degree is continuous, we pass through another

characterization of the continuous degrees that slightly simplifies one ofKihara and Pauly [2].
Like them, we identify our almost total degree as the degree of a point in a computably regular
space with a computable dense sequence, and then we apply the effective version of Urysohn’s
metrization theorem (Schröder [4]) to reveal our space as a computable metric space.
This is joint work with Uri Andrews, Greg Igusa, and Joseph Miller.
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[1] M. Cai, H. A.Ganchev, S. Lempp, J. S.Miller, and M. I. Soskova, Defining totality
in the enumeration degrees. Journal of the American Mathematical Society, vol. 29 (2016),
no. 4, pp. 1051–1067.
[2] T. Kihara and A. Pauly, Point degree spectra of represented spaces, submitted.
[3] J. S. Miller, Degrees of unsolvability of continuous functions. The Journal of Symbolic

Logic, vol. 69 (2004), no. 2, pp. 555–584.
[4]M. Schröder, Effective metrization of regular spaces, Computability and Complexity

in Analysis, vol. 235 (J.Wiedermann, K.-I. Ko, A. Nerode, M. B. Pour-El, and K.Weihrauch,
editors), Informatik Berichte, 1998, pp. 63–80.

� KEITAYOKOYAMA,On the first-order strength ofRamsey’s theorem in reversemathematics.
School of Information Science, Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa 923-1292, Japan.
E-mail: y-keita@jaist.ac.jp.
Deciding the first-order part of Ramsey’s theorem for pairs is one of the important prob-

lems in reversemathematics. In this talk, I will overview the recent developments of this study.
To decide the first-order part, a standard approach is proving Π11-conservation over some
induction or bounding axiom by showing �-extension property. In [1], Cholak/Jockusch/
Slaman showedWKL0+RT22+IΣ

0
2 is aΠ

1
1-conservative extensionof IΣ

0
2 andWKL0+RT2+IΣ03

is a Π11-conservative extension of IΣ
0
3, and they posed whether they are Π

1
1-conservative over

BΣ02 and BΣ
0
3, respectively. For RT

2, the answer is yes, which is shown by sharpening the argu-
ment in [1] (see [4]). For RT22, the question is more difficult. Chong/Slaman/Yang [2] showed
that a slightly weaker principle CAC is Π11-conservative over BΣ

0
2 by using �-extension prop-

erty. On the other hand, it is now known thatWKL0 + RT22 is actually Π
0
3-conservative over

BΣ02 by using the indicator argument [3]. In fact, one can characterize the first-order part of
WKL0 + RT22 by generalizing the indicator argument used in [3].
[1] P. A. Cholak, C.G. Jockusch, andT.A. Slaman,On the strength of Ramsey’s theorem

for pairs. The Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 1–55.
[2] C.-T. Chong, T. A. Slaman, and Y. Yang, Π11-conservation of combinatorial princi-

ples weaker than Ramsey’s Theorem for pairs. Advances in Mathematics, vol. 230 (2012),
pp. 1060–1077.
[3] L. Patey andK. Yokoyama, The proof-theoretic strength of Ramsey’s theorem for pairs

and two colors, submitted.
[4] T. A. Slaman and K. Yokoyama, The strength of Ramsey’s theorem for pairs and

arbitrary many colors, draft.

Abstracts of invited talks in the Special Session on
History of Logic

� PETER ØHRSTRØM, The rise of temporal logic.
Department of Communication and Psychology, Aalborg University, Rendsburggade 14,
9000 Aalborg, Denmark.
E-mail: poe@hum.aau.dk.
A. N. Prior (1914–1969) was the founder of modern temporal logic. In the 1950s and 1960s

he showed that tense-logic can be used in order to keep track of the past and of the future
possibilities in a way which makes it possible to reason systematically on temporal matters.
From the early 1930s Prior had been an active member of the Presbyterian community in
New Zealand. He became a specialist in the debates regarding the logical tension between
the doctrine of divine foreknowledge and the doctrine of human freedom. He demonstrated
how this logical problem can be formalized and analysed in terms of his tense-logic. He
found great inspiration in the studies of Aristotle, Diodorus, Thomas Aquinas, William of
Ockham, C.S. Peirce, Jan Łukasiewicz, Saul Kripke, and several others. He argued that in
the discussion concerning divine foreknowledge and human freedom there are just a few
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reasonable positions. In general Prior demonstrated that temporal logic can be used to
analyze the notion of time itself as well as fundamental existential problems, such as the
problem of determinism versus freedom of choice.

� JAN VON PLATO, Gödel’s reading of Gentzen’s first consistency proof for arithmetic.
University of Helsinki, 00014 Helsinki, Finland.
E-mail: jan.vonplato@helsinki.fi.
A shorthand notebook of Gödel’s from late 1935 shows that he read Gentzen’s original,

unpublished consistency proof for arithmetic. By 1941, many such notebooks were filled
with various formulations of the result, one with explicit use of choice sequences, and a
generalization based on an induction principle for functionals of finite type over Baire space.
Gödel’s main aim was to extend Gentzen’s result into a consistency proof for analysis. In the
lecture, an overview of these so far unknown results about consistency proofs for arithmetic
will be presented.

Abstracts of invited talks in the Special Session on
Model Theory

� ZANIAR GHADERNEZHAD, Nonamenablility of automorphism groups of generic
structures.
Abteilung für Mathematische Logik, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1,
D-79104 Freiburg im Breisgau, Germany.
E-mail: zaniar.ghadernezhad@math.uni-freiburg.de.
A group G is amenable if every G-flow has an invariant Borel probability measure. Well-

known examples of amenable groups are finite groups, solvable groups. and locally compact
abelian groups. Kechris, Pestov, and Todorcevic established a very general correspondence
which equates a stronger form of amenability, called extreme amenability, of the automor-
phism group of an ordered Fraı̈ssé structure with the Ramsey property of its finite sub-
structures. In the same spirit Moore showed a correspondence between the automorphism
groups of countable structure and a structural Ramsey property, which englobes Følner’s ex-
isting treatment. In this talk we will consider automorphism groups of certain Hrushovski’s
generic structures. We will show that they are not amenable by exhibiting a combinatorial/
geometrical criterion which forbids amenability.

� FRANZISKA JAHNKE, NIP fields and henselianity.
WWUMünster, Einsteinstr. 62, 48149 Münster, Germany.
E-mail: franziska.jahnke@wwu.de.
NIP is a model-theoretic dividing line which was introduced in Shelah’s classification

theory programme. As with any combinatorial property, it is a natural question to ask
whether it corresponds to some well-known algebraic notion when one considers the class of
NIP fields. An open conjecture by Shelah states that every NIP field is either real closed or
separably closed or ‘like the p-adic numbers’. In this talk, I will explain the conjecture and
discuss some recent developments around it.

� VINCENZOMANTOVA, Transseries as surreal analytic functions.
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: v.l.mantova@leeds.ac.uk.
Transseries such as LE series arise when dealing with certain asymptotic expansions of

real analytic function. Most transseries, though, are not convergent and cannot represent
real analytic functions, if only just for cardinality reasons.
On the other hand, we can show that LE series do induce germs of nonstandard analytic

functions on the surreal line.More generally, call “omega-series” the surreal numbers that can
be generated from the real numbers and the ordinal omega by closing under exponentiation,
logarithm, and infinite sum. Then omega-series form a proper class of transseries including
LE series.
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It turns out that all omega-series induce (germs of) surreal analytic functions. Moreover,
they can be composed and differentiated in a way that is consistent with their interpretation
as functions, extending the already known composition and derivation of LE series, and the
derivation coincides with the simplest one on surreal numbers.
This is joint work with A. Berarducci.

� IVAN TOMAŠIĆ, Enriching our view of model theory of fields with operators.
School of Mathematical Sciences, QueenMaryUniversity of London, London E1 4NS, UK.
E-mail: i.tomasic@qmul.ac.uk.
A naı̈ve approach to developing the methods of homological algebra for difference and

differential fields, rings and modules quickly encounters numerous obstacles, such as the
failure of the hom-tensor duality.
We will describe a categorical framework that overcomes these difficulties, allowing us to

transfer most classical techniques over to the difference/differential context.
We will conclude by applying these techniques to study the cohomology of different

algebraic groups and discuss potential model-theoretic consequences.

Abstracts of invited talks in the Special Session on
Philosophical Logic

� ALEXANDER C. BLOCK, LUCA INCURVATI, AND BENEDIKT LÖWE, Maddian
interpretations and their derived notions of restrictiveness.
Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg,
Germany.
E-mail: alexander.block@uni-hamburg.de.
Institute for Logic, Language andComputation,Universiteit vanAmsterdam,Postbus 94242,
1090 GE Amsterdam, The Netherlands.
E-mail: l.incurvati@uva.nl.
Institute for Logic, Language andComputation,Universiteit vanAmsterdam,Postbus 94242,
1090 GE Amsterdam, The Netherlands; Fachbereich Mathematik, Universität Hamburg,
Bundesstraße 55, 20146 Hamburg, Germany; Churchill College, University of Cambridge,
Storey’s Way, Cambridge CB3 0DS, England.
E-mail: b.loewe@uva.nl.
Penelope Maddy’s naturalistic approach to philosophy of mathematics aims to explain

why the research community embraces some candidates for axiomatic foundations of math-
ematics and rejects others. In [5], she argued that since set theory aims to be a foundation
for mathematics, it should conform to the methodological maxim maximize and therefore,
axiomatic set theories that are restrictive ought to be rejected. She then went on to define a
formal notion of restrictiveness, based on a fixed class of interpretations. In [1,3,4], this notion
was discussed and a number of technical and substantial issues were raised. Following [2],
this talk will present the general framework for interpretations and their derived notions of
restrictiveness and then go on to discuss a symmetrised version of Maddy’s original notion
that takes both inner model and outer model constructions into account and can deal with
the substantial issues raised in [4].
[1] J. D. Hamkins, A multiverse perspective on the axiom of constructibility, Infinity and

Truth (C. Chong, Q. Feng, T. A. Slaman, and W. H. Woodin, editors), Lecture Notes Se-
ries, Institute for Mathematical Sciences, National University of Singapore, vol. 25, World
Scientific, Singapore, 2013, pp. 25–45.
[2] L. Incurvati and B. Löwe, Restrictiveness relative to notions of interpretation. The

Review of Symbolic Logic, vol. 9 (2016), no. 2, pp. 238–250.
[3] B. Löwe, A first glance at non-restrictiveness. Philosophia Mathematica, vol. 9 (2001),

pp. 347–354.
[4] , A second glance at non-restrictiveness. Philosophia Mathematica, vol. 11

(2003), pp. 323–331.
[5] P. Maddy, Naturalism in Mathematics, Clarendon Press, 1997.
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� GIAMBATTISTA FORMICA,On Hilbert’s axiomatic method.
Faculty of Philosophy, Pontifical Urbaniana University, Via Urbano VIII, 16, 00165 Roma,
Italy.
E-mail: g.formica@urbaniana.edu.
Hilbert’s methodological reflection certainly shaped a new image of the axiomatic method.

However, the discussion on the nature of this method is still open. There are (1) those who
have seen it as a synthetic method, i.e., a method to derive theorems from axioms already
and arbitrarily established; (2) others have counter-argued in favor of its analytical nature,
i.e., given a particular scientific field the method is useful to reach the conditions (axioms)
for the known results of the field (theorems) and to rightly place both in a well-structured
theory; (3) still others have underlined the metatheoretical nature of the axiomatic reflection,
i.e., the axiomatic method is the method to verify whether axioms already identified satisfy
properties such as completeness, independence, and consistency.
Each of these views has highlighted aspects of the way Hilbert conceived and prac-

ticed the axiomatic method, so they can be harmonized into an image better suited to
the function the method was called to fulfill: i.e., deepening the foundations of given scien-
tific fields, to recall one of his well-known expressions. Considering some textual evidence
from early and late writings, I shall argue that the axiomatic method is in Hilbert’s hands
a very flexible tool of inquiry and that to lead analytically to an axiomatic well-structured
theory it needs to include dynamically both synthetic procedures and metatheoretical re-
flections. Therefore, in Hilbert’s concern the expression “deepening the foundations” de-
notes the whole set of considerations, permitted by the axiomatic method, that allow the
theoretician first to identify and then to present systems of axioms for given scientific
fields.

� MICHÈLE FRIEND, Reasoning abhorrently.
Department of Philosophy, George Washington University, 801 22nd St. N.W., Washington,
DC 20052, USA.
E-mail: michele@gwu.edu.
We reason in different ways on different occasions. Sometimes it is suitable to reason

classically, sometimes constructively, and sometimes paraconsistently. We might insist on,
prefer, be trained in, or find familiar, some forms of reasoning. Each form will enjoy its
own suite of formal representations. Some formal representations are clearly extensions
of others, for example, we can add modal operators to classical propositional logic. But
sometimes we are called upon to reason in a way that is to-our-lights: incorrect, unfa-
miliar, disagreeable, or perverse; call these ‘abhorrent’ for short. At such times, to allay
the threat of incorrectness, triviality, or absurdity, we reason hypothetically, or “in quo-
tation marks”. We compartmentalise the reasoning in some way. The tractable technical
question is how to formally represent how we do this in such a way as to ultimately fend
from whatever we find abhorrent. The deeper, philosophical question is how to understand
what it is that we are doing when in the process of orchestrating such reasoning and car-
rying out such reasoning. After all, it is only later that we model such reasoning using a
formal or semiformal representation that reconstructs the reasoning to show that it was
legitimate.

� JULIETTE KENNEDY, Squeezing arguments and strong logics.
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68 (Gustaf
Hällströmin katu 2b) FI-00014 Helsinki, Finland.
E-mail: juliette.kennedy@helsinki.fi.
G. Kreisel has suggested that squeezing arguments, originally formulated for the infor-

mal concept of first order validity, should be extendable to second order logic, although
he points out obvious obstacles. We develop this idea in the light of more recent ad-
vances and delineate the difficulties across the spectrum of extensions of first order log-
ics by generalised quantifiers and infinitary logics. In particular we argue that if the relevant
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informal concept is read as informal in the precise sense of being untethered to a particular
semantics, then the squeezing argument goes through in the second order case. Considera-
tion of weak forms of Kreisel’s squeezing argument leads naturally to reflection principles of
set theory.
This is joint work with Jouko Väänänen.

� SARA NEGRI, Reasoning with counterfactual scenarios: from models to proofs.
Department of Philosophy, University of Helsinki, Unioninkatu 40A, Finland.
E-mail: sara.negri@helsinki.fi.
Ever since the sophisticated analysis provided by David Lewis, counterfactuals have been

a challenge to logicians because they were shown to escape both the traditional truth-valued
semantics and the standard possible worlds semantics. Lewis’ semantics will be here gener-
alized and shown capable of covering, in a modular way, all the systems for counterfactuals
presented in [2]. On its basis, and along the methodology of [4], proof systems are devel-
oped that feature a transparent justification of their rules [3], good structural properties,
analyticity, direct completeness, and decidability proofs [1,5,6].
[1]M.Girlando, S. Negri, andN. Olivetti, Labelled sequent calculi based on neighbour-

hood semantics for PCL and its extensions, ms.
[2]D. Lewis, Counterfactuals, Blackwell, 1973.
[3] S. Negri, Non-normal modal logics: A challenge to proof theory, The Logica Yearbook

2016 (P. Arazim and T. Lavička, editors), College Publications, 2017.
[4] , Proof theory for non-normal modal logics: The neighbourhood formalism and

basic results. IfCoLog Journal of Logics and their Applications, vol. 4 (2017), pp. 1241–1286.
[5] S. Negri andN. Olivetti, A sequent calculus for preferential conditional logic based on

neighbourhood semantics,Automated Reasoning with Analytic Tableaux and Related Methods
(H. De Nivelle, editor), Lecture Notes in Computer Science, vol. 9323, Springer, 2015,
pp. 115–134.
[6] S. Negri and G. Sbardolini, Proof analysis for Lewis counterfactuals. The Review of

Symbolic Logic, vol. 9 (2016), no. 1, pp. 44–75.

� DAVIDE RIZZA,How to make an infinite decision.
School of Politics, Philosophy, Language and Communication Studies, University of East
Anglia, Norwich, UK.
E-mail: d.rizza@uea.ac.uk.
URL Address: https://eastanglia.academia.edu/DavideRizza.
Infinite exchange problems arise when certain computable features of finite iterations

of decisions are studied over an actual (usually countable) infinity of acts. In presence of
standard sequential reasoning, as familiar from real analysis, it looks as if infinite iterations
lead to the loss of features typical of finite iterations. This conclusion, however, depends
on the lack of a proper, computationally amenable, approach to actually infinite iterations
of decisions. Once it is possible to offer a numerical specification of the infinitely large
number of iterations concerned, it becomes possible to compute features that sequential
reasoning could not represent. This gives rise to a uniform, elementary resolution of puzzles
concerning infinite decisions (notably those in [2]). In this article I present a fruitful approach
that achieves this goal, due to Yaroslav Sergeyev, informally presented in [3] and axiomatised
in the context of second order predicative arithmetic in [1].
[1]G. Lolli, Metamathematical investigations on the theory of grossone. Applied Mathe-

matics and Computation, vol. 255 (2015), pp. 3–14.
[2]M. Scott and A. Scott, Infinite exchange problems. Theory and Decision, vol. 57

(2005), no. 4, pp. 397–406.
[3] Y. D. Sergeyev, A new applied approach for executing computations with infinite and

infinitesimal quantities. Informatica, vol. 19 (2008), no. 4, pp. 567–596.
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Abstracts of invited talks in the Special Session on
Proof Theory

� FERNANDO FERREIRA, A herbrandized functional interpretation of classical first-order
logic.
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, Campo
Grande, Ed. C6, Piso 2, 1749-016 Lisboa, Portugal.
E-mail: fjferreira@fc.ul.pt.
We define a (cumulative) functional interpretation of first-order classical logic and show

that each theorem of first-order logic is naturally associated with a certain scheme of tau-
tologies. Herbrand’s theorem is obtained as a special case. The schemes are given through
formulas of a language of finite-type logic defined with the help of an extended typed com-
binatory calculus that associates to each given type the type of its nonempty finite subsets.
New combinators and reductions are defined, the properties of strong normalization and
confluence still hold and, in reality, they play a crucial role in defining the above mentioned
schemes. The functional interpretation is dubbed “cumulative” because it enjoys a mono-
tonicity property now so characteristic of many recently defined functional interpretations.
Joint work with Gilda Ferreira in [1].
[1] F. Ferreira and G. Ferreira, A herbrandized functional interpretation of classical

first-order logic. Archive for Mathematical Logic, vol. 56 (2017), no. 5–6, pp. 523–539.

� ANTON FREUND, Type-two well-ordering principles and Π11-comprehension.
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England.
E-mail: A.J.Freund14@leeds.ac.uk.
A well-ordering principle of type one consists of a construction which transforms linear

orders into linear orders, together with the assertion that well-foundedness is preserved. It is
known that many second order axioms of complexity Π12 (e.g., arithmetical comprehension
and arithmetical transfinite recursion) are equivalent to natural well-ordering principles of
type one. Montalbán [2, Section 4.5] and Rathjen [3, Section 6] have conjectured that Π11-
comprehension, which is a Π13-statement, corresponds to a well-ordering principle of type
two: one that transforms each well-ordering principle of type one into a well-order. I will
present recent progress [1] towards this conjecture.
[1] A. Freund, A higher Bachmann–Howard principle, arXiv:1704.01662, preprint.
[2] A. Montalbán, Open questions in reverse mathematics, this Bulletin, vol. 17 (2011),

pp. 431–454.
[3]M. Rathjen, Omega-models and well-ordering principles, Foundational Adventures: Es-

says in Honor of Harvey M. Friedman (N. Tennant, editor), College Publications, London,
2014, pp. 179–212.

� ANNIKA KANCKOS, Strong normalization for simply typed lambda calculus.
Department of Philosophy, History, Culture and Art Studies, University of Helsinki, P.O.
Box 24, Unioninkatu 40 A, FIN–00014, Finland.
E-mail: annika.kanckos@gmail.com.
A solution is proposed to Gödel’s Koan as the problem is stated in the TLCA list of open

problems. As the problem is formulated it contains an element of vagueness as it is presented
as the problem of finding a simple or easy ordinal assignment for strong normalization of
the beta-reduction of simply typed lambda calculus. Whether a proof is sufficiently easy to
categorize as a solution is thus a matter of opinion.
The solution is based on (Howard, 1970) and its improved notation in (Schütte, 1977).

These normalization proofs also work for a systemwith a recursor. However, when the recur-
sor is absent, as in our case, a further simplification is possible. The delta-operation becomes
redundant (or at least highly simplified), as does the use of ordinal and vector variables,
while the crucial Howard’s permutation Lemma 2.6 is preserved with some alterations in the
vector assigned to the abstracted term.
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The proof also gives a unique ordinal assignment for strong normalization as opposed to
the nonunique assignment of Howard. The limit ordinal of the assignment is ε0. That this
is possible is more or less noted by Howard when he explains that the delta-operation is the
point where the strong normalization proof breaks down for his unique assignment. The
reason being that the division into cases in the definition of the delta-operation makes some
vectors incomparable and it becomes impossible to prove that the inequalities are preserved
when the delta-operator is applied. Therefore, Howard’s unique assignment is limited to a
weak normalization (however with the recursor included). Asmentioned the presented result
gives a unique assignment for strong normalization though the recursor is not included in
order to fit the problem description of the Koan that was first proposed by Gödel.

� ANTONSETZER,The extended predicativeMahloUniverse inExplicitMathematics—model
construction.
Department of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP,
UK.
E-mail: a.g.setzer@swan.ac.uk.
URL Address: http://www.cs.swan.ac.uk/∼csetzer/.
In [3] Setzer introduced the Mahlo universe V in type theory and determined its proof

theoretic strength. This universe has a constructor, which depends on the totality of functions
from families of sets in the universe into itself. Essentially for every such function f a
subuniverse Uf of V was introduced, which is closed under f and represented in V. Because
of the dependency on the totality of functions, not all type theoretists agree that this is a
valid principle, if one takes Martin-Löf type theory as a foundation of mathematics.
Feferman’s theory of Explicit Mathematics [1] is a different framework for constructive

mathematics, in which we have direct access to the set of partial functions. In such a setting,
we can avoid the reference to the totality of functions on V. Instead, we can take arbitrary
partial functions f, and try to form a subuniverse Uf closed under f. If f is total on Uf ,
then we add a code for it to V. In [2] we developed a universe based on this idea (using m as
a name for V and sub as a name for U), and showed that we can embed the axiomatic Mahlo
universe, an adaption of the Mahlo construction as in [3] to Explicit Mathematics, into this
universe. We added as well an induction principle, expressing that the Mahlo universe is the
least one. Since the addition of Uf to V depends only on elements of V present before Uf was
added to V, it can be regarded as being predicative, and we called it therefore the extended
predicative Mahlo universe.
In this talk we construct a model of the extended predicative Mahlo universe in a suitable

extension of Kripke–Platek set theory, in order to determine an upper bound for its proof
theoretic strength. The model construction adds only elements to the Mahlo universe which
are justified by its introduction rules. The model makes use of a new monotonicity condition
on family sets, the notion of a monotone operator for defining universes, and a special
condition for closure operators. This is an alternative toRichter’s [Γ,Γ′] operator for defining
closure operators.
This is joint work with Reinhard Kahle, Lisbon.
[1] S. Feferman, A Language and Axioms for explicit Mathematics, Algebra and Logic

(J, Crossley, editor), Springer, 1975, pp. 87–139.
[2] R. Kahle and A. Setzer, An extended predicative definition of the Mahlo universe,

Ways of Proof Theory (R. Schindler, editor), Ontos Series in Mathematical Logic, Ontos
Verlag, Frankfurt (Main), Germany, 2010, pp. 315–340.
[3] A. Setzer,ExtendingMartin-Löf type theory by oneMahlo-universe.Archive forMath-

ematical Logic, vol. 39 (2000), pp. 155–181.

Abstracts of invited talks in the Special Session on
Set Theory

� WILLIAM CHEN, Negative partition relations from cardinal invariants.
Department of Mathematics, Ben-Gurion University of the Negev, Box 44, Be’er Sheva
8410501, Israel.
E-mail: chenwb@gmail.com.
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Classically, many partition relations involving �1 and countable ordinals were shown to
fail from CH. In joint work with Shimon Garti and Thilo Weinert, we prove that having
certain cardinal characteristics equal to ℵ1 causes the failure of partition relations such as
�1 → (�1, � + 2)22 and �21 → (�1�, 4)22. Most often, we use the hypothesis d = ℵ1, but this
seems quite strong. In an effort to use weaker hypotheses, we consider how partition relations
behave under the stick principle, and with certain values of invariants for category, evasion,
and prediction.

� BRENT CODY, Adding a nonreflecting weakly compact set.
Department ofMathematics and AppliedMathematics, Virginia Commonwealth University,
1015 Floyd Avenue, Richmond, VA 23284, USA.
E-mail: bmcody@vcu.edu.
URL Address: http://www.people.vcu.edu/∼bmcody/.
There is a strong analogy between stationary sets and weakly compact sets. However,

by a theorem of Kunen there are models in which nonweakly compact sets can become
weakly compact after forcing, whereas nonstationary sets can never be forced to become
stationary. Thus, proofs about the ideal of nonweakly compact sets often require a finer
analysis than their counterparts for the nonstationary ideal. Manyquestionswhose analogues
have been answered for the nonstationary ideal remain open for the weakly compact ideal,
and higher order Π1n-indescribability ideals. This talk will survey what is known in this
area and will include a discussion of some recent results on the weakly compact reflection
principle, which is a generalization of a certain stationary reflection principle. We say that the
weakly compact reflection principle holds at κ and write Reflwc(κ) if and only if κ is a weakly
compact cardinal and every weakly compact subset of κ has a weakly compact proper initial
segment. The weakly compact reflection principle at κ implies that κ is �-weakly compact,
and in this talk we will discuss a proof that the converse of this statement can be false.
Moreover, if κ is (α + 1)-weakly compact where α < κ+ then there is a forcing extension
in which there is a weakly compact set W ⊆ κ having no weakly compact proper initial
segment, the class of weakly compact cardinals is preserved and κ remains (α + 1)-weakly
compact.

� ASHUTOSH KUMAR, Transversal of full outer measure.
Einstein Institute of Mathematics, Hebrew University of Jerusalem, Edmond J. Safra Cam-
pus, Givat Ram, Jerusalem 91904, Israel.
E-mail: akumar@math.huji.ac.il.
For every partition of a set of reals into countable sets there is a transversal of full outer

measure.
Joint work with S. Shelah.
[1] A. Kumar and S. Shelah, A transversal of full outer measure, preprint.

� YANN PEQUIGNOT, Countable Borel chromatic numbers and Σ12 sets.
Department ofMathematics, University of California, Los Angeles, Los Angeles, CA 90095,
USA.
E-mail: yann.pequignot@gmail.com.
Analytic sets enjoy a classical representation theorem based on well-founded relations. I

will explain a similar representation theorem for Σ12 sets due to Marcone [2,3] which is based
on an intriguing topological graph: the Shift Graph. The chromatic number of this graph
is 2, but its Borel chromatic number is infinite. We use this representation theorem to show
that the Shift Graph is not minimal among the graphs of Borel functions which have infinite
Borel chromatic number. While this answers negatively the primary outstanding question
from [1], our proof surprisingly does not construct any explicit example of a Borel function
whose graph has infinite Borel chromatic number and admits no homomorphism from the
Shift Graph.
[1] A. S. Kechris, S. Solecki, and S. Todorčević, Borel chromatic numbers. Advances in

Mathematics, vol. 141 (1999), no. 1, pp. 1–44.
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[2] A. Marcone, Foundations of bqo theory. Transactions of the American Mathematical
Society, vol. 345 (1994), no. 2, pp. 641–660.
[3] ,The set of better quasi orderings isΠ12-complete.Mathematical Logic Quarterly,

vol. 41 (1995), pp. 373–383.

� SANDRA UHLENBROCK, The hereditarily ordinal definable sets in inner models with
finitely many Woodin cardinals.
Kurt Gödel Research Center, University Vienna, Währinger Straße 25, 1090 Wien, Austria.
E-mail: sandra.uhlenbrock@univie.ac.at.
An essential question regarding the theory of inner models is the analysis of the class of

all hereditarily ordinal definable sets HOD inside various inner modelsM of the set theoretic
universe V under appropriate determinacy hypotheses. Examples for such inner models
M are L(R), L[x], and Mn(x). Woodin showed that under determinacy hypotheses these
models of the form HODM contain large cardinals, which motivates the question whether
they are fine-structural as for example the models L(R), L[x], and Mn(x) are. A positive
answer to this question would yield that they are models of CH,�, and other combinatorial
principles.
The first model which was analyzed in this sense was HODL(R) under the assumption that

every set of reals inL(R) is determined. In the 1990’s Steel andWoodin were able to show that
HODL(R) = L[M∞,Λ], where M∞ is a direct limit of iterates of the canonical mouse M�
and Λ is a partial iteration strategy forM∞. Moreover Woodin obtained a similar result for
the model HODL[x,G ] assuming Δ12 determinacy, where x is a real of sufficiently high Turing
degree, G is Col(�,<κx)-generic over L[x], and κx is the least inaccessible cardinal in L[x].
In this talk I will give an overview of these results and outline how they can be extended to

the model HODMn (x,g) assumingΠ1n+2 determinacy, where x again is a real of sufficiently high
Turing degree, g is Col(�,<κx)-generic overMn(x) and κx is the least inaccessible cutpoint
inMn(x) which is a limit of cutpoints inMn(x).
This is joint work with Grigor Sargsyan.

Abstracts of contributed talks

� BAHAREH AFSHARI, Interpolation for modal mu-calculus.
Department of Computer Science and Engineering, University of Gothenburg, Rännvägen
6, 412 96 Gothenburg, Sweden.
E-mail: bahareh.afshari@cse.gu.se.
Modal logics are known to widely enjoy interpolation and so does modal �-calculus, the

extension ofmodal logic by propositional fixed point quantifiers. D’Agostino andHollenberg
[2] utilise automata theory to show that bisimulation quantifiers are expressible in modal
�-calculus and can be used to define interpolants. I will present a constructive and purely
syntactic proof of Lyndon (and hence also Craig) interpolation via a finitary sequent calculus
of circular proofs introduced in [1].
[1] B. Afshari andG. E. Leigh, Cut-free completeness for modal mu-calculus, Proceeding

of Thirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science, Reykjavik,
Iceland, 2017, pp. 1–12.
[2]G. D’Agostino andM.Hollenberg, Logical questions concerning the �-calculus. The

Journal of Symbolic Logic, vol. 65 (2000), no. 1, pp. 310–332.

� BAHAREH AFSHARI AND GRAHAM E. LEIGH, Cut-free completeness for modal
mu-calculus.
Department of Computer Science and Engineering, University of Gothenburg, Rännvägen
6, 412 96 Gothenburg, Sweden.
E-mail: bahareh.afshari@cse.gu.se.
Department of Philosophy, Linguistics, Theory of Science, University of Gothenburg, Box
200, 405 30 Gothenburg, Sweden.
E-mail: graham.leigh@gu.se.
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Modal �-calculus is the extension of propositional modal logic by constructors for fixed
points of inductive and co-inductive definitions. Kozen [1] proposed an axiomatisation for
the logic which was proved to be complete by Walukiewicz [2]. Kozen’s system contains cut
andWalukiewicz’ proof makes essential use of this rule.Wepresent a cut-free sequent calculus
for the logic that features a strengthening of the standard induction rule for greatest fixed
point. The system is readily seen to be sound and its completeness is established by utilising
a novel calculus of circular proofs. As a corollary we obtain a new, constructive, proof of
completeness for Kozen’s axiomatisation which avoids the usual detour through automata
and games.
[1]D.Kozen,Results on the propositional�-calculus.TheoreticalComputerScience, vol. 27

(1983), pp. 333–354.
[2] I. Walukiewicz, Completeness of Kozen’s axiomatisation of the propositional �-

calculus. Information and Computation, vol. 157 (2000), pp. 142–182.

� SERGEI ARTEMOVAND ELENA NOGINA, On completeness of epistemic theories.
Graduate Center CUNY, 365 Fifth Ave., New York City, NY 10016, USA.
E-mail: sartemov@gc.cuny.edu.
BMCC CUNY, 199 Chambers St., New York City, NY 10007, USA.
E-mail: e.nogina@gmail.com.
Semantic formalizations of epistemic situations as Kripke models produce complete de-

scriptions: for each sentence F , they specify which of F or ¬F holds. This renders semantic
formalizations inadequate for incomplete scenarios. To represent all epistemic situations,
complete and incomplete, we need epistemic theories, i.e., sets of epistemic formulas (cf. [1]),
analogous to mathematical theories, many of which are incomplete (group theory, Peano
Arithmetic, etc.).
We consider epistemic theories of carddealingandestablish their completeness.One should

not expect epistemic completeness to be maintained throughout the game: players could use
private communications to learn facts which do not follow from the game description. For
such situations, epistemic theories become essential.
Assume a deck of cards dealt to n players. Consider epistemic logic S5n with atomic

propositions ‘player i is dealt card j’; for a given property P, let �P� denote its representation
by a formula. Let Γ be set of formulas S5n + �rules of dealing� +
�each player knows her hand and deems possible any dealing consistent with it�. For each
combination α of cards dealt, define theory

Δα = �common knowledge of Γ� + �α�.
The standard model of card dealing (cf. [2]) has all possible dealings as worlds, indistin-
guishability as accessibility relations, and the natural evaluation of atomic propositions.
Completeness Theorem. Δα 	 F iff α � F in the standard model.
[1] S. Artemov, Syntactic epistemic logic, Book of Abstracts. 15th Congress of Logic,

Methodology and Philosophy of Science, University of Helsinki, 2015, pp. 109–110.
[2] R. Fagin, J. Halpern et al., Reasoning about Knowledge, MIT Press, 1995.

� ASHOT BAGHDASARYAN AND HOVHANNES BOLIBEKYAN, On some systems of
minimal predicate logic with history mechanism.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, 0025 Yerevan, Armenia.
E-mail: baghdasaryana95@gmail.com.
E-mail: bolibekhov@ysu.am.
Backwards proof search and theoremproving with a standard cut-free calculus forminimal

logic is insufficient because of three problems. First, the proof search is not in general
terminating caused by the possibility of looping. Second, it might generate proofs which
are permutations of each other and represent the same natural deduction. Finally, during
the proof some choice should be made to decide which rules to apply and where to use
them. Several proof systems of I. Johansson’s minimal logic of predicates were introduced

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2018.13
Downloaded from https://www.cambridge.org/core. Higher School of Economics (Moscow), on 04 Sep 2018 at 07:14:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2018.13
https://www.cambridge.org/core


LOGIC COLLOQUIUM ’17 233

in [1]. Looping is the main issue in the system GM− developed in [1]. Looping may easily
be removed by checking if a sequent has already occurred in the branch. Though this is
insufficient as it requires much information to be stored. Some looping mechanisms have
been considered earlier in ([2,3]). One way to detect loops is adding history to each sequent.
We introduce two systems for first order minimal logic (SwMin and ScMin) which are

slightly different. Both systems are based on the idea of adding context to the sequents. In
one system, SwMin, the history is kept smaller, but ScMin detects loops more quickly. The
heart of the difference between the two systems is that in the SwMin loop checking is done
when a formula leaves the goal, whereas in the ScMin it is done when it becomes the goal.

Theorem.

1. The systems GM− and SwMin are equivalent.
2. The systems GM− and ScMin are equivalent.

[1]H. R. Bolibekyan and A. A. Chubaryan, On some proof systems for I. Johansson’s
minimal logic of predicates, Proceedings of the Logic Colloquium, 2003, p. 56.
[2]H. Bolibekyan and T. Muradyan, On some loop detection strategies for minimal

propositional logic, Proceedings of the Logic Colloquium, 2011, pp. 45–46.
[3]D.Gabbay,Algorithmic Proof with Diminishing Resources, LectureNotes in Computer

Science, vol. 533, Springer, 1991, Part 1, pp. 156–173.

� NIKOLAY BAZHENOV, EKATERINA FOKINA, DINO ROSSEGGER, AND LUCA
SANMAURO, Computable bi-embeddable categoricity of equivalence structures.
Sobolev Institute of Mathematics, and Novosibirsk State University, Novosibirsk, Russia.
E-mail: bazhenov@math.nsc.ru.
Vienna University of Technology, Wiedner Hauptstrasse 8-10/104, 1040 Vienna, Austria.
E-mail: ekaterina.fokina@tuwien.ac.at.
E-mail: dino.rossegger@tuwien.ac.at.
E-mail: luca.san.mauro@tuwien.ac.at.
We study the algorithmic complexity of embeddings between bi-embeddable equivalence

structures. To do this, we use the notions of Δ0α bi-embeddable categoricity and relative Δ
0
α

bi-embeddable categoricity defined analogously to the standard concepts of Δ0α categoricity
and relative Δ0α categoricity.
We give a characterization of Δ01 bi-embeddably categorical equivalence structures, com-

pletely characterize Δ02 bi-embeddably categorical and relatively Δ
0
2 bi-embeddably categor-

ical equivalence structures, and show that all equivalence structures are relatively Δ03 bi-
embeddably categorical.
Furthermore, let the degree of bi-embeddable categoricity of a computable structure A

be the least Turing degree that, if it exists, computes embeddings between any computable
bi-embeddable copies of A. Then every computable equivalence structure has a degree of
bi-embeddable categoricity, and the only possible degrees of bi-embeddable categoricity for
equivalence structures are 0, 0′, and 0′′.

� NIKOLAY BAZHENOV AND BIRZHAN KALMURZAYEV,Weakly precomplete dark
computably enumerable equivalence relations.
Department of Fundamental Mathematics, Al-Farabi Kazakh National University, 71 Al-
Farabi avenue, Almaty 050038, Kazakhstan.
E-mail: birzhan.kalmurzaev@gmail.com.
Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia.
E-mail: nickbazh@yandex.ru.
We study computably enumerable equivalence relations (ceers). For the background, we

refer the reader to [1].
A ceerE on � is weakly precomplete if there exists a partial computable function fix such

that for all e, if ϕe is total, then fix(e) ↓ and ϕe(fix(e))Efix(e). We consider ceers relatively
to the following well known reduction: a ceerR is said to be reducible to a ceer S (denoted by
R ≤c S) if there is a computable function f such that for all x and y, xRy ⇔ f(x)Sf(y). A
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ceer E is called dark if it is incomparable with Id under reduction≤c . We have the following
result.

Theorem 1. For any dark ceer E there is a weakly precomplete dark ceer F such that
E <c F .

S.A. Badaev showed that there is an infinite �-chain of nonequivalent weakly precomplete
ceers. Our result implies that for any dark ceerE, there is an infinite�-chain of nonequivalent
weakly precomplete dark ceers over E.
[1]U. Andrews, S. Badaev, andA. Sorbi, A Survey on Universal Computably Enumerable

Equivalence Relations, Lecture Notes in Computer Science, vol. 10010, 2017, pp. 418–451.

� MARIO BENEVIDES, Propositional Dynamic Logic for bisimilar programs with parallel
operator and test.
Systems and Computer Engineering Program (COPPE) and Computer Science Department
(IM), Federal University of Rio de Janeiro, Brazil.
E-mail: mario@cos.ufrj.br.
In standard Propositional Dynamic Logic (PDL) literature [3], the semantics is given

by Labeled Transition Systems, where for each program � we associate a binary relation
R�. Process Algebras also give semantics to process (terms) by means of Labeled Transition
Systems. In both formalisms, PDL and Process Algebra, the key notion to compare processes
is bisimulation. InPDL, we also have the notion of logic equivalence, that can be used to prove
that two programs �1 and �2 are logically equivalent 	 〈�1〉ϕ ↔ 〈�2〉ϕ. Unfortunately, logic
equivalence and bisimulation do not match in PDL. Bisimilar programs are logic equivalent
but the converse does not hold.
This article proposes a semantics and an axiomatization for PDL that makes logically

equivalent programs also bisimilar. This allows for developing Dynamic Logics to reasoning
process algebras about specification, in particular about CCS (Calculus for Communicating
Systems) [4]. As in CCS the bisimulation is the main tool to establish equivalence of pro-
grams, it is very important that these two relations coincide. We propose a new Propositional
Dynamic Logic with a new nondeterministic choice operator, PDL+. We prove its sound-
ness, completeness, finite model property, and EXPTIME-completeness for the satisfiability
problem. We also add to PDL+ the parallel composition operator (PPDL+) and prove
its soundness and completeness. We establish that the satisfiability problem for PPDL+ is
in 2-EXPTIME. Finally, we define some fragments of PPDL+ and prove its EXPTIME-
completeness. In ([1,2]) we do not deal with test operator. In this work we discuss some issues
concerning test and point out some direction on how it can be handled.
[1]M. R. F. Benevides, Bisimilar and logically equivalent programs in PDL. Electronic

Notes in Theoretical Computer Science, vol. 305 (2014), pp. 5–18.
[2] , Bisimilar and logically equivalent programs in PDL with parallel operator,

Theoretical Computer Science, published first online, 2017.
[3]D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, The MIT Press, 2000.
[4] R. Milner, Communication and Concurrency, Prentice Hall International, London,

UK, 1989.

� BRUNO BENTZEN, A solution to Frege’s puzzle in homotopy type theory.
Sun Yat-sen University, 135 Xingang W Rd., BinJiang Lu, Guangdong 510275, China.
E-mail: b.bentzen@hotmail.com.
One of the virtues of Voevodsky’s celebrated univalence axiom is that it offers a formal

justification for the common practice among mathematicians of identifying objects just in
case they are isomorphic. Since in general there may be different isomorphisms between any
two objects, it follows that a thing can be recognized as the same again in more than one
way. Equipped with this axiom and other powerful features, homotopy type theory (The
Univalent Foundations Program 2013) provides a novel notion of equality with a subtle
structure that takes account of the different reasons a thing can be the same.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2018.13
Downloaded from https://www.cambridge.org/core. Higher School of Economics (Moscow), on 04 Sep 2018 at 07:14:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2018.13
https://www.cambridge.org/core


LOGIC COLLOQUIUM ’17 235

Over one hundred years ago, Frege (1982) drew attention to a puzzle concerning the
slippery and multifaceted nature of equality. In a sense, he also arrived at the conclusion
that there should be different ways for two objects to be identified—and he explained this by
saying that two objects expressing a different sense denote the same referent. Now, a natural
question is “can the homotopy-type theoretic notion of equality shed new light on Frege’s
puzzle?”
In this work-in-progress talk, I shall propose a constructive solution for Frege’s puzzle

based on elementary insights from homotopy type theory. I claim that, from the viewpoint
of constructive semantics, Frege’s solution is unable to explain adequately the informative
content of identity statements, since, as I shall argue, not only identity statements of the form
“a = b”, but also “a = a” may contribute to extensions of our knowledge. More precisely, I
hold that my approach can be seen as an extension of Frege’s ideas to account for constructive
reasoning.

� ALEXANDR BESSONOV, Gödel’s second incompleteness theorem cannot be used as an
argument against Hilbert’s program.
Institute of Philosophy and Law, Novosibirsk State University, Pirogova 1, Novosibirsk
630090, Russia.
E-mail: trt@academ.org.
Gödel’s second incompleteness theorem is commonly accepted as a decisive argument

against realizability of Hilbert’s program of finitary grounding of mathematics in its original
setting. We show that this widespread belief is wrong.
According to Gödel’s second incompleteness theorem, if the formal Dedekind–Peano

arithmetic (PA) is consistent and the formula Prov(x, y) that numeralwise expresses
the provability predicate satisfies Hilbert–Bernays–Löb conditions, then the
formula

∃x ∀y ¬Prov(x, y) (Consis)

that numeralwise expresses the consistency of PA is unprovable in PA. This readily implies
that, for any formula A, the formula

∀y¬Prov(�A�, y) (∗A)
that expresses the unprovability of A is unprovable in PA.
The argument against realizability of Hilbert’s program based on the second theorem is

generally built as follows. Let PA be consistent. Suppose that there is an informal finitary
consistency proof of PA. By von Neumann’s thesis (every finitary informal proof is formaliz-
able in PA), such a proof would be formalizable in PA. As a result, a formula that expresses
the consistency of PA would turn out to be provable, which would contradict the second
incompleteness theorem (see, e.g., [1]).
Wewill show that such reasoning is incorrect. Weknow that the PAmaybe either consistent

or inconsistent. Tertium non datur.
Let PA be inconsistent. In this case the second theorem cannot be applied because its

formulation contains a presupposition of PA being consistent.
Let PA be consistent. Consider a formula ¬(0 = 0) and repeat von Neumann’s reasoning

in relation to this formula. Suppose that there is an informal finitary proof that ¬(0 = 0) is
unprovable in PA. Such a proof could be Gödel-style formalizable in PA. As a result, being
an instance of (∗A), the formula ∀y¬Prov(�¬(0 = 0)�, y) that expresses the unprovability of
¬(0 = 0) would turn out to be provable, which would contradict the second incompleteness
theorem. Thus we can conclude that an informal finitary proof of the unprovability of
¬(0 = 0) does not exist.
However, if PA is consistent, then such a finitary proof exists! Here is the proof: Suppose

	PA¬(0 = 0). In view of 	PA (0 = 0), it would follow that 	PA (0 = 0)&¬(0 = 0), and
hence PA would be inconsistent, which contradicts our assumption. And this trivial proof is
obviously finitary! We have thus arrived at a contradiction with von Neumann’s reasoning.
Thus the argument against realizability of Hilbert’s program based on the second theorem

is incorrect from the outset.
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This work was supported by the Russian Science Foundation (project 16-18-10359).
[1] R. Zach, Hilbert’s program then and now, Handbook of the Philosophy of Sci-

ence (D. Jacquette, editor), Philosophy of Logic, vol. 5, Elsevier BV, Amsterdam, 2006,
pp. 431–432.

� KRZYSZTOF BIELAS, PAWEŁ KLIMASARA, AND JERZY KRÓL, Boolean-valued
models of ZFC and forcing in geometry and physics.
Department of Astrophysics and Cosmology, University of Silesia in Katowice, Uniwer-
sytecka 4, 40-007 Katowice, Poland.
E-mail: jerzy.krol@us.edu.pl.
To every complex separable Hilbert space H of quantum-mechanical (QM) states one

can assign orthomodular lattice of projections L(H). Given a maximal complete Boolean
algebra of projections B ⊂ L(H), it determines a Boolean-valued ZFC model VB with real
numbers corresponding bijectively to self-adjoint operators with spectral projections inB [2].
We provide the conditions forB to be atomless and the QM-meaning of the nontrivial forcing
in VB . For a generic ultrafilter G in VB , the change of the real line R in 2-valued model V
into R[G ] in VB/G helps to solve some problems in cosmology.
Another change of the real line concerns the level of the formal language, i.e., R[G ]→ R

where R[G ] is the 1st order set of real numbers and R is the unique (up to isomorphism)
model of the 2nd order theory of Dedekind-complete ordered field. This shift is expected to
take place in the cosmological model of expanding universe [1]. We show that this shift is
derivable from L(H) and leads to a change in smoothness structure of spacetime manifold
which must be an exotic R4. The embedding into the standard smooth R4 allows prediction
of the cosmological constant value purely topologically.
[1] T. Asselmeyer-Maluga, K. Bielas, P. Klimasara, and J. Król, From quantum to

cosmological regime. The role of forcing and exotic 4-smoothness. Universe, vol. 3 (2017),
no. 2, article number: 31.
[2]G. Takeuti, Two Applications of Logic to Mathematics, Publications of the Mathe-

matical Society of Japan, Princeton University Press, 1978.

� FRODE ALFSON BJØRDAL, Volutionary deliberations.
Programa de Pós-Graduação em Filosofia, UFRN, Natal, Brasil.
Seksjon for Filosofi, Universitetet i Oslo, Oslo, Norge.
E-mail: bjordal.frode@gmail.com.
As a continuation of divulgations at Trends in Logic XVI and after in seminaries and

at Encontro Brasileiro de Lógica XVIII I relate the volutionary point of view P (“ruble”)
which shifts attention to the set

T

(“eet”) of sentences whose negation are not theses of the
presupposed formal arithmetic T as traditionally conceived; we assume T is axiomatized so
only sentences are derivable and only modus ponens is a primitive inference rule. Volutionism
alters how we think about fundamental matters, e.g., in that the standard Gödel sentence
of T is taken as a textbook liar sentence, and gives occasion to reinterpret issues concerning
decidability and computability as other sentences independent of T are treated similarly.
Volutionary systems are not like traditional paraconsistent approaches as classical logical
theses are included and not contradicted even in the presence of comprehension; nevertheless:
if 
 is the standard Gödel sentence for T both 
 and ¬
 are theses of Tso modus ponens
does not, but exotic induced inferential principles hold for

T

. Compare P with the author’s
librationist set theory £ as in part set out in [1], [2], and [3].
[1] F. A. Bjørdal, Librationist closures of the paradoxes. Logic and Logical Philosophy,

vol. 21 (2012), no. 4, pp. 323–361.
[2] , On the type free paracoherent foundation of mathematics with the sedate ex-

tension of classical logic by the librationist set theory pounds , and specifically on why pounds
is neither inconsistent nor contradictory nor paraconsistent, New Directions in Paraconsistent
Logic (J.-Y. Beziau, M. Chakraborty, and S. Dutta, editors), Springer, 2015, pp. 509–515.
[3] , Elements of librationism. Available at http://arxiv.org/abs/1407.3877.
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� CAROLINA BLASIO, JOÃO MARCOS, AND HEINRICH WANSING, Monotonic
functions are logically four-valued.
IFCH/UNICAMP, Cidade Universitária Zeferino Vaz, 13083-896 Campinas, SP, Brazil.
E-mail: carolblasio@gmail.com.
DIMAp/CCET/UFRN,CampusUniversitario –LagoaNova, 59078-970Natal, RN,Brazil.
E-mail: jmarcos@dimap.ufrn.br.
Institut für Philosophie II; GA 3/33, Ruhr-Universität Bochum, Universitätsstraße 150,
D-44780 Bochum, Germany.
E-mail: Heinrich.Wansing@rub.de.
A monotonic function on a set S is a ⊆-preserving mapping on 2S , that is, a function C

such that C(A) ⊆ C(A ∪ B), for every A,B ⊆ S . Tarski’s fixpoint theorem guarantees
the existence of the least and of the greatest fixpoints for monotonic functions. The latter
have a variety of applications, in particular in providing a foundation for inductive and
co-inductive definitions, and the proof methods associated therewith. A Tarskian closure
operator on S is a monotonic function on S that is also inflationary (i.e., A ⊆ C(A)) and
idempotent (i.e., C(C(A)) = C(A)); it is a generalization of the notion of topological closure,
axiomatized by Kuratowski. A closure operator on S is called structural when it commutes
with endomorphisms on S . (Structural) Tarskian closure operators are known [4] to be
characterizable by a family of so-called logical matrices, viz. structures containing sets of
‘algebraic’ truth-values, some of which are distinguished. Their inflationary and idempotent
character also guarantees that they may be characterized by (at most) two ‘logical’ values
(cf. Chapter 4 of [3]). In the present contribution we will show how a generalized notion of
closure and a two-dimensional notion of logical matrix (resp. B-closure and B-matrix) may
be used to characterize any given monotonic function on a set S , recovering a theme earlier
explored at [2] in the context of symmetrical consequence relations involving two potentially
distinct languages. We will also show that any B-matrix may be alternatively characterized
by (at most) four logical values [1]. A brief discussion of inferential many-valuedness and its
connections with bilattice-based reasoning, from a metalogical perspective, will ensue.
[1] C. Blasio, J. Marcos, and H. Wansing, An inferentially many-valued two-dimensional

notion of entailment. Bulletin of the Section of Logic, to appear, 2017.
[2] L. Humberstone, Heterogeneous logic. Erkenntnis, vol. 29 (1988), pp. 395–435.
[3]G. Malinowski,Many-Valued Logics, Oxford, 1993.
[4] R. Wójcicki, Some remarks on the consequence operation in sentential logics.

Fundamenta Mathematicae, vol. 68 (1970), pp. 269–279.

� FEDERICO BOBBIO AND JIANYING CUI, A plausibility model for regret games.
Department of Mathematics, University of Pisa, 5 Largo Pontecorvo, Pisa, Italy.
E-mail: federico.bobbio01@gmail.com.
Institute of Logic and Cognition, Sun Yat-sen University, 135 Xingang Road West,
Guangzhou, China.
E-mail: cuijiany@mail.sysu.edu.cn.
In this article, we develop a plausibility model by defining a new notion of rationality based

on the assumption that a player believes that she doesn’t play a weakly regret dominated
strategy. Especially, we show that the interactive epistemic outcomes from the common belief
of this type of rationality are in line with the solutions of the Iterated Regret Minimalization
(IRM) algorithm. So, we state that one can achieve a characterization of the IRM algorithm
in light of common belief of this type of rationality. A benefit of our characterization is
that it provides the epistemic foundation to the IRM algorithm. Meanwhile, we also link
solutions of the algorithm to modal �-calculus to deepen our understanding of the epistemic
characterization.
[1] A. Baltag and S. Smets, Dynamic belief revision over multi-agent plausibility models,

Proceedings of LOFT, vol. 6, 2006, pp. 11–24.
[2] , Group belief dynamics under iterated revision: Fixed points and cycles of joint

upgrades, Proceedings of the 12th conference on Theoretical Aspects of Rationality and Knowl-
edge, ACM, 2009, pp. 41–50.
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[3] P. Blackburn, M. De Rijke, and Y. Venema, Modal Logic, Cambridge University
Press, 2002.
[4] J.Cui,X.Luo, andK.M.Sim,Anew epistemic logicmodel of regret games, International

Conference on Knowledge Science, Engineering andManagement, Springer, BerlinHeidelberg,
2013, pp. 372–386.
[5] J. Y. Halpern and Y. Moses, Characterizing solution concepts in terms of common

knowledge of rationality. International Journal of Game Theory, (2016), pp. 1–17.
[6] J. Y.Halpern andR. Pass, Iterated regret minimization:A new solution concept.Games

and Economic Behavior, vol. 74 (2012), no. 1, pp. 184–207.
[7] J. van Benthem, Logic in Games, MIT Press, 2014.
[8] Y. Venema, Lectures on the Modal �−Calculus, University Lecture, University of

Amsterdam, 2012.

� ENRIQUE CASANOVAS AND SAHARON SHELAH, Universal theories and compactly
expandable models.
Department of Mathematics and Computer Science, University of Barcelona, Gran Via 585,
08007 Barcelona, Spain.
E-mail: e.casanovas@ub.edu.
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel, and Department of Mathematics, Hill
Center-Bush Campus, Rutgers, The State University of New Jersey, 10 Frelinghuysen Road,
Piscataway, NJ 08854-8019, USA.
E-mail: shelah@math.huji.ac.il.
A modelM of countable vocabulary � and cardinality κ is expandable if for every vocabu-

lary �′ ⊇ � of cardinality ≤ κ, if Σ is a first-order set of sentences of vocabulary �′ consistent
with the first-order theory Th(M ) ofM , then there is some expansion M ′ ofM to �′ such
that M ′ |= Σ. Call a set of first-order sentences Σ of vocabulary �′ ⊇ � finitely satisfiable
in M if for every finite subset Σ0 ⊆ Σ there is an expansion of M that satisfies Σ0. M is
compactly expandable if for every vocabulary �′ ⊇ � of cardinality ≤ κ, if Σ is a first-order
set of sentences of vocabulary �′ finitely satisfiable inM , then there is some expansionM ′ of
M to �′ such thatM ′ |= Σ. We present the result proved in [2], which shows that there are
compactly expandable models which are not expandable, solving an open problem of [1]. The
proof depends on some new result we have obtained on the logic L(Qcfℵ0 ) (see [3]), first-order
logic with the additional quantifier Qcfℵ0 of cofinality ℵ0, namely the existence of κ-universal
theories of L(Qcfℵ0 ) for any cardinal κ = 2

<κ > ℵ0.
[1] E. Casanovas, Compactly expandable models and stability. The Journal of Symbolic

Logic, vol. 60 (1995), pp. 673–683.
[2] E. Casanovas and S. Shelah,Universal theories and compact expandability, submitted,

arXiv:1705.02611, no. 1116 in Shelah’s publication list, May 2017.
[3] S. Shelah, Generalized quantifiers and compact logic. Transactions of the American

Mathematical Society, vol. 204 (1975), pp. 342–364.

� ANAHIT CHUBARYAN AND ARTUR KHAMISYAN, Application of Kalmar’s proof of
deducibility in two valued propositional logic for many valued logic.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am, Artur.Khamisyan@gmail.com.
We focus on the problem of constructing of some standard Hilbert style proof systems for

any version of many valued propositional logic. The generalization of well-known Kalmar’s
proof of deducibility for two valued tautologies inside classical propositional logic [1] gives
us a possibility to suggest some method for defining of two types of axiomatic systems for
any version of 3-valued logic, completeness of which is easy proved direct, without of loading
into two valued logic.
First of constructed system bases on the logic with one designated value and conjunction,

disjunction, implication, defined by Gödel, and negation, defined by permuting of truth values
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cyclically. For every formula A, B , C of 3-valued logic, each �1, �2 from the set {0, 1/2, 1}
and ∗ ∈ {&,∨,⊃}, the following formulas are axioms schemes:
1. A ⊃ (B ⊃ A),
2. (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C )) ⊃ (A ⊃ C )),
3. A�1 ⊃ (B�2 ⊃ (A ∗ B)ϕ∗(A,B,�1 ,�2)),
4. A� ⊃ (¬A)�̄ ,
5. (A ⊃ B) ⊃ ((Ā ⊃ B) ⊃ (( ¯̄A ⊃ B) ⊃ B)), where

ϕ⊃(A,B, �1, �2) = (�1 ⊃ �2)&(¬(A ∨ Ā) ∨ ( ¯̄B ⊃ B)) ∨ (¬(A ∨ ¯̄A)&¬(B ∨ ¯̄B)),
ϕ∨(A, B, �1, �2) = (�1 ∨ �2) ∨ (A ⊃ Ā)&¬(B̄ ∨ ¯̄B)) ∨ (¬(Ā ∨ ¯̄A)&(B ⊃ B̄)),
ϕ&(A,B, �1, �2) = (�1&�2) ∨ ((A& ¯̄A) ∨ (B&B̄)) ∨ ((A&Ā) ∨ (B& ¯̄B),

and for � = i
2 (0 � i � 2) A

� is A with 2− i negations. Inference rule is modus ponens.
Note that axioms 3. and 4. are generalizations of formulas, using in Kalmar’s proof of
deducibility for two valued tautologies, therefore the completeness of this system is proved
very easily. This method (i) can be base for direct proving of completeness for all well-
known axiomatic systems of k-valued (k � 3) logics and may be for fuzzy logic also and
(ii) can be base for constructing of new Hilbert-style axiomatic systems for all mentioned
logics.
Second systemobtained from first one by some restrictions,which allow to obtain the same

by order bounds of main proof complexity characteristics for large sets of k-tautologies.
Acknowledgments. This work arose in the context of propositional proof complexity

research supported by the Russian–Armenian University from founds of MESRF.
[1] E. Mendelson, Introduction to Mathematical Logic, Van Nostrand, Princeton, 1975.

� ANAHIT CHUBARYAN, ARMAN KARABAKHTSYAN, HAKOB NALBANDYAN,
ANDGARIK PETROSYAN, Propositional sequent systems of two valued classical logic and
many valued logics are no monotonous.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Yerevan, Armenia.
E-mail: achubaryan@ysu.am.
E-mail: hakob nalbandyan@yahoo.com.
E-mail: arman.karabakhtsyan@gmail.com.
E-mail: garik.petrosyan.1@gmail.com.
The minimal tautologies, i.e., tautologies, which are not a substitution of a shorter tau-

tology, play main role in proof complexity area. Really all propositional formulae, proof
complexities of which are investigated in many well known articles, are minimal tautologies.
There is traditional assumption that minimal tautology must be no harder than any substi-
tution in it. This idea was revised at first by Anikeev in [1]. He has introduced the notion
of monotonous proof system and has given two types of no complete propositional proof
systems: monotonous system, in which the proof lines of all minimal tautologies are nomore,
than the proof lines for results of a substitutions in them, and no monotonous system, the
proof lines of substituted formulas in which can be less than the proof lines of corresponding
minimal tautologies. First it was proved in [2] that Frege systems are monotonous neither by
lines nor by size.
We introduce the analogous notion of minimal sequent (two or many valued) and show

that well known propositional sequent systems of twovalued classical logic (with andwithout
cat rule) as well as the sequent systems, which are constructed by us for some versions of
many valued logic are also monotonous neither by lines nor by size of proofs.
Acknowledgments. This work arose in the context of propositional proof complexity

research supported by the Russian–Armenian University from founds of MESRF.
[1] A. S. Anikeev, On some classification of derived propositional formulas.Mathematical

Notes, vol. 11 (1972), no. 2, pp. 165–174 (In Russian).
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[2] A. Chubaryan andG. Petrosyan, Frege systems are no monotonous. Evolutio, (2016),
no. 3, pp. 12–14.

� ANAHIT CHUBARYAN AND GARIK PETROSYAN, On proof complexities for some
classes of tautologies in Frege systems.
Department of Informatics and Applied Mathematics, Yerevan State University, 1 Alex
Manoogian, Armenia.
E-mail: achubaryan@ysu.am.
E-mail: garik.petrosyan.1@gmail.com.
One of the most fundamental problems of the proof complexity theory is to find for

classical propositional calculus a proof system, which has a polynomial size p(n) proof for
every tautology of size n. Cook and Reckhow named such a system a super system and
showed in [1] that NP = coNP iff a super system exists. Lately it is proved in [2] that
NP = coNP = PSPACE, hence a super systemmust be. It is well known that many systems
are not super. This question about Frege system, the most natural calculi for propositional
logic, is still open.
Some results about Frege proof complexities are presented here. We introduce the notion

of specific tautologiesA in the form:A = p ⊃ (A1∨A2∨· · ·∨Ak) (k � 1), where p is a literal
(variable or negation of variable), neither A1 ∨ A2 ∨ · · · ∨ Ak nor every Ai (1 � i � k) are
tautology or contradiction and |Ai | � |A1|

2i−1 , and show that Frege systems are super systems
iff there is a polynomial p() such that all specific tautologies of size n have a proofs, size of
which are bounded by p(n). Then we show, that all balanced tautologies (every variable of
which has only one positive and one negative occurrences), given in disjunctive normal form,
also have Frege proofs with polynomial bounded sizes. Lastly we give some notes about
relations between the proof complexities of tautologies An and Bn and proof complexities of
the tautologies in a form An ∗ Bn, where ∗ is ∧, ∨, ⊃. In particular we show that for some
tautologies An and Bn proofs of formulas An ∨ Bn can be more easier than proofs every of
An and Bn.
Acknowledgments. This work arose in the context of propositional proof complexity re-

search supported by the Russian–Armenian University from founds of MESRF.
[1] S. A. Cook and A. R. Reckhow, The relative efficiency of propositional proof systems.

The Journal of Symbolic logic, vol. 44 (1979), pp. 36–50.
[2] L. Gordeev and E. Haeusler, NP vs PSPACE, arXiv:1609.09562v1 [cs.CC], 30

Sep 2016.

� ANDRÉS CORDÓN–FRANCO AND F. FÉLIX LARA–MARTÍN, On local induction
rules: collapse and conservation properties.
Department ofComputer Science andArtificial Intelligence,Universidadde Sevilla, Facultad
de Matemáticas, C/Tarfia s/n, Sevilla, Spain.
E-mail: acordon@us.es.
E-mail: fflara@us.es.
Local induction schemes are variations of the classical induction schemes axiomatizing

Peano arithmetic (Σn-induction or Πn-induction). These local schemes are obtained by re-
stricting the conclusion of the induction axioms to some class of definable elements. Given
n, m ≥ 1, the scheme I (Σn,Km) is defined in this way, when the conclusion of the classical
Σn-induction scheme is restricted to Σm-definable elements.
For m = n, the schemes I (Σn,Kn) and the corresponding induction rules associated

to them, (Σn,Kn)–IR, have showed to be useful tools in the analysis of the conservation
properties of parameter free Πn-induction schemes and local reflection principles (see [1]
and [2]). An especially interesting feature of (Σn,Kn)–IR is the “collapse” property (i.e.,
reduction of nested applications of the rule to unnested applications) that distinguishes this
rule from the classical Σn–IR.
In this work we extend our previous work in [1] and focus on collapse and conservation

properties of the rules (Σn,Km)–IR and their parameter free counterparts. Namely:
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1. For n = m, we discuss general collapse results for (Σn,Kn)–IR.
2. For n > m ≥ 1, we discuss results á la Kreisel–Levy relating (parameter free) local
induction rules and local reflection principles.

3. For 1 ≤ n < m we discuss noncollapse and conservation results among rules
(Σn,Km)–IR.

Acknowledgments.Work partially supported by grant MTM2014-59178-P, Ministerio de
Economı́a y Competitividad, Spanish Government.
[1] A. Cordón–Franco and F. F. Lara–Martı́n, Local induction and provably total com-

putable functions. Annals of Pure and Applied Logic, vol. 165 (2014), no. 9, pp. 1429–1444.
[2] , On the optimality of conservation results for local reflection in arithmetic. The

Journal of Symbolic Logic, vol. 78 (2013), no. 4, pp. 1025–1035.

� LONGYUN DING, On decomposing Borel functions.
School of Mathematical Sciences, Nankai University, Tianjin 300071, China.
E-mail: dinglongyun@gmail.com.
The studyof decomposingBorel functions originated by aquestion askedbyLuzin: is every

Borel function decomposable into countably many continuous functions? This question was
answered negatively. So we turn to focus on: what kind of Borel functions is decomposable
into countably many continuous functions?
Jayne–Rogers’ theorem shows that, a function of Baire class 1 is decomposable into

countably many continuous functions with closed domains iff the preimage of any F� set
is still F� . The generalization of Jayne–Rogers’ theorem is named The Decomposability
Conjecture.
In this talk, we will introduce the recent developments on the decomposability

conjecture.

� PHILIP EHRLICH, Are points (necessarily) unextended?
Department of Philosophy, Ohio University, Athens, OH 45701, USA.
E-mail: ehrlich@ohio.edu.
Ever since Euclid defined a point as that which has no part it has been widely assumed

that points are necessarily unextended. It has also been assumed that, analytically speaking,
this is equivalent to saying that points or, more properly speaking, degenerate segments—
i.e., segments containing a single point have length zero. In our talk we will challenge these
assumptions. We will argue that neither degenerate segments having null lengths nor points
satisfying the axioms of Euclidean geometry implies that points lack extension. To make our
case, we will provide models of ordinary Euclidean geometry where the points are extended
despite the fact that the corresponding degenerate segments have null lengths, as is required
by the geometric axioms. The first model will be used to illustrate the fact that points can be
quite large—indeed, as large as all of Newtonian space—and the other models will be used
to draw attention to other philosophically pregnant mathematical facts that have heretofore
been little appreciated.

� DMITRY EMELYANOV, BEIBUT KULPESHOV, AND SERGEY SUDOPLATOV, On
algebras of distributions for binary formulas of quite o-minimal theories with nonmaximum
many countable models.
Novosibirsk State University, Novosibirsk, Russia; Institute of Mathematics andMathemat-
ical Modeling, Almaty, Kazakhstan.
E-mail: dima-pavlyk@mail.ru.
International Information Technology University, Institute of Mathematics and Mathemat-
ical Modeling, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
Sobolev Institute ofMathematics, Novosibirsk State Technical University, Novosibirsk State
University, Novosibirsk, Russia; Institute of Mathematics and Mathematical Modeling, Al-
maty, Kazakhstan.
E-mail: sudoplat@math.nsc.ru.
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We apply a general approach for distributions of binary formulas [3] to the class of quite
o-minimal theories with nonmaximum many countable models [2]. Using Cayley tables
for countably categorical weakly o-minimal theories [1] we explicitly define the classes of
commutative monoids An , respectively, A

QR
n , A

QL
n , AIn, of isolating formulas for isolated,

respectively, quasirational to the right, quasirational to the left, irrational, 1-type p of quite
o-minimal theorieswith nonmaximummany countablemodels, with convexity rankRC(p) =
n. For an algebra P
(p) of binary isolating formulas of 1-type p, we have

Theorem 1. Let T be a quite o-minimal theory with nonmaximum many countable models,
p ∈ S1(∅) be a nonalgebraic type. Then there exists n < � such that
(1) if p is isolated then P
(p) � An;
(2) if p is quasirational to the right (left) then P
(p) � AQRn (P
(p) � AQLn );
(3) if p is irrational then P
(p) � AIn.

Corollary 2. LetT be a quite o-minimal theory with nonmaximummany countable models,
p, q ∈ S1(∅) be nonalgebraic types. Then P
(p) � P
(q) if and only if RC(p) = RC(q) and the
types p and q are simultaneously either isolated, or quasirational, or irrational.

Definition 3 ([1]). We say that an algebra P
({p,q}) is generalized commutative if there is
a bijection � : �
(p) → �
(q) witnessing that the algebras P
(p) and P
(q) are isomorphic (i.e.,
that their Cayley tables are equal up to �) and for any labels l ∈ �
(p,q), m ∈ �
(q,p), we have
�(l ·m) = m · l .
Theorem 4. Let T be a quite o-minimal theory with nonmaximum many countable models,

p, q ∈ S1(∅) be nonalgebraic nonweakly orthogonal types. Then the algebra P
({p,q}) is a
generalized commutative monoid.

[1]D. Y. Emelyanov, B. S. Kulpeshov, and S. V. Sudoplatov, Algebras for distributions
of binary isolating formulas in countably categorical weakly o-minimal structures. Algebra and
Logic, vol. 56 (2017), no. 1, pp. 13–36.
[2] B. S.Kulpeshov andS.V. Sudoplatov,Vaught’s conjecture for quite o-minimal theories.

Annals of Pure and Applied Logic, vol. 168 (2017), no. 1, pp. 129–149.
[3] I. V. Shulepov and S. V. Sudoplatov, Algebras of distributions for isolating formulas

of a complete theory. Siberian Electronic Mathematical Reports, vol. 11 (2014), pp. 362–389.

� LUIS ESTRADA-GONZÁLEZAND JOSÉ DAVIDGARCÍA-CRUZ, Logical connectives
as modalities.
Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, Cir-
cuito Maestro Mario de la Cueva s/n, Ciudad Universitaria, C.P. 04510, Coyoacán, Mexico
City, Mexico.
E-mail: sjemata@hotmail.com.
E-mail: loisayaxsegrob@gmail.com.
Local operators (also known as Lawvere–Tierney topologies in the context of topos theory,

or modal operators in other categorial contexts) have been useful in proving independence
results in categorial set theory and more recently in providing categorial interpretations for
quantum predicates. Our aim here is to use local operators and their duals to highlight a
neglected feature of the usual logical connectives, namely their modal character. Disjunction
and conditional have already been recognized as species of possibility; our contribution is the
use of dual local operators to show that conjunction and subtraction are species of necessity.
More exactly, disjunction is a possibility connective, conditional is a contingency connective,
conjunction is a necessity connective, and subtraction is an impossibility connective. The
modal characters of unary and zero-ary connectives are also discussed.

� LUIS ESTRADA-GONZÁLEZ AND ALEJANDRO SOLARES-ROJAS,How could a lo-
gician help solving the P ?= NP problem?
IIFs, UNAM, Circuito Maestro Mario de la Cueva s/n, Ciudad Universitaria, Coyoacán,
Ciudad de México.
E-mail: ajsolaresrojas@gmail.com.
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As Terence Tao has recalled several times, mathematics can benefit not only from correct
proofs, or proofs that require some changes to be correct, but also from outlines of strategies
for a proof, whether for opening lines of research or closing them definitely. Here, we discuss
how a certain kind of logician could argue for P = NP following a translation between logics
approach. As P = NP amounts to FOL(LFPO) = SOL, one could argue for the latter by
providing a suitable translation between those logics. Though we do not provide any such a
translation, we show that such an approach regarding those logics is not a priori ruled out.
Thus, the broad strategy is as follows:

1. Follow the identities provided by descriptive complexity theory (see Immerman 1998).
2. Compare the expressive powers of FOL(LFPO) and SOL via logical translations (see
Manzano 1996).

3. Give reassurance of three kinds: (a) Conceptual: the corresponding translations do not
distort the studied phenomena. (b) Mathematical: the translations do not imply any
obvious contradiction with well-established mathematical results. (c) Philosophical:
the translations do not imply any gratuitous counterintuitive claim regarding logic,
mathematics or human nature (cf. Aaronson 2016).

[1] S. Aaronson,P ?=NP,OpenProblems inMathematics (J. F.Nash, Jr. andM.T.Rassias,
editors), Springer International Publishing, Switzerland, 2016, pp. 1–121.
[2]N. Immerman,DescriptiveComplexity, Graduate Texts in Computer Science, Springer-

Verlag, 1998.
[3]M.Manzano, Extensions of First Order Logic, Cambridge Tracts in Theoretical Com-

puter Science, Cambridge University Press, 1996.

� LUIS ESTRADA-GONZÁLEZ AND MANUEL TAPIA-NAVARRO, When Curry met
Abel.
Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México, Cir-
cuito Maestro Mario de la Cueva s/n, Ciudad Universitaria, C.P. 04510, Coyoacán, Mexico
City, Mexico.
E-mail: loisayaxsegrob@gmail.com.
E-mail: meduardo.tapia@gmail.com.
Curry’s paradox represents a problem for uniformapproaches to self-referential paradoxes,

as seemingly no negation is involved in it and triviality is reached without the explosion
principle, unlike most of the other paradoxes. In particular, purely paraconsistent approaches
will not serve to block or solve the paradox. Using some ideas from abstract algebra and
Abelian logic, in this articlewe argue that the strategy of blockingCurry’s paradoxby rejecting
Detachment can be seen as a generalization of the rejection of the explosion principle, and
thus of the paraconsistent strategy. This would imply that a uniform approach to all the
self-referential paradoxes, at least those where object-language connectives are involved, is
possible.
[1] R. T. Cook, Paradoxes, Polity, USA, 2013.
[2] R. K. Meyer and J, K. Slaney, Abelian logic (From A to Z), Paraconsistent Logic.

Essays on the Inconsistent (G. Priest, R. Routley, and J. Norman, editors), Philosophia
Verlag, Munich, 1989, pp. 245–289.
[3]M. Pleitz, Curry’s paradox and the inclosure schema, The Logica Yearbook 2014 (P.

Arazim and M. Dancak, editors), College Publications, London, 2015, pp. 233–248.
[4]G. Priest, Beyond the Limits of Thought, Cambridge University Press, UK, 1995.

� DAVID FERNÁNDEZ-DUQUE, PAUL SHAFER, HENRY TOWSNER, AND KEITA
YOKOYAMA, Caristi’s fixed point theorem and strong systems of arithmetic.
Institute de Recherche en Informatique de Toulouse, Toulouse University, 118 Route de
Narbonne, F-31062 Toulouse CEDEX 9, France.
E-mail: david.fernandez@irit.fr.
School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.
E-mail: p.e.shafer@leeds.ac.uk.
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Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadel-
phia, PA 19104-6395, USA.
E-mail: htowsner@math.upenn.edu.
School of Information Science, Japan Advanced Institute of Science and Technology, 1-1
Asahidai, Nomi, Ishikawa 923-1292, Japan.
E-mail: y-keita@jaist.ac.jp.
A Caristi system is a triple (X,f,V ), where X is a complete metric space, V : X → (0,∞)

is a lower semicontinuous function, and f: X → X is an arbitrary function such that, for all
x ∈ X ,

d(x, f(x)) ≤ V (x) − V (f(x)).
Caristi’s fixed point theorem states that any Caristi system has a fixed point; that is, there
is x∗ ∈ X such that f(x∗) = x∗. This has been proven in the literature using the critical
point theorem, which states that V has a pseudo-minimal point, and using Caristi sequences,
which are transfinite sequences (x�)�<Ω ⊆ X such that x�+1 = f(x�) for all �, the sequence
converges at limit ordinals, and Ω ≤ �1 is a large enough ordinal.
We analyze Caristi’s theorem and its known proofs in the context of reverse mathematics,

where metric spaces are assumed separable and coded in the standard way. Among the results
obtained, we have that, over RCA0:

• WKL0 is equivalent toCaristi’s theoremrestricted to compact spaceswith continuousV .
• ACA0 is equivalent to Caristi’s theorem restricted to compact spaces with lower semi-
continuous V .

• TLPP0 (the Σα-relative leftmost path principle for every well-ordering α) is equivalent
to Caristi’s theorem for Baire or Borel f.

• Π11−CA0 is equivalent to the critical point theorem for lower semicontinuous functions.
• Π0�−IFP0 (the arithmetical inflationary fixed point scheme) is equivalent to the state-
ment that if f is arithmetically defined, any point x0 ∈ X can be extended to a Caristi
sequence (x�)�<Ω ⊆ X containing a fixed point of f.

These theories are all defined over the language of second-order arithmetic andwemention
them in strictly increasing order of strength. In order to formalize these results, we also
develop techniques for coding lower semicontinuous functions in this setting.

� MICHAŁ TOMASZ GODZISZEWSKI AND JOEL DAVID HAMKINS, Computable
quotient presentations of models of arithmetic and set theory.
Logic Department, Institute of Philosophy, University of Warsaw, Krakowskie Przedmieście
3, 00-927 Warsaw, Poland.
E-mail: mtgodziszewski@gmail.com.
Mathematics, Philosophy, Computer Science, The Graduate Center of The City University
of NewYork, 365 Fifth Avenue, NewYork, NY 10016, USA;Mathematics, College of Staten
Island of CUNY, Staten Island, NY 10314, USA.
E-mail: jhamkins@gc.cuny.edu.
We prove various extensions of the Tennenbaum phenomenon to the case of computable

quotient presentations of models of arithmetic and set theory. Specifically, no nonstandard
model of arithmetic has a computable quotient presentation by a c.e. equivalence relation. No
Σ1-sound nonstandard model of arithmetic has a computable quotient presentation by a co-
c.e. equivalence relation. No nonstandard model of arithmetic in the language {+, ·,≤} has a
computably enumerable quotient presentation by any equivalence relation of any complexity.
No model of ZFC or even much weaker set theories has a computable quotient presentation
by any equivalence relation of any complexity. And similarly no nonstandard model of finite
set theory has a computable quotient presentation.
[1] A. Enayat, J. Schmerl, and A. Visser,�-models of finite set theory, Set Theory, Arith-

metic, and Foundations of Mathematics: Theorems, Philosophies, (J. Kennedy and R. Kossak,
editors), Lecture Notes in Logic, vol. 36, Cambridge University Press, 2011, ch. 4.
[2] B. Khoussainov, Computably enumerable structures: Domain dependence, Sep-

tember 2016. slides for conference talk at Mathematical Logic and its Applications,
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Research Institute for Mathematical Sciences (RIMS), Kyoto University. Available at
http://www2.kobe-u.ac.jp/∼mkikuchi/mla2016khoussainov.pdf.
[3]M.O.Rabin,On recursively enumerable and arithmetic models of set theory.The Journal

of Symbolic Logic, vol. 23 (1958), no. 4, pp. 408–416.

� DANNYDE JESÚS GÓMEZ-RAMÍREZ,Mathematics: a meta-isomorphic version of clas-
sic mathematics based on proper classes.
Institute of DiscreteMathematics and Geometry, Vienna University of Technology, Wiedner
Hauptstrasse 8-10, 1040 Vienna, Austria.
E-mail: daj.gomezramirez@gmail.com.
An implicit working principle in Von Newmann–Bernays–Gödel set theory (NBG) is that

small classes (or ‘sets’) are more suitable objects to start and work with for developing
a general foundational framework for standard mathematics. On the other hand, proper
classes are just ‘too big’ and formally ‘too dangerous’ in order to be able to ground any
classic mathematical theory.
In this work, we will mainly show that these typical quantitative considerations about

proper and small classes are just tangential facts regarding the consistency of Zermelo–
Fraenkel set theory with Choice (ZFC). Effectively, we will construct a first-order logic
theory D-ZFC (Dual theory of ZFC) strictly based on (a particular subcollection of) proper
classes with a corresponding special membership relation, such that ZFC and D-ZFC are
meta-isomorphic frameworks. More specifically, for any standard formal definition, axiom
and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’
version in D-ZFC and vice versa.
Finally, we prove the metafact that (classic) mathematics (i.e., theories grounded on ZFC)

and mathematics (i.e., dual theories grounded on D-ZFC) are meta-isomorphic, i.e., for any
concept, theory and conjecture in (classic) mathematics there exists a symmetric d-concept,
d-theory, and d-conjecture in mathematics with equivalent formal properties, and vice versa.
[1] E. Mendelson, Introduction to Mathematical Logic, fifth ed., Chapman&Hall/CRC,

2010.
[2] J. Von Neumann, Eine Axiomatisierung der Mengenlehre. Journal für die reine und

angewandte Mathematik, vol. 154 (1925), pp. 219–240.
[3] E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre. I.Mathematische

Annalen, vol. 65 (1908), no. 2, pp. 261–281.

� VALENTIN GORANKO, ANTTI KUUSISTO, AND RAINE RÖNNHOLM, Composi-
tional vs game-theoretic semantics for alternating-time temporal logics.
Stockholm University, Department of Philosophy, Universitetsvägen 10 D, SE-10691 Stock-
holm, Sweden.
E-mail: valentin.goranko@philosophy.su.se.
Fachbereich Mathematik und Informatik, Universität Bremen, Bibliothekstr. 1, 28359 Bre-
men, Germany.
E-mail: kuusisto@uni-bremen.de.
Faculty of Natural Sciences, University of Tampere, Kanslerinrinne 1, 33014 Tampere, Fin-
land.
E-mail: raine.ronnholm@uta.fi.
The Alternating-Time Temporal Logic ATL is a multi-agent extension of the branching-

time temporal logic CTL and one of the most popular logical formalisms for reasoning
about strategic abilities of agents in synchronous multi-agent systems. The semantics of ATL
is defined over multi-agent transition systems, also known as concurrent game models, in
which agents take simultaneous actions at the current state and the resulting collective action
determines the subsequent transition to a successor state.
We have introduced in [1] versions of game-theoretic semantics (GTS) for ATL . In GTS,

truth is defined in terms of existence of a winning strategy in a semantic evaluation game,
and thus the game-theoretic perspective appears in the framework of ATL on two semantic
levels: on the object level in the standard semantics of the strategic operators, and on the
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metalevel where game-theoretic logical semantics is applied to ATL . We unify these two
perspectives into semantic evaluation games specially designed for ATL . The game-theoretic
perspective enables us to identify new variants of the semantics of ATL based on limiting
the time resources available to the verifier and falsifier in the semantic evaluation game.
We introduce and analyse an unbounded and (ordinal) bounded GTS and prove these to be
equivalent to the standard (Tarski-style) compositional semantics. We show that in both
versions of GTS, truth of ATL formulae can always be determined in finite time, i.e., without
constructing infinite paths.We also introduce a nonequivalent finitely bounded semantics and
argue that it is natural from both logical and game-theoretic perspectives. In [2] we extend the
GTS for ATL to the richer language ATL+ and apply it to identify a hierarchy of extensions
of ATL with tractable model checking and to obtain some new results on expressiveness and
complexity of model checking.
[1] V. Goranko, A. Kuusisto, and R. Rönnholm, Game-theoretic semantics for

alternating-time temporal logic, Proceedings of AAMAS 2016, IFAAMAS, 2016, pp. 671–
679.
[2] , Game-theoretic semantics for ATL+ with applications to model checking, Pro-

ceedings of AAMAS 2017, IFAAMAS, 2017, pp. 1277–1285.

� HENSON GRAVES, Axiomatic toposes for descriptive modeling.
Algos Associates, 2829 West Cantey Street, Fort Worth, TX 76109, USA.
E-mail: henson.graves@hotmail.com.
Engineers and scientists are reinventing topos constructions for their modeling languages.

Modeling languages in the UML family have constructions for products, powers, as well
as subtypes. These language constructions are incomplete and do not have any accepted
formal semantics. However, together with special purpose sublanguages the engineering
modeling languages are used to design and analyze complex systems. With an axiomatic
semantics topos based modeling languages can serve as the foundation for a new generation
of modeling language tools which integrate automated reasoning with simulation.
Axiomatic topos theory as developed by Lawvere with rule axioms for products and

powers goes a long way to providing an axiomatic modeling language suitable for science
and engineering. However, subobjects (subtypes) play an extensive role in system modeling.
A constructive axiom for canonical subtypes is given to replace the traditional subobject
classification axiom in the context of axiomatic Cartesian closed categories with powers. The
axiom sets which use the language axioms are toposes with canonical subobjects which serves
as a replacement for set theory as a modeling language. A descriptive model is an axiom set
which includes the language axioms.
An aircraft flying over terrain can be modeled in this formalism using maps whose domain

is linear time to types representing the aircraft, its components and interconnections. These
maps are represented as sheaves on the algebra of subtypes of time. The sheaf maps represent
the time evolution of a system with its components. This gives a point free algebraic rep-
resentation. Time subtypes can be represented as subsets of the spectrum of time type. The
interpretations of these models are strict logical functors to Set. This provides a formal basis
for simulation correctness, as a simulation is an interpretation.

� LAURI HELLA ANDMIIKKA VILANDER, Formula size games for modal logics.
Faculty of Natural Sciences, University of Tampere, Kalevantie 4, 33100 Tampere, Finland.
E-mail: lauri.hella@uta.fi.
E-mail: vilander.miikka.s@student.uta.fi.
Succinctness is an important research topic that has been quite active in modal logic

recently. If two logics L andL′ have equal expressive power, it is natural to ask, whether there
are properties that can be expressed in L by a substantially shorter formula than in L′.
One of the most common methods in the literature for proving lower bounds on the length

of formulas expressing given properties is the Adler–Immerman game ( [1]). We propose
(see [2]) another type of formula size game for modal logic. In the Adler–Immerman game
the players produce the whole syntax tree of the separating formula. In our game we use
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parameters m and k referring to the number of modal operators and binary connectives in a
formula, thus enabling a game where only a part of the separating formula is constructed in
any single play.
We illustrate the use of our game by proving a nonelementary succinctness gap between

first-order logic FO and modal logic ML. More precisely, we define a bisimulation invariant
property of pointed Kripke models by a first-order formula of sizeO(2n), and show that this
property cannot be defined by any ML-formula of size less than the exponential tower of
height n − 1.
We are currently working on an adaptation of our formula size game for the modal

�-calculus. Questions of succinctness and definability for the modal �-calculus are largely
unexplored and none of the other methods mentioned here have been used in this context.
We intend to use our new game to investigate these questions.
[1]M. Adler and N. Immerman, An n! lower bound on formula size. ACM Transactions

on Computational Logic, vol. 4 (2003), no. 3, pp. 296–314.
[2] L. Hella andM. Vilander, The succinctness of first-order logic over modal logic via a

formula size game, Proceedings of the 11th Advances in Modal Logic (AiML), vol. 11, College
Publications, 2016, pp. 401–419.

� KOICHIRO IKEDA, A note on small stable theories.
Faculty of Business Administration, Hosei University, 2-17-1 Fujimi, Chiyoda-ku, Tokyo
102-8160, Japan.
E-mail: ikeda@hosei.ac.jp.
A type p ∈ S(T ) is called special, if there are a, b |= p such that tp(b/a) is isolated and

nonalgebraic, and tp(a/b) is nonisolated. TheLachlan conjecture says that if there is no stable
Ehrenfeucht theory. It can be seen that if there is a counterexample of the Lachlan conjecture
then the theory has a special type. Modifying Hrushovski’s generic pseudoplane [2], Herwig
constructed a small stable theory with a type of infinite weight [1]. His example may be close
to a counterexample of the Lachlan conjecture, but it does not have a special type. In this
talk, I will introduce some result on a relation between generic structures and theories with
a special type.
[1] B. Herwig,Weight � in stable theories with few types. The Journal of Symbolic Logic,

vol. 60 (1995), pp. 353–373.
[2] E. Hrushovski, A stable ℵ0-categorical pseudoplane, preprint, 1988.

� MIRJANA ILIĆ, A normalizing system of natural deduction for relevant logic.
Faculty of Economics, University of Belgrade, Kamenička 6, Serbia.
E-mail: mirjanailic@ekof.bg.ac.rs.
Several natural deduction calculi are known for relevant logics, see Anderson and Belnap

[1], Dunn [5], Brady [3], and Meyer and McRobbie [9]. Some of them are with the explicit
distribution rule, such as Anderson–Belnap’s and Meyer–McRobbie’s, some of them have
normalization theorems, such as Brady’s, however, all of them, use a kind of relevance
numerals in order to keep track of the use of hypotheses.
On the other hand, relevant numerals are not needed in sequent calculi of relevant logics,

see e.g., Dunn [4,5], Minc [10], and Bimbo [2]. We formulate a natural deduction calculus, of
a particular relevant logic, by defining the translation from its sequent calculus formulation
into natural deduction. We consider the contraction-less relevant logic RW ◦

+ and we take its
sequent calculus GRW ◦

+ , admitting cut-elimination, presented in [7]. The resulting natural
deduction calculus is a normalizing natural deduction system, without explicit distribution
rule and free from relevant numerals. Our translations from sequent to natural deduction
calculus and vice versa are similar to Negri’s translations between those calculi for intu-
itionistic linear logic [11]; however, due to the presence of two types of multisets of formulae,
intensional and extensional ones, needed for the proof of the distribution of conjunction over
disjunction in relevant logics, see Dunn [4] and Minc [10], our translations are significantly
different from Negri’s translations.
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[1] A. Anderson and N. Belnap, Jr., Entailment: The Logic of Relevance and Necessity,
vol. 1, Princeton University Press, Princeton, New Jersey, 1975.
[2]K. Bimbo, LEt→, LR

◦
∧∼, LK and cutfree proofs. Journal of Philosophical Logic. vol. 36

(2007), pp. 557–570.
[3] R. T. Brady, Normalized natural deduction system for some relevant logics I: The logic

DW. The Journal of Symbolic Logic, vol. 7 (2006), no. 1, pp. 35–66.
[4] J. M. Dunn, A ‘Gentzen system’ for positive relevant implication. The Journal of Sym-

bolic Logic, vol. 38 (1973), pp. 356–357.
[5] J. M. Dunn and G. Restall, Relevance logic, Handbook of Philosophical Logic, vol. 6

(D. Gabbay and F. Guenthner, editors), Kluwer Academic Publlishers, 2002, pp. 1–128.
[6]G. Gentzen, Collected Papers (M. E. Szabo, editor), North–Holland, Amsterdam,

1969.
[7]M. Ilić, An alternative gentzenization of RW ◦

+ .Mathematical Logic Quarterly, vol. 62
(2016), no. 6, pp. 465–480.
[8] R. K. Meyer and M. A. McRobbie, Multisets and relevant implication I. Australian

Journal of Philosophy, vol. 60 (1982), no. 2, pp. 107–139.
[9] ,Multisets and relevant implication II. Australian Journal of Philosophy, vol. 60

(1982), no. 3, pp. 265–281.
[10] G. Minc, Cut elimination theorem for relevant logics. Journal of Soviet Mathematics,

vol. 6 (1976), pp. 422–428.
[11] S. Negri, A normalizing system of natural deduction for intuitionistic linear logic.

Archive for Mathematical Logic, vol. 41 (2002), pp. 789–810.

� ASSYLBEK ISSAKHOV AND FARIZARAKYMZHANKYZY,Hyperimmunity and A–
computable numberings.
Department of Mechanics and Mathematics, Al-Farabi Kazakh National University, 71
Al-Farabi Ave., Almaty 050040, Kazakhstan.
E-mail: asylissakhov@mail.ru.
E-mail: fariza.rakymzhankyzy@gmail.com.
Let F be a family of total functions which is computable by an oracle A, where A is an

arbitrary set. A numbering α : � �→ F is calledA-computable if the binary function α(n)(x)
is A-computable, [1].

Lemma 1. LetF be an infiniteA-computable family of total functions, whereA is an arbitrary
set. Then F has an A-computable Friedberg numbering.
A degree a is hyperimmune if a contains a hyperimmune set, and a is hyperimmune free

otherwise. Every nonzero degree comparable with 0′ is hyperimmune. Dekker showed that
for every nonrecursive c.e. set A there is a hyperimmune set B such that B ≡T A, which
means that every nonrecursive c.e. degree contains a hyperimmune set.

Lemma 2. For every hyperimmune set A there exists a nonrecursive A-computable set B .

It is known [2], that if A is an arbitrary set, F is an infinite A-computable family of total
functions and F has at least two nonequivalent A-computable Friedberg numberings, then
F has infinitely many pairwise nonequivalent A-computable Friedberg numberings. And
also [3], if F is an infinite A-computable family of total functions, where ∅′ ≤T A, then F
has infinitely many pairwise nonequivalent A-computable Friedberg numberings.
We extend these results:

Theorem 3. Let F be an infinite A-computable family of total functions, where A is a
hyperimmune set. Then F has infinitely many pairwise nonequivalent A-computable Friedberg
numberings.

Note that, [4], if an A-computable family F of total functions contains at least two
elements, where A is a hyperimmune set, then F has no A-computable principal numbering.
Theorem 4 (Issakhov). Let F be a finite A-computable family of total functions, where

Turing degree of the set A is hyperimmune free. Then F has an A-computable principal
numbering.
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Question. Is it true the formulation of previous theorem for infinite family?
The main talk will be around this question.
[1] S. A. Badaev and S. S. Goncharov, Generalized computable universal numberings.

Algebra and Logic, vol. 53 (2014), no. 5, pp. 355–364.
[2] S. A. Badaev and A. A. Issakhov, Some absolute properties of A-computable number-

ings. Algebra and Logic, to appear.
[3] A. A. Issakhov, Ideals without minimal elements in Rogers semilattices. Algebra and

Logic, vol. 54 (2015), no. 3, pp. 197–203.
[4] ,A-computable numberings of the families of total functions, this Bulletin, vol.

22 (2016), no. 3, p. 402.

� ERIC JOHANNESSON AND ANDERS LUNDSTEDT, When one must strengthen one’s
induction hypothesis.
Department of Philosophy, Stockholm University, Universitetsvägen 10D, Stockholm, Swe-
den.
E-mail: eric.johannesson@philosophy.su.se.
E-mail: anders.lundstedt@philosophy.su.se.
Sometimes when trying to prove a fact by induction, one gets “stuck” at the induction

step. The solution is often to use a “stronger” induction hypothesis, that is to prove a
“stronger” result by induction. But in such cases, canwe say that “strengthening the induction
hypothesis” is necessary in order to prove the fact?
The general problem of when one must, in order to prove a fact X , first prove another

fact Y , seems very hard. Interestingly, the special case of when one must strengthen one’s
induction hypothesis turns out to be more manageable. We provide the following characteri-
zation of when one in fact must strengthen one’s induction hypothesis.
Let Th(N ) be the set of sentences of first-order arithmetic that are true in the standard

model. Let T ⊆ Th(N ) and let ϕ(x) and �(x) be formulas both with at most one free
variable x. Say that �(x) witnesses that T proves ∀xϕ(x) with and only with strengthened
induction hypothesis if and only if

(1) T ∪ {ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→ ∀x ϕ(x)} � ∀x ϕ(x),
(2) T 	 ϕ(0),
(3) T 	 �(0),
(4) T 	 ∀x (�(x)→ �(x + 1)),
(5) T 	 ∀x �(x)→ ∀x ϕ(x).
We show that this definition applies to a number of natural examples. By reflecting on

mathematical practice, we argue that this definition does capture the notion of “proof by
strengthened induction hypothesis”.

� DIANA KABYLZHANOVA, A note on computably enumerable preorders.
Department of Fundamental Mathematics, Al-Farabi Kazakh National University, 71 Al-
Farabi Avenue, Almaty 050040, Kazakhstan.
E-mail: dkabylzhanova@gmail.com.
A preorder is a reflexive and transitive binary relation. We are interested in computably

enumerable (c.e.) preorders, in particular, in weakly precomplete c.e. preorders, [2]. Let P
and Q be c.e. preorders. We say that P is computably reducible to Q (P ≤c Q) if there is a
computable function f such that xPy iff f(x)Qf(y) for every x, y ∈ �. A c.e. preorder P
is light if there exists a c.e. preorder Q in which all classes are singletones such that Q ≤c P,
and c.e. preorder P is called dark if P is not light and has no computable classes, [1]. A c.e.
preorder P is finite if P has a finite number of classes. We say that c.e. preorder P is weakly
precomplete if for every total function ϕe there exist xe such that ϕe(xe) ∼P xe .
Theorem 1. Let P be a nonuniversal c.e. preorder. Then there exists a weakly precomplete,

nonuniversal c.e. preorder Q, such that P ≤c Q.
Theorem 2. For every finite c.e. preorder P there are infinitely many minimal dark c.e.

preorders Pd such that P ≤c Pd .
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[1]U. Andrews and A. Sorbi, Joins and meets in the structure or ceers, in preparation.
[2] S. Badaev and A. Sorbi,Weakly precomplete computably enumerable equivalence rela-

tions.Mathematical Logic Quarterly, vol. 62 (2016), no. 1–2, pp. 111–127.

� YECHIELM. KIMCHI, Partition relations equiconsistent with o(o(. . . o(κ) . . . )) = 2.
CS Faculty, The Technion, Haifa 32000, Israel.
E-mail: yechiel@cs.technion.ac.il.
Preamble. We try to associate the consistency strength of statements like o(κ) = α (for κ

measurable) with various partition relations of the form κ → (�)α� . Here, we restrict ourselves
to partitions of the form ℵ1 → (�α)�αℵ0 . Since we work under ZFC, the partition properties
are limited to definable functions.
In [3], M. Spector proved that for α = 1

CON(∃κ (o(κ) = α)) ⇐⇒ CON(ℵ1 → (�α)�αℵ0 ).
In [1] we have shown that it can be generalized to α = 2 only (which serves as the basis
for the current presentation). In order to resurrect the nice equiconsistency we defined the
notion of weak-homogeneity, and recently, in [2], we extended the result to

CON(∃κ (o(κ) = κ+)) ⇐⇒ CON(ℵ1 WH−→ (ℵ1)ℵ1ℵ0 ).
The failure of the original equiconsistency for α = 3, lead us in the past to prove

CON(ℵ1 → (�3)�3ℵ0 ) ⇐⇒ CON(∃κ (o(o(κ)) = 2)).
In this presentation we extend the latter for all α < �, and for that we need two simple
definitions. The first one is just notational: κ Cl−→ (�)α� means that both the homogeneous
sequence of o.t. � and the sequences of o.t. α in the domain of the functions, are restricted
to closed sequences. The second iterates the o(κ) function:
Definition. on(�) is defined by induction on n ∈ � for any ordinal �:

(i) o0(�) = �, (ii) on+1(�) = o(on(�)).

We are now able to state the following two related theorems:
Theorem 1. For any n ∈ �(n ≥ 2), CON(ℵ1 Cl−→ (�n)�nℵ0 ) ⇐⇒ CON(∃κ (on(κ) = 2)).
Theorem 2. For n ∈ �(n ≥ 1), CON(ℵ1 → (�n+1)�n+1ℵ0 ) ⇐⇒ CON(∃κ (on(κ) = 2)).
Note 1: The new result is the forward direction (from left to right).
Note 2: The exact consistency strength of the statement ℵ1 → (��)��ℵ0 , is still not known.

All we know (cf. [1]) is that it implies the consistency of the statement ∃κ (o(κ) > κ),
witnessing yet another jump in the relationship between partition properties and measurable
cardinals.
[1] Y. M. Kimchi, Dissertation, Hebrew University of Jerusalem, Israel, 1987.
[2] , Partition relation equiconsistent with ∃κ (o(κ) = κ+), The 5th Eu-

ropean Set Theory Conference, Newton Institute, Cambridge, UK, August 2015.
https://www.newton.ac.uk/seminar/20150826140014302.
[3]M. Spector, Natural sentences of mathematics which are independent of V = L,

V = L� etc., preprint, 1978.

� PHOKION G. KOLAITIS, Schema mappings: structural properties and limits.
Computer Science Department, University of California Santa Cruz, Santa Cruz, CA 95604,
USA and IBM Research—Almaden, 650 Harry Road, San Jose, CA 95120, USA.
E-mail: kolaitis@cs.ucsc.edu.
A schema mapping is a high-level specification of the relationship between two database

schemas. For the past fifteen years, schema mappings have played an essential role in the
modeling and analysis of important data interoperability tasks, such as data exchange and
data integration. Syntactically, schema mappings are expressed in some schema-mapping
language, which, typically, is a fragment of first-order logic or second-order logic. In the
first part of the talk, we will introduce the main schema-mapping languages, will discuss
the fundamental structural properties of these languages, and will then use these structural
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properties to obtain characterizations of various schema-mapping languages in the spirit of
abstract model theory. In the second part of the talk, we will examine schema mappings
from a dynamic viewpoint by considering sequences of schema mappings and studying the
convergence properties of such sequences. To this effect, we will introduce a metric space
that is based on a natural notion of distance between sets of database instances and will
investigate pointwise limits and uniform limits of sequences of schema mappings. Among
other findings, it will turn out that the completion of this metric space can be described in
terms of graph limits arising from converging sequences of homomorphism densities.

� ANGELIKI KOUTSOUKOU-ARGYRAKI, An invitation to proof mining: two applications
in nonlinear operator theory.
Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstrasse 7
64289 Darmstadt, Germany.
E-mail: koutsoukou@mathematik.tu-darmstadt.de.
The revival of Kreisel’s program of unwinding of proofs by Kohlenbach as proof mining

has been very fruitful for applications in many mathematical disciplines, especially within
analysis. The scope of the program is the extraction of constructive information (e.g., com-
putable bounds) from nonconstructive mathematical proofs. This can be a priori guaranteed
by certain logical metatheorems. The quantitative content emerges through the discovery of
quantifiers that were implicit in the original proof. The bounds obtained are explicit, highly
uniform and of low complexity. We present here: (i) Bounds extracted for the computation of
approximate common fixed points of one-parameter nonexpansive semigroups on a subset
of a Banach space, obtained via proof mining on a proof by Suzuki. The bounds differ from
those that had been obtained in [1] via proof mining on a completely different proof by Suzuki
of a generalised version of the studied statement. (ii) Computable rates for the convergence
of the resolvents of set-valued operators on a real Banach space that fulfill certain accretivity
conditions to the zero of each operator, that were extracted via proof mining on a proof by
Garcı́a-Falset. The above results are, among others, included in [2] and can be of interest for
optimization theory.
[1]U. Kohlenbach and A. Koutsoukou-Argyraki, Effective asymptotic regularity for

one-parameter nonexpansive semigroups. Journal of Mathematical Analysis and Applications,
vol. 433 (2016), no. 2, pp. 1883–1903.
[2] A. Koutsoukou-Argyraki, Proof mining for nonlinear operator theory: Four case

studies on accretive operators, the Cauchy problem and nonexpansive semigroups, Ph.D. thesis,
Technische Universität Darmstadt, URN: urn:nbn:de:tuda-tuprints-61015, 2017.

� BEIBUT KULPESHOV AND SERGEY SUDOPLATOV, On distributions for countable
models of quite o-minimal theories with nonmaximum many countable models.
International Information Technology University, Almaty, Kazakhstan; Institute of Mathe-
matics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
Sobolev Institute of Mathematics, Novosibirsk, Russia; Novosibirsk State Technical Uni-
versity, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Institute of
Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: sudoplat@math.nsc.ru.
Quite o-minimal theories (which were introduced in [1]) form a subclass of the class of

weakly o-minimal theories preserving a series of properties of o-minimal theories. Using
structural results on quite o-minimal Ehrenfeucht theories and solving the Vaught’s con-
jecture [2] similar to [3], a general approach to the classification of countable models of
complete theories [4] is applied to the class of quite o-minimal theories with nonmaximum
many countable models.
We use the following theorem and the general decomposition formula [4] for the num-

ber I (T,�) of countable models of theory T , the finite Rudin–Keisler preorder RK(T ) of
almost prime models of T , and the distribution function IL of limit models with respect
to RK(T ):
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I (T,�) = |RK(T )|+
|RK(T )/∼RK|−1∑

i=0

IL(M̃i). (1)

Theorem 1 ([2]). Let T be a quite o-minimal theory in a countable language. Then either T
has 2� countable models or T has exactly 3k · 6s countable models, where k and s are natural
numbers. Moreover, for any k, s ∈ � there is a quite o-minimal theory T with exactly 3k · 6s
countable models.
The Rudin–Keisler preorders RK(T ) as well as the distribution functions IL are described

for quite o-minimal theories T with nonmaximum many countable models. The decomposi-
tion formula (1) is represented in the following form:

3k · 6s = 2k · 3s +
k∑
t=0

s∑
m=0

2s−m · (2t · 4m − 1) · C tk · Cms .

[1] B. S. Kulpeshov, Convexity rank and orthogonality in weakly o-minimal theories,News
of theNationalAcademyof Sciences of theRepublic ofKazakhstan, Physical andMathematical
Series, vol. 227, 2003, pp. 26–31.
[2] B. S.Kulpeshov andS.V. Sudoplatov,Vaught’s conjecture for quite o-minimal theories.

Annals of Pure and Applied Logic, vol. 168 (2017), no. 1, pp. 129–149.
[3] L. L.Mayer,Vaught’s conjecture for o-minimal theories.The Journal of Symbolic Logic,

vol. 53 (1988), no. 1, pp. 146–159.
[4] S. V. Sudoplatov, Classification of Countable Models of Complete Theories, Novosi-

birsk, Edition of NSTU, 2014.

� TAISHI KURAHASHI, Two theorems on provability logics.
Department of Natural Science, National Institute of Technology, Kisarazu College, 2-11-1
Kiyomidai-higashi, Kisarazu, Chiba, Japan.
E-mail: kurahashi@n.kisarazu.ac.jp.
We say that a formula �(v) is a numeration of a theory T if {n ∈ � : PA 	 �(n)} is

exactly the set of all Gödel numbers of the axioms of T . For each numeration �(v) of T , the
provability predicate Pr�(x) of T is naturally constructed. An arithmetical interpretation f
is a mapping from the set of all propositional variables to the set of sentences of arithmetic.
Each arithmetical interpretation f is uniquely extended to the mapping f� from the set of
all modal formulas to the set of sentences of arithmetic so that f� commutes with every
propositional connective, and f�(�A) is Pr�(�f�(A)�). The provability logic PL�(U ) of �(v)
relative to a theory U is the set {A : U 	 f�(A) for all arithmetical interpretations f} of
modal formulas (see [1,2]).
We proved the following two theorems.
Theorem 1. LetU be any recursively axiomatized consistent extension of PA. If L is one of

the logics GLα , D� , S� and GL−
� where α ⊆ � is recursively enumerable and � ⊆ � is cofinite,

then there exists a Σ1 numeration �(v) of some extension of IΣ1 such that PL�(U ) is exactly L.
Theorem 2. Let T be any recursively axiomatized consistent extension of PA. If L is one of

the logics K and K + �(�np → p)→ �p (n ≥ 2), then there exists a Σ2 numeration �(v) of
T such that PL�(T ) is exactly L.
The logics K+�(�np → p)→ �p (n ≥ 2) were introduced by Sacchetti [3].
[1] S. N. Artemov and L. D. Beklemishev, Provability logic, Handbook of Philosophical

Logic, vol. 13, second ed. (D. M. Gabbay and F. Guenthner, editors), Springer, Dordrecht,
2005, pp. 189–360.
[2] L. D. Beklemishev, On the classification of propositional provability logics. Izvestiya

Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 53 (1989), no. 5, pp. 915–943.
[3] L. Sacchetti, The fixed point property in modal logic. Notre Dame Journal of Formal

Logic, vol. 42 (2001), no. 2, pp. 65–86.

� MICHAEL LIEBERMAN, JIŘÍ ROSICKÝ, AND SEBASTIEN VASEY, Set-theoretic
pathologies in accessible categories.
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Department of Mathematics and Statistics, Masaryk University, Kotlarska 2, Brno 602 00,
Czech Republic.
E-mail: lieberman@math.muni.cz.
Recent work in abstract model theory (see [2,3,4]) has highlighted the highly desirable

properties of abstract classes under large cardinals axioms, chiefly the assumption of a
proper class of strongly (or almost strongly) compact cardinals. There are parallel results
for accessible categories (see [5,6]), in addition to earlier work of [1] concerning Vopěnka’s
Principle.We here consider the other end of the spectrum: pathological behavior of accessible
categories assuming that there is only a set of measurable cardinals or, indeed, that V =
L. The pathological examples, which are built directly out of the cumulative set-theoretic
hierarchies, include the non-co-well-powered accessible category considered in [1] and [7], as
well as an example tucked away in [8], which we have newly adapted to this context.
[1] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, LMS Lec-

ture Note Series 189, Cambridge University Press, 1994.
[2] J. Baldwin andW. Boney, Hanf numbers and presentation theorems in AECs, Beyond

First Order Model Theory (J. Iovino, editor), CRC Press, 2017, to appear.
[3]W. Boney, Tameness from large cardinal axioms. The Journal of Symbolic Logic, vol.

163 (2012), pp. 2008–2017.
[4]W. Boney and S. Unger, Large cardinal axioms from tameness in AECs. Proceedings

of the American Mathematical Society, to appear.
[5]M. Lieberman and J. Rosický, Classification theory for accessible categories. The

Journal of Symbolic Logic, vol. 81 (2016), no. 1, pp. 151–165.
[6] , Hanf numbers via accessible images, arXiv:1610.07816v4.
[7]M.Makkai andR. Paré,Accessible Categories:The Foundations of Categorical Model

Theory, Contemporary Mathematics, vol. 104, AMS, 1989.
[8] S. Shelah,Model theory for a compact cardinal, arXiv:1303.5247v3.

� ROUSSANKA LOUKANOVA, Type Theory of Restricted Algorithms and Neural Networks.
Department of Mathematics, Stockholm University, Sweden.
E-mail: rloukanova@gmail.com.
Moschovakis [1] introduced a new approach to the mathematical concept of algorithm.

In [2], he extended the approach to typed acyclic recursion, by a formal language L�ar equipped
with a reduction calculus. The theory L�ar represents crucial semantic distinctions in formal
and natural languages. We present our development of L�ar to Type Theory of Restricted
Algorithms (TTofRAlg), as a mathematical theory of the notion of algorithm, by adding a
restrictor as an operator. The purpose is to model procedural memory and functionality of
biological entities, in particular neurons and neural networks.
Like L�ar, TTofRAlg has two kinds of typed variables: pure variables, for �-abstraction

operator and memory (recursion) variables, for storing information. The terms of TTofRAlg
are generated by the rules:

A :≡ c� : � | x� : � | B (�→�)(C�) : � | �(v�) (B�) : (� → �) (1a)

| (A�00 where {p�11 := A�11 , . . . , p�nn := A�nn }
)
: �0 (1b)

| (A�00 such that {C�11 , . . . ,C�mm }
)
: �0, (1c)

given that c is a constant, x is a variable of ether kind, and pi , are recursion variables of
respective types, and each �i is either the type t of truth values, or the type t̃ of state dependent
truth values.
A recursion termA of the form (1b) designates a recursor, i.e., an algorithm for computing

the denotation of A. A term A of the form (1c) designates a restrictor that constrains the
denotation of A with constraints C�11 , . . . ,C

�m
m .

Reduction calculus. We introduce a reduction calculus of TTofRAlg, which extends the
reduction system of L�ar. Each term has a unique, up to congruence, canonical form. The
recursion terms in canonical forms represent algorithms for mutually recursive computa-
tions, which, in addition, can be restricted by constraints of the form (1c). Assignments
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of terms to memory variables in recursion terms (1b) represent saving objects and out-
comes of computations in memory cells. Semantically, the memory variables, which occur in
a TTofRAlg term, represent memory cells of a computational entity, which are engaged
in algorithmic computations. The subclass of TTofRAlg, which is limited to recursion
terms (1b) with acyclic assignments, represents acyclic algorithms that always end their
computations.
Neural networks. Memory cells in specialised assemblies can establish networks of mem-

ory cells. A formal language of functional neural nets (NNets) is a specialised version of the
language TTofRAlg. We define terms designating neural nets as complex units of restricted
memory variables and terms. A neural net consists of memory components, which are re-
stricted simultaneously by complex constraints, and can involve recursive
computations.
[1] Y. N. Moschovakis, Sense and denotation as algorithm and value, Lecture Notes in

Logic, vol. 2 (J. Oikkonen and J. Vaananen, editors), Springer, 1994, pp. 210–249.
[2] , A logical calculus of meaning and synonymy. Linguistics and Philosophy, vol.

29, pp. 27–89.

� ROBERT LUBARSKY, Determinacy of Boolean combinations of Σ03 games.
Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Rd., Boca
Raton, FL 33431, USA.
E-mail: Lubarsky.Robert@comcast.net.
Welch characterized the ordinal at which winning strategies for all Σ03 games appear, via Σ2

reflection; namely, it is the least ordinal which is the ordinal standard part of a nonstandard
model which has an infinite nested sequence of pairs of ordinals, the smaller of which is a
Σ2 substructure of the larger. This reflection property is strictly between Σ2 admissibility and
Σ2 nonprojectibility. Montalban and Shore showed that this is the beginning of a hierarchy,
in that the least ordinal for winning strategies for all games which are alternating differences
of m-many Σ03 sets is strictly between the least m + 1-admissible and m + 1-nonprojectible.
Here we show the straightforward generalization of Welch’s result, that this ordinal is the
least standard part of a model with an infinite nesting of Σm+1-elementary pairs. This talk
will be an introduction to the subject.
[1] A. Montalban and R. Shore, The limits of determinacy in second order arithmetic.

Proceedings of the London Mathematical Society, vol. 104 (2012), pp. 223–252.
[2] , The limits of determinacy in second order arithmetic: Consistency and

complexity strength. Israel Journal of Mathematics, vol. 204 (2014), pp. 477–508. doi:
10.1007/s11856-014-1117-9.
[3] P. Welch, Weak systems of determinacy and arithmetical quasi-inductive definitions.

The Journal of Symbolic Logic, vol. 76 (2011), pp. 418–436.

� ALBERTOMARCONE, Strongly surjective linear orders.
Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, via delle
Scienze 208, 33100 Udine, Italy.
E-mail: alberto.marcone@uniud.it.
URL Address: http://users.dimi.uniud.it/∼alberto.marcone/.
A linear order L is strongly surjective if there exists an order preserving surjection from L

onto each of its suborders. For example, an ordinal is strongly surjective if and only if it is of
the form �αm, for some α < �1 and m > 0.
Ourmain result is that the setStS of countable strongly surjective linear orders is a Ď2(Π11)-

complete set. This means that StS is the union of an analytic and a coanalytic set, and is
complete for the class of sets that can be written in this way. More in detail, we show that the
countable strongly surjective linear orders which are scattered form aΠ11-complete set, while
the countable strongly surjective linear orders which are not scattered form a Σ11-complete
set. Our proof of the upper bound for scattered strongly surjective orders makes an essential
use of both effective descriptive set theory and the fact that order preserving surjections well
quasi-order the countable linear orders ([1,3]).
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Even if the study of the first two levels of the projective hierarchy is a long-standing topic,
examples of sets that are true Δ12 are very rare. In fact, as far as we know, StS is the first
concrete example of a “natural” Ď2(Π11)-complete set.
If time permits, I’ll also discuss uncountable strongly surjective linear orders.We can prove

their existence under either PFA or �+, while the provability in ZFC of the existence of these
orders is an interesting open problem.
This is joint work with Riccardo Camerlo and Raphaël Carroy ([2]).
[1] R.Camerlo, R.Carroy, andA.Marcone,Epimorphisms between linear orders.Order,

vol. 32 (2015), pp. 387–400, arXiv:1403.2158.
[2] , Linear orders: When embeddability and epimorphism agree,

arXiv:1701.02020.
[3] C. Landraitis, A combinatorial property of the homomorphism relation between count-

able order types. The Journal of Symbolic Logic, vol. 44 (1979), pp. 403–411.

� JUAN CARLOSMARTÍNEZ,On pcf spaces which are not Fréchet–Urysohn.
Faculty of Mathematics, University of Barcelona, 08007 Barcelona, Spain.
E-mail: jcmartinez@ub.edu.
An admissible poset is a triple 〈T,≺, i〉 such that T is a nonempty set,≺ is a well-founded

ordering on T and i : [T ]2 → [T ]<� satisfying the following two properties:
(1) For all u, s, t ∈ T , u ! s and u ! t iff u ! v for some v ∈ i{s, t}.
(2) For all t ∈ T and all α less than the≺-rank of t, {s ∈ T : s ≺ t}∩{s ∈ T : rank(s) =

α} is infinite.
An admissible poset 〈T,≺, i〉 has associated with it a locally compact, Hausdorff and

scattered spaceX of underlying setT whose basic open sets are of the form bt\(bu0∪· · ·∪bun ),
where bt = {s ∈ T : s ! t} for each t ∈ T . If Y is a subset of T , Y denotes the closure of
Y in X .
A pcf structure is an admissible poset 〈� + 1,≺, i〉 where � is an infinite ordinal such that

the following conditions are satisfied:
(PCF1) If 
 ≺ � then 
 ∈ �.
(PCF2) � = � + 1.
(PCF3) If I ⊆ � + 1 is an interval, then I is also an interval.
(PCF4) � ≺ � for every � ∈ �.
(PCF5) For each 
 ∈ � of uncountable cofinality there is a club C
 of 
 such that

C
 ⊆ 
 + 1.
The compact, Hausdorff, scattered space X associated with a pcf structure is called a pcf

space, whose height is defined as the least ordinal α such that the αth Cantor–Bendixson
level ofX is empty. In [1], it was shown by means of a forcing argument that if CH holds then
there is a pcf space of height�1 +1 which is not Fréchet–Urysohn, answering in a partial way
a question posed by Todorcevic. Then, we will give here a simpler proof of Pereira’s theorem
by means of a forcing-free argument and we will extend his result to pcf spaces of any height
� + 1 where � < �2 with cf(�) = �1.
[1] L. Pereira, Applications of the topological representation of the pcf-structure. Archive

for Mathematical Logic, vol. 47 (2008), no. 5, pp. 517–527.

� JOSÉM.MÉNDEZ, GEMMAROBLES, SANDRAM. LÓPEZ, ANDMARCOSM.RE-
CIO,Belnap–Dunn semantics for natural implicative expansions of Kleene’s strong three-valued
matrix.
Universidad de Salamanca. Edificio FES, Campus Unamuno, 37007 Salamanca, Spain.
E-mail: sefus@usal.es.
URL Address: http://sites.google.com/site/sefusmendez.
Dpto. de Psicologı́a, Sociologı́a y Filosofı́a, Universidad de León, Campus Vegazana, s/n,
24071 León, Spain.
E-mail: gemmarobles@gmail.com.
URL Address: http://grobv.unileon.es.
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Dpto. de Filosofı́a, Lógica y Estética, Universidad de Salamanca. Edificio FES, Campus
Unamuno, 37007 Salamanca, Spain.
E-mail: sandralv@usal.es.
E-mail: marcosmanuelrecioperez@usal.es.
Belnap–Dunn type bivalent semantics is the semantics originally defined for interpreting

Anderson and Belnap’s “First Degree Entailment Logic” (cf. [1] and references therein).
On the other hand, the notion of a “natural implication” is understood as it is defined
in [2]. According to this notion, there are exactly 24 natural implicative expansions of
Kleene’s strong three-valued matrix with 1 and 1/2 as designated values. Some of these
expansions characterize interesting logics such as paraconsistent expansions of the three-
valued extensions of the positive fragments of Lewis’ S5 and three-valued Gödel
logic G3.
The aim of this article is to define a Belnap–Dunn type bivalent semantics for the logics

determined by each one of these 24 implicative expansions.
Acknowledgments.Work supported by research project FFI2014-53919-P, financed by the

Spanish Ministry of Economy and Competitiveness.
[1] A. R. Anderson and N. D. Belnap, Jr., Entailment. The Logic of Relevance and

Necessity, vol. 1, Princeton University Press, 1975.
[2]N. Tomova, A Lattice of implicative extensions of regular Kleene’s logics. Reports on

Mathematical Logic, vol. 47 (2012), pp. 173–182.

� RUSSELL MILLER, Topology of isomorphism types of countable structures.
Mathematics Dept., Queens College &CUNYGraduate Center, 65-30 Kissena Blvd. Queens
NY 11367, USA.
E-mail: Russell.Miller@qc.cuny.edu.
URL Address: qcpages.qc.cuny.edu/∼rmiller.
Let C be a class of countable structures, closed under isomorphism. The collection of all

members of C with domain � forms a subspace of Cantor space: the atomic diagram of
each structure becomes a subset of �, using a Godel coding of the atomic formulas in the
language of C with extra constants from �. We give this space the subspace topology, and
then endow the quotient space I (C) = C/∼=, under the relation of isomorphism, with the
quotient topology. The result is that we view the isomorphism types of elements of C as
elements of this topological space I (C).
The isomorphism relation on C often resembles various of the well-known Borel equiv-

alence relations on either Cantor space 2� or Baire space �� . Determining which Borel
equivalence relations yield spaces homeomorphic to I (C) requires the use of techniques from
computable structure theory, along with reductions of the sort used in Borel reducibility, only
stronger. These reductions may be regarded as type-2 computable functions. Often the main
goal is to determine which definable relations on the members of C, if added to the language,
turn I (C) into a recognizable space: when this happens, we may say that the elements of C
are classified up to isomorphism by the members of the recognizable space.
The talk will consist largely of examples of these phenomena, mostly using classes in

which isomorphism is an arithmetic relation, such as algebraic fields, finite-valence graphs,
torsion-free abelian groups, and equivalence structures.

� RYSZARDMIREK, Euclidean geometry in Renaissance.
Department of Philosophy, Pedagogical University of Krakow, Podchorazych 1, Poland.
E-mail: mirek.r@poczta.fm.
In Euclidean Elements in Book IV, Proposition 16, one can find how to inscribe an

equilateral and equiangular fifteen-angled figure in a given circle. This construction was used
both in theoretical and practical terms by Piero della Francesca. For instance in the setting of
his painting Baptism of Christ one can find the first part of the construction. In the top side of
the rectangle we construct an equilateral triangle, and we find that its apex falls at the point
where the central vertical axis passes through the tip of Christ’s right foot. Then we locate the
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center of the triangle and find it to be precisely at the fingertips of Christ’s hands in prayer. In
this way it is possible to set the center point of the painting. The result can be combined with
Proposition 1.13 of his De Prospectiva Pingendi. In the second part of the treatise one can
find more geometrical problems and theorems that have obvious relevance to Piero’s work
as a painter. There are problems of drawing a combination of prisms (Proposition 2.6), a
beam of octogonal cross-section, lying on the ground plane (2.8), of drawing a cross-vaulted
structure with a square ground plane (2.11).
My goal here is to describe the advanced geometrical exercises presented in the form of

propositions. The treatise of Piero della Francesca is manifestation of a union of the fine arts
and the mathematical sciences of arithmetic and geometry. The proofs of propositions are
presented both in geometrical and mathematical form but from a logical point of view it is
proposed by me a method of natural deduction that takes into account the importance of
diagrams within formal proofs.

� ALIREZAMOFIDI, Some VC-combinatorial aspects of definable set systems.
Department of Mathematics and Computer Science, Amirkabir University of Technology,
P.O. Box 15875-4413, 424 Hafez Ave, Tehran, Iran.
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box
19395-5746, Niavaran Square, Tehran, Iran.
E-mail: mofidi@aut.ac.ir.
Several aspects of interactions between combinatorial features of definable set

systems and model theoretic properties of them have been explored in different studies
in recent years such as [1,2,3,4], etc. For example many connections between notions of
VC-dimension, VC-density, (p,q)-theorems and compression schemes from combinatorial
sides and NIP, forking and UDTFS from model theoretic side has been studied. Also some
VC-combinatorial invariants are defined in [5]. We will talk about some further develop-
ments in these directions. We consider several new combinatorial assumptions on defin-
able set systems, in particular some properties with an extremal combinatorial nature, and
then explore their model theoretic impacts for example on complexities in stability hierar-
chy, spaces of types, etc. We also give several examples in each case. Meanwhile, we give
characterizations of some stability theoretic dividing lines in terms of such combinatorial
properties.
[1]M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, and S. Starchenko,

Vapnik–Chervonenkis density in some theories without the independence property I. Transac-
tions of the American Mathematical Society, vol. 368 (2016), no. 8, pp. 5889–5949.
[2] A. Chernikov and P. Simon, Externally definable sets and dependent pairs II. Transac-

tions of the American Mathematical Society, vol. 367 (2015), pp. 5217–5235.
[3] V. Guingona and C. Hill, On Vapnik–Chervonenkis density over indiscernible se-

quences.Mathematical Logic Quarterly, vol. 1–2 (2014), pp. 59–65.
[4]H. Johnson, Vapnik–Chervonenkis density on indiscernible sequences, stability, and the

maximum property. Notre Dame Journal of Formal Logic, vol. 56 (2015), no. 4, pp. 583–593.
[5] A. Mofidi, On some dynamical aspects of NIP theories. Archive for Mathematical

Logic, to appear.

� ANTONIO MONTALBAN AND JAMES WALSH, Canonical aspects of reflection princi-
ples.
Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA.
E-mail: antonio@math.berkeley.edu.
Group inLogic and theMethodology of Science,University of California, Berkeley, Berkeley,
CA 94720, USA.
E-mail: walsh@math.berkeley.edu.
It is a well known empirical phenomenon that natural axiomatic theories are well-ordered

by their consistency strength. One expression of this phenomenon comes from ordinal analy-
sis, a research program whereby recursive ordinals are assigned to theories as a measurement
of their consistency strength. One method for calculating the proof-theoretic ordinal of a
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theory T involves demonstrating that T can be approximated over a weak base theory by
reflection principles, such as consistency statements and their generalizations [1,2]. Why are
natural theories amenable to such analysis? Fixing a base theory T that interprets elemen-
tary arithmetic, we study recursive monotonic functions on the Lindenbaum algebra of T .
In this talk we discuss some results that demonstrate that consistency and other reflection
principles are canonical among such functions. We also discuss how these results address our
motivating questions.
[1] L. Beklemishev, Proof-theoretic analysis by iterated reflection. Archive for Mathemat-

ical Logic, vol. 6 (2003), no. 42, pp. 515–552.
[2] , Provability algebras and proof-theoretic ordinals I. Annals of Pure and Applied

Logic, vol. 128 (2004), no. 1–3, pp. 103–123.

� JOACHIMMUELLER-THEYS, On the provability of consistency.
Kurpfalzstr. 53, 69 226 Nußloch bei Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.
A consistency sentence Con�Σ := ¬ProvΣ(���) states in the standard model that the decid-

able system Σ is consistent, viz. N |= Con�Σ iff Σ #	 ⊥. We showed at [1] that this is the case
if Σ 	 ¬� or Σ #	 �. So Gödel’s ConΣ is a consistency sentence indeed. By Löb’s Theorem,
Σ #	 Con⊥Σ if Σ 	 PA is consistent.
We have recently found an alternative consistency sentence, the unprovability of which

can be shown much more easily and already for consistent Σ 	 Q. The proof exploits that
the provability predicate does not negatively represent Σ in itself, viz. there are �B such that
Σ #	 �B, but non Σ 	 ¬ProvΣ(��B�), whence Con′Σ := Con�BΣ already does the job. [1]
Specifying a remark of Evgeny I. Gordon during LC ’15, such negative consistency sen-

tences do not show the unprovability of consistency in general; they only show the unprov-
ability of consistency by them. Accordingly, there might be positive consistency sentences,
which would—by the analogous argument—prove the consistency of Σ in Σ. If Σ #	 �
and Σ 	 ¬ProvΣ(���), Con�Σ is a positive consistency sentence; and total negative self-
irrepresentability seems to be unnatural and unlikely.
In search for suchlike sentences, we realised that Σ #	 Con�Σ for all Σ 	 ¬�, and, subse-

quently, that the required Σ #	 Con⊥Σ implies Σ #	 Con�Σ can be proven without any precondi-
tion on �. This has the incredible consequence that Σ #	 ¬ProvΣ(���) for all �. In particular,
all consistency sentences are negative. It follows either that there is no Con�Σ stating in the
theory of Σ that Σ is consistent.
Note. We obtained the theorem first in a more complicated and less general way by

¬�p #∈ GL (which we had gained from a lemma for [2]) and Solovay’s Theorem.
[1] J. Mueller-Theys, Defining & simplifying Gödel’s 2nd incompleteness theorem, ASL

2017 Spring Meeting, Seattle.
[2] , On uniform substitution, this Bulletin, vol. 20 (2014), pp. 264–5.

� RAJA NATARAJAN, Diagrammatic reasoning for Boolean equations.
School of Technology & Computer Science, Tata Institute of Fundamental Research, Homi
Bhabha Road, Mumbai 400 005, India.
E-mail: raja@tifr.res.in.
URL Address: www.tcs.tifr.res.in/∼raja.
Diagrammatic approaches to deductive and formal reasoning [1,2] have seen a resurgence

in recent years. We propose a diagrammatic method for deciding whether Boolean equations
over set-valued variables are tautologies or not. Conventional diagrammatic approaches
to the above decision problem work reasonably well when the total number of sets under
consideration is rather small. However, conventional approaches become cumbersome, if
not completely unusable, while dealing with a large number of sets. We devise an algorithm
for the above decision problem, and demonstrate that it scales well when the number of set
variables in the equations increases rapidly.
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[1]M. Gardner, Logic Machines and Diagrams, second ed., The University of Chicago
Press, 1982.
[2]D. D. Roberts, The Existential Graphs of Charles S. Pierce, Mouton & Co. N.V.,

Publishers, The Hague, 1973.

� ITAY NEEMAN AND ZACH NORWOOD,Happy and mad families.
Department of Mathematics, University of California Los Angeles, CA 90095-1555, USA.
E-mail: ineeman@math.ucla.edu.
E-mail: znorwood@math.ucla.edu.
In 2015, Törnquist [4] answered an old question of Mathias [1] by showing that there are

no infinite mad families in the Solovaymodel.Mathias’s original article explores a connection
between mad families and the H -Ramsey property for H a happy family, but Törnquist’s
proof is purely combinatorial and does not exploit this connection. We prove the following
theorem: in the Solovay model, every X ⊆ [�]� isH -Ramsey for every happy family H that
also belongs to the Solovay model. This gives a new proof of Törnquist’s theorem.
Törnquist also asked whether the Axiom of Determinacy (AD) implies that there are no

infinite mad families. Using a new generic absoluteness result that builds on the absoluteness
results of [3], we show how to give a positive answer under AD+, a well-studied strengthening
of AD. (It is open whether AD and AD+ are equivalent.) In fact, we show that under AD+

every X ⊆ [�]� isH -Ramsey for every happy family H .
[1] A. R. D. Mathias, Happy families. Annals of Mathematical Logic, vol. 12 (1997), no.

1, pp. 59–111.
[2] I. Neeman and Z. Norwood, Happy and MAD families in L(R), submitted.
[3] I. Neeman and J. Zapletal, Proper forcing and L(R). The Journal of Symbolic Logic,

vol. 66 (2001), no. 2, pp. 801–810.
[4] A. Törnquist, Definability and almost disjoint families, submitted.

� VLADISLAV NENCHEV, Definability between temporal relations in dynamic mereology.
Department of Mathematical Logic, Faculty of Mathematics and Informatics, Sofia Univer-
sity, 1164 Sofia, 5 James Bourchier Blvd., Bulgaria.
E-mail: vladislavn@fmi.uni-sofia.bg.
This article explores definability dependencies between temporal and spatio-temporal

relations in some dynamic mereological systems. These systems are part of a point-free
approach to spatial and temporal theories. The approach in question describes space and
time in terms of “regions”,which are tangible and/or regular parts of space or time (“periods”
or “epochs” may be used for parts of time). The point-free theories forgo standard Euclidean
notions like “point” or “line”, arguing that such objects are abstract and do not exist in
reality. Space and time are built, instead, on regions, while points and lines are complex
constructs of specific sets of regions (see [1] and [2] for recent studies in this area).
The current studies compare three types of systems, which are different types of dynamic

spatio-temporal structures. The first two types aremereological reducts of dynamic structures
from [2]:Dynamic Mereological Algebras (DMAs) are algebraic structures that use products
of Boolean algebras to track changes in space and time, while rich Dynamic Mereological
Algebras are a specific kind of DMAs that include special spatio-temporal regions, called
“time representatives”. The third type of structures is the relational variants of DMAs
from [1] that have much weaker language and conditions on their domains. All of these
systems include the following four dynamic relations: unstable part-of (a dynamic region is
sometimes part of another dynamic region), stable overlap (a dynamic region always overlaps
with another), stable underlap (a pair of regions always do not exhaust the whole space), and
temporal contact (a pair of regions exist simultaneously at some point).
The results in this article show that in rich DMAs all of the four relations are equivalent

(each of them can define the other three), in general DMAs the first three are equivalent,
while the temporal contact is independent, and in relational DMAs all four relations are
completely independent from each other.
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[1] V. Nenchev, Logics for stable and unstable mereological relations. Central European
Journal of Mathematics, vol. 9 (2011), no. 6, pp. 1354–1379.
[2]D. Vakarelov,Dynamic mereotopology. III.Whiteheadian type of integrated point-free

theories of space and time. Part II. Algebra and Logic, vol. 55 (2016), no. 1, pp. 9–23.

� TAHSIN ONER AND IBRAHIM SENTURK, An analysis of Peterson’s intermediate syl-
logisms with Caroll’s diagrammatic method.
Mathematics Department, Faculty of Science, EgeUniversity, 35100 Bornova, Izmir, Turkey.
E-mail: tahsin.oner@ege.edu.tr.
E-mail: ibrahim.senturk@ege.edu.tr.
In this work, our purpose is to analyze the Peterson’s Intermediate Syllogisms by means

of Caroll’s diagrammatic method. For this aim, we first construct a formal system PISLCD
(Peterson’s Intermediate Syllogistic Logic with Caroll Diagrams), which gives us a formal
approach to logical reasoning with diagrams, for representations of the fundamental In-
termediate propositions and show that they are closed under the intermediate syllogistic
criterion of inference which is the deletion of middle term. Therefore, it is implemented to
let the formalism comprise synchronically bilateral and trilateral diagrammatical appearance
and a naive algorithmic nature. And also, there is no specific knowledge or exclusive ability
is needed in order to understand it and use it.
In other respects, we examine algebraic properties of Peterson’s intermediate syllogisms

in PISLCD. To this end, we explain quantitative relation between two terms by means of
bilateral diagrams. Thereupon, we enter the data, which are taken from bilateral diagrams, on
the trilateral diagram. With the help of elimination method, we obtain a conclusion which is
transformed from trilateral to bilateral diagram. A Peterson’s intermediate syllogistic system
consists of 4000 syllogistic moods. 105 of them are valid forms.
Finally, we show that syllogism is valid if and only if it is provable in PISLCD. This means

that PISLCD is sound and complete.
[1] L. Caroll, Symbolic Logic (C. N. Potter, editor), 1896.
[2] R. L. Cignoli, I. M. d’Ottaviano, and D. Mundici, Algebraic Foundations of Many-

Valued Reasoning, Springer Science & Business Media, 2013.
[3] A. E. Kulinkovich, Algorithmization of resoning in solving geological problems,

Proceedings of the Methodology of Geographical Sciences, Naukova Dumka, 1979,
pp. 145–161.
[4] J. Łukasiewicz,Aristotle’s Syllogistic from the Standpoint ofModern Logic, Clarendon

Press, Oxford, 1951.
[5]U. Nuriyev, T. Oner, and I. Senturk, An algebraic approach to categorical syllogisms

by using bilateral diagrams, Theoretical and Applied Aspects of Cybernetics. Proceedings of
the 5th International Scientific Conference of Students and Young Scientists, Kyiv-Ukraine,
2015, pp. 14–21.
[6] T. Oner and I. Senturk, A construction of Heyting algebra on categorical syllogisms.

Matematichki Bilten, vol. 40 (2016), no. 4, pp. 5–12.
[7] R. Pagnan, A diagrammatic calculus of syllogisms. Journal of Logic Language and

Information, vol. 21 (2012), pp. 347–364.
[8] E. Turunen,An algebraic study of Peterson’s Intermediate Syllogisms. Soft Computing,

vol. 18 (2014), no. 12, pp. 2431–2444.

� FRANCESCO PARENTE, Keisler’s order via Boolean ultrapowers.
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK.
E-mail: f.parente@uea.ac.uk.
In this talk, we shall present some applications of the Boolean ultrapower construction [2]

to Keisler’s order.
Over the last decade, Malliaris and Shelah proved a striking sequence of results in the

intersection between model theory and set theory, solved a long-lasting problem [1], and
developed surprising connections between classification theory and cardinal characteristics
of the continuum.Themainmotivationof theirwork is the studyofKeisler’s order, introduced

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/bsl.2018.13
Downloaded from https://www.cambridge.org/core. Higher School of Economics (Moscow), on 04 Sep 2018 at 07:14:29, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2018.13
https://www.cambridge.org/core


LOGIC COLLOQUIUM ’17 261

originally in 1967 as a device to compare the complexity of complete theories by looking at
saturated ultrapowers of their models.
Although the definition of Keisler’s order makes use of regular ultrafilters on power-set

algebras, recently there has been a shift towards building ultrafilters on complete Boolean
algebras. In particular, moral ultrafilters have emerged as the main tool to find dividing lines
among unstable theories.
Motivated by this new Boolean-algebraic framework, in this talk we shall address the

following question: what kind of classification can arise when we compare theories according
to the saturation of Boolean ultrapowers of their models?
We shall show that most model-theoretic properties of κ-regular ultrafilters can be gen-

eralized smoothly to the context of κ-distributive Boolean algebras. On the other hand, we
shall prove the existence of regular ultrafilters on the Cohen algebra Cκ with unexpected
model-theoretic features.
[1]M.Malliaris and S. Shelah, Cofinality spectrum theorems in model theory, set theory,

and general topology. Journal of the American Mathematical Society, vol. 29 (2016), no. 1,
pp. 237–297.
[2] R. Mansfield, The theory of Boolean ultrapowers. Annals of Mathematical Logic, vol.

2 (1971), no. 3, pp. 297–323.

� FRANCO PARLAMENTO AND FLAVIO PREVIALE, On the admissibility of the struc-
tural rules in Kanger’s sequent calculus with restricted equality rules.
Department of Mathematics, Computer Science and Physics, University of Udine, via delle
Scienze 206, 33100 Udine, Italy.
E-mail: franco.parlamento@uniud.it.
Department ofMathematics, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy.
E-mail: flavio.previale@unito.it.
Kanger’s sequent calculus for first order logic with equality, introduced in the classic [1],

is a sequent calculus for classical first order logic with equality, free of structural rules, based
on the following equality rules:

Γ1{v/r}, s = r,Γ2{v/r} ⇒ Δ{v/r}
P3

Γ1{v/r}, r = s,Γ2{v/r} ⇒ Δ{v/r}
P4Γ1{v/s}, s = r,Γ2{v/s} ⇒ Δ{v/s} Γ1{v/s}, r = s,Γ2{v/s} ⇒ Δ{v/s}

where Γ1,Γ2, and Δ are sequences of formulas and Γ{v/t} denotes the result of substituting
all the free occurrences of v in Γ by t. [1] restricts the applications of P3 by the requirement
that rank(r) ≤ rank(s) and those of P4 by the requirement that rank(r) < rank(s), and the
applications of the 
-rules:

Γ1, F {x/t}, ∀x F,Γ2 ⇒ Δ Γ⇒ Δ1, F {x/t}, ∃x FΔ2
Γ1,∀x F,Γ2 ⇒ Δ Γ⇒ Δ1,∃x FΔ2

by the requirement that the term t be present free in the endsequent or be a fresh variable
in case there are no free terms in the endsequent. If such restrictions on the equality and

-rules are dropped, a syntactic proof of the admissibility of all the structural rules, including
the cut rule, over the resulting calculus, as well as over its intuitionistic version, is known
from [2]. We address that admissibility issue in case the restriction on the equality rules is
maintained, and give a syntactic proof that the unrestricted equality rules are admissible
over the restricted ones, from which it follows that cut elimination still holds. The proof is
based on the admissibility of the contraction rule for equalities in the restricted calculus, for
which a syntactic proof remains to be given. The result is obtained through a strengthening
of Orevkov’s claim in [3] concerning the existence of nonlengthening derivations, that by
itself would fall short of establishing the desired result, since nonlengthening in the specific
case ensures only that we have the same restriction rank(r) ≤ rank(s) in both P3 and P4 (see
also [4]).
[1] S. Kanger,A simplified proof method for elementary logic,Computer Programming and

Formal Systems (P. Braffort and D. Hirshberg, editors), North-Holland, Amsterdam, 1963,
pp. 87–94.
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[2] F. Munini and F. Parlamento, Admissibility of the structural rules in Kanger’s sequent
calculus for first order logic with equality, Logic Colloquium 2015, this Bulletin, vol. 22
(2016), no. 3, p. 414.
[3] V. P. Orevkov, On nonlengthening applications of equality rules. Zapiski Nauchnyh

Seminarov LOMI, vol. 16 (1969), pp. 152–156 (In Russian) English translation in: Seminars
in Mathematics: Steklov Math. Inst. (A. O. Slisenko, editor), Studies in Constructive Logic,
vol. 16, Consultants Bureau, NY–London, 1971, pp. 77–79.
[4] F. Parlamento and F. Previale, The cut elimination and nonlengthening property for

the sequent calculus with equality, Logic Colloquium, 2016, arXiv 1705.00693.

� THOMAS PIECHA AND PETER SCHROEDER-HEISTER, Intuitionistic logic is not
complete for standard proof-theoretic semantics.
Department of Computer Science, University of Tübingen, Sand 13, Germany.
E-mail: thomas.piecha@uni-tuebingen.de.
E-mail: psh@uni-tuebingen.de.
Prawitz conjectured that intuitionistic first-order logic is complete with respect to a no-

tion of proof-theoretic validity [1,2,3]. We show that this conjecture is false. The notion of
validity obeys the following standard conditions, where S refers to atomic bases (systems of
production rules):
1. �S A ∧ B ⇐⇒ �S A and �S B . 4. Γ � A ⇐⇒ For all S: (�S Γ=⇒ �S A).
2. �S A ∨ B ⇐⇒ �S A or �S B . 5. If Γ � A and Γ, A �S B , then Γ �S B .
3. �S A→ B ⇐⇒ A �S B .

Any semantics obeying these conditions satisfies the generalized disjunction property:

For every S: if Γ �S A ∨ B , where ∨ does not occur positively in Γ, then either
Γ �S A or Γ �S B .

This implies the validity (�) of Harrop’s rule ¬A→ (B ∨C )/(¬A→B)∨ (¬A→C ), which
is admissible but not derivable in intuitionistic logic.
[1]D. Prawitz, Towards a foundation of a general proof theory, Logic, Methodology and

Philosophy of Science IV (P. Suppes et al., editors), North-Holland, 1973, pp. 225–250.
[2] , An approach to general proof theory and a conjecture of a kind of completeness

of intuitionistic logic revisited, Advances in Natural Deduction (L. C. Pereira, E. H. Haeusler,
and V. de Paiva, editors), Springer, Berlin, 2014, pp. 269–279.
[3] P. Schroeder-Heister, Validity concepts in proof-theoretic semantics. Synthese, vol.

148 (2006), pp. 525–571.

� EDOARDO RIVELLO,On extending the general recursion theorem to non-wellfounded rela-
tions.
Department of Mathematics, University of Torino, Via Carlo Alberto 10, Italy.
E-mail: rivello.edoardo@gmail.com.
The principle of definition by recursion on a wellfounded relation [1], can be stated as

follows: Let A be any set and let P be the set of all partial functions from A to some set B .
Let G : A× P → B be any function and let R ⊆ A× A be any binary relation.
Fact 1 (Montague): IfR is wellfounded onA then there exists a unique functionf: A→ B

such that

∀x ∈ A (f(x) = G(x, f �xR)), (1)

where xR = {y ∈ A | y R x}.
If R is not wellfounded on the entire domain A, an obvious way of extending this method

of definition is to identify a proper subsetW of A on which R is wellfounded and to apply
the principle to this set. The usual choice forW is the wellfounded part of R, defined as the
set of all R-wellfounded points of A.
In my talk, after examining several different strategies to prove Fact 1, I will present a

new approach to extend this method of definition to all kinds of binary relations. We look at
subsets X of A on which R is not necessarily wellfounded, yet there exists a unique function
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g : X → B which satisfies (1) for all x ∈ X . Let us call such subsets determined. Then we can
prove

Theorem. There exists a unique subset U of A such that (a) U is R-closed, i.e., ∀x ∈
U,xR ⊆ U ; (b) U is determined and all R-closed subsets of U are determined; (c) U is the
largest subset ofA satisfying (a) and (b). This theorem ensures, for any relationR, the existence
and uniqueness of a function g : U → B which satisfies (1) on its domain and is defined on a
domain U which extends the wellfounded partW of R.

[1] R. Montague, Well-founded relations: Generalizations of principles of induction and
recursion. Bulletin American Mathematical Society, vol. 61, p. 442.

� GEMMA ROBLES, FRANCISCO SALTO, AND JOSÉ M. BLANCO, Routley–Meyer
semantics for natural implicative expansions of Kleene’s strong three-valued matrix.
Dpto. de Psicologı́a, Sociologı́a y Filosofı́a, Universidad de León, Campus Vegazana, s/n,
24071 León, Spain.
E-mail: gemma.robles@unileon.es.
URL Address: http://grobv.unileon.es.
E-mail: francisco.salto@unileon.es.
Dpto. de Filosofı́a, Lógica y Estética, Universidad de Salamanca, Edificio FES, Campus
Unamuno, 37007 Salamanca, Spain.
E-mail: jmblanco@usal.es.
Routley–Meyer semantics, originally introduced for interpreting relevance logic, is a highly

malleable semantics capable of modelling families of nonclassical logics very different from
each other. Let us now understand the notion of a “natural implication” following [2]. Then,
there are exactly six natural implicative expansions of Kleene’s strong three-valued matrix
with 1 as the sole designated value.
The aim of this article is to endow each one of the logics characterized by these six

expansions with a Routley–Meyer type ternary relational semantics. There are well-known
logics among those determined by these six expansions. Łukasiewicz three-valued logic Ł3 is
an example.
Acknowledgments.Work supported by research project FFI2014-53919-P, financed by the

Spanish Ministry of Economy and Competitiveness.
[1] R. T. Brady, R. K. Meyer, V. Plumwood, andR. Routley, Relevant Logics and Their

Rivals, vol. 1, Ridgeview Publishing Co., Atascadero, CA, 1982.
[2]N. Tomova, A lattice of implicative extensions of regular Kleene’s logics. Reports on

Mathematical Logic, vol. 47 (2012), pp. 173–182.

� ANDREI RODIN, Two “styles” of axiomatization: Rules versus axioms. A modern perspec-
tive.
Institute of Philosophy, Russian Academy of Sciences, 12/1 Goncharnaya Str., Moscow
109240, and Saint Petersburg State University, Russian Federation.
E-mail: andrei@philomatica.org.
In a Hilbert-style nonlogical axiomatic theory the semantics of logical symbols is rigidly

fixed, while the interpretation of nonlogical symbols usually varies giving rise to different
models of the given theory. All nonlogical content of such a theory is comprised in its
nonlogical axioms (e.g., axioms of ZF) while rules, which generate from these axioms new
theorems, belong to the logical part of the theory (aka underlying logic).
An alternative approach to axiomatization due to Gentzen amounts to a presentation of

formal calculi in the form of systems of rules without axioms. Gentzen did not try to extend
his approach to nonlogical theories by considering specific nonlogical rules as a replacement
for nonlogical axioms. However the more recent work in Univalent Foundations of Math-
ematics [2] suggests that the Gentzen-style rule-based approach to formal presentation of
theories may have important applications also outside the pure logic.
A reason why one may prefer a rule-based formal representation is that it is more

computer-friendly. This, in particular, motivates the recent work on the constructive
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justification of the Univalence Axiom via the introduction of new operations on types
and contexts [1]. However this pragmatic argument does not meet the related epistemo-
logical worries. What kind of knowledge may represent a theory having the form of a bare
system of rules? Is such a form of a theory appropriate for representing a knowledge of
objective human-independent reality? How exactly truth features in rule-based nonlogical
theories?
Using HoTT as a motivating example I provide some answers to these questions and show

that the Gentzen-style rule-based approach provides a viable alternative to the standard
axiomatic approach not only in logic but also in science more generally.
Acknowledgments. The work is supported by Russian Foundation for Basic Research,

research grant 16-03-00364.
[1] C. Cohen, T. Coquand, S. Huber, andA.Mörtberg, Cubical type theory: A construc-

tive interpretation of the univalence axiom, arXiv:1611.02108.
[2] The Univalent Foundations Program, Homotopy type theory: Univalent foundations

of mathematics. Available at https://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

� ALEKSANDRA SAMONEK, Relation algebras, representability, and relevant logics.
Jagiellonian University in Kraków, Poland.
Institut supérieur de philosophie, Université catholique de Louvain, Place Cardinal Mercier
14, bte L3.06.01, 1348 Louvain-la-Neuve, Belgium.
E-mail: aleksandra.samonek@uclouvain.be.
This talk is an introduction to the problems concerning certain relevant logics and relation

algebras.
[4] has shown how to obtain sound and complete semantics forRM , i.e., the implicational

fragment R → of R with the axiom mingle A → (A → A). He also demonstrated how one
can obtain a sound but not complete interpretation of R by replacing sets with commuting
dense binary relations. But RM does not have a variable-sharing property (VSP) which R
has. Amodal restriction ofRM in case of which theVSP is preservedwas given in [5] together
with the argument that from an intuitive semantical point of view, this modal restriction of
RM is an alternative to Anderson and Belnap’s logic of entailment E ([1]).
[6] has studied a version of positive minimal relevant logic B and [2] demonstrated

that B is fully interpretable in the variety of weakly associative relation algebras which are
not representable. [3] went on to show that if representability is dropped, one can obtain a
complete interpretation of certain relevant logics in the language of relation
algebras.
We will examine the mentioned results in order to clarify the connection between cer-

tain relation algebras and relevant logics like R and RM and see (i) whether such con-
nection entails full interpretability of relevant logics in terms of relation algebras and
(ii) what are the consequences of achieving this interpretability for representability and
completeness.
[1] A. R.Anderson andN.Belnap, Jr.,Entailment:The Logic of Relevance andNecessity,

1990.
[2] T. Kowalski,Weakly associative relation algebras hold the key to the universe. Bulletin

of the Section of Logic, vol. 36 (2007), no. 3–4, pp. 145–157.
[3] , Relevant logic and relation algebras, TACL 2013. Sixth International Confer-

ence on Topology, Algebra and Categories in Logic, vol. 25 (N. Galatos, A. Kurz, and C.
Tsinakis, editors), EasyChair, 2014, pp. 125–128.
[4] R. D. Maddux, Relevance logic and the calculus of relations. The Review of Symbolic

Logic, vol. 3 (2010), no. 1, pp. 41–70.
[5] J. M. Méndez, G. Robles, and F. Salto, A modal restriction of R-Mingle with the

variable-sharing property. Logic and Logical Philosophy, vol. 19 (2010), no. 4, pp. 341–351.
[6] R. K. Meyer, Ternary relations and relevant semantics. Annals of Pure and Applied

Logic, vol. 127 (2004), no. 1–3, pp. 195–217.
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� DENIS I. SAVELIEV, Systems of propositions referring to each other:Amodel-theoretic view.
SteklovMathematical Institute of the Russian Academy of Sciences, 8 Gubkina St., Moscow,
Russia.
E-mail: d.i.saveliev@gmail.com.
We investigate arbitrary sets of propositions such that some of them state that some of

them (possibly, themselves) are wrong, and criterions of paradoxicality or nonparadoxicality
of such systems. For this, we propose a finitely axiomatized first-order theory with one unary
and one binary predicates, T and U . An heuristic meaning of the theory is as follows:
variables mean propositions, Tx means that x is true, Uxy means that x states that y is
wrong, and the axioms express natural relationships of propositions and their truth values. A
model (X,U ) is called nonparadoxical iff it can be enriched to some model (X,T,U ) of this
theory, and paradoxical otherwise. E.g., a model corresponding to the Liar paradox consists
of one reflexive point, a model for the Yablo paradox is isomorphic to natural numbers with
their usual ordering, and both these models are paradoxical.
We show that the theory belongs to the class Π02 but not Σ

0
2. We propose a natural classi-

fication of models of the theory based on a concept of a collapse of models. Furthermore,
we show that the theory of nonparadoxical models, and hence, the theory of paradoxical
models, belongs to the class Δ11 but is not elementary. We consider also various special
classes of models and establish their paradoxicality or nonparadoxicality. In particular, we
show that models with reflexive relations, as well as models with transitive relations without
maximal elements, are paradoxical; this general observation includes the instances of Liar
and Yablo. On the other hand, models with conversely well-founded relations, and more
generally, models with relations that are winning in sense of a certain membership game are
nonparadoxical. Finally, we propose a natural classification of nonparadoxical models based
on the above-mentioned classification of models of our theory.
Acknowledgments. This work was supported by grant 16-11-10252 of the Russian Science

Foundation.

� DENIS I. SAVELIEV AND ILYA B. SHAPIROVSKY, Defining modal logics of relations
between models.
SteklovMathematical Institute of the Russian Academy of Sciences, 8 Gubkina St., Moscow,
Russia.
E-mail: d.i.saveliev@gmail.com.
E-mail: ilya.shapirovsky@gmail.com.
Let C be a class of models in a fixed signature and R a relation on C; e.g., ARB may

mean “B is a submodel of A”, “B is a homomorphic image of A”, “B is an extension (for
models of arithmetic or set theory: an end-extension, a generic extension) of A”, “B is an
existential closure of A”, etc. We interpret modal formulas by sentences of a model-theoretic
language L such that �ϕ is true at a model A (“ϕ is possible at A”) iff ϕ is true at some
model B with ARB. A few recent instances of a similar approach deal with models of PA
([4,6]) and ZF ([1,2,3]). In these cases, the first-order languages are powerful enough to put
the interpretation inside them. This is not true for arbitrarymodels:�ϕmay be not first-order
expressible. However, once L is chosen strong enough to overcome this, truth and validity of
modal formulas can be defined in terms of general frame semantics, and the modal theory of
(C,R) defined as the set of all valid modal formulas turns out to be a normal modal logic.
This provides a general framework for defining and studying modal logics of model-theoretic
relations.
We apply this approach to the case whereARBmeans “B is a submodel ofA”. In general,

even infinitary first-order languages are not powerful enough to express the satisfiability in
submodels. However, for any signature with < κ functional symbols (and arbitrarily many
predicate symbols), the monadic fragment of the second-order language L2κ,� expresses the
satisfiability of its own sentences in submodels.Weprove that whenever the signature contains
at least one functional symbol of arity ≥ 2 and C is the class of all models in this signature,
then the modal theory of (C,R) is S4 if the signature does not have constant symbols, and
S4.1.2 otherwise.
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Acknowledgments. The work is supported by grant 16-11-10252 of the Russian Science
Foundation. A preliminary report can be found in [5].
[1] A. C. Block and B. Löwe,Modal logics and multiverses. RIMS Kokyuroku, vol. 1949

(2015), pp. 5–23.
[2] J. D. Hamkins, A simple maximality principle. The Journal of Symbolic Logic, vol. 68

(2003), pp. 527–550.
[3] J. D. Hamkins and B. Löwe, The modal logic of forcing. Transaction of the American

Mathematical Society, vol. 360 (2007), pp. 1793–1817.
[4] P. Henk, Kripke models built from models of arithmetic, Logic, Language, and Compu-

tation: TbiLLC 2013 (M. Aher, D. Hole, E. Jeřábek, and C. Kupke, editors), Springer, 2015,
pp. 157–174, revised selected papers.
[5]D. I. Saveliev and I. B. Shapirovsky, On modal logic of submodels, 11th Advances in

Modal Logic, 2016, pp. 115–119, short papers.
[6] A. Visser, The interpretability of inconsistency: Feferman’s theorem and related results,

this Bulletin, to appear.

� GIORGIO SBARDOLINI, The semanticist’s guide to ramification.
Department of Philosophy, The Ohio State University, 350 University Hall 230 NOvalMall,
Columbus, OH 43210, USA.
E-mail: sbardolini.1@osu.edu.
I outline an account of intensional paradoxes in Ramified Higher Order Logic (RHOL).

These paradoxes are intensional counterparts of the paradoxes derived by a syntactic truth
predicate. One reason why the intensional paradoxes are especially interesting is that they
arise from reasoning about domains of propositions. Thus, they are especially relevant for
our understanding of the foundations of Semantic Theory.
In his work on intensional paradoxes, Kaplan (1995) sketches a version of RHOL. Rami-

fication is one way of articulating a consistent metalanguage for Semantic Theory in which
the rules for the logical operators are classical. Thus the resulting theory is compatible with
standard Montague Grammar.
There are several different ways of ramifying, and there are different interpretations of

the metaphysical underpinnings of ramification. Here I discuss a simple and user-friendly
version of RHOL (in fact, so simple that it could be taught in undergraduate textbooks)
in which predicative restrictions on the level of formulas are introduced only by general-
ization over propositional domains. In effect, on my favorite version, a Ramified Logic
is one in which the inference from ∀pSp to Sq sometimes fails. I argue that this version
of RHOL is preferable to Kaplan’s form the standpoint of the foundations of Semantics.
A crucial premise for this argument is that on the former version, but not on Kaplan’s,
ramification allows enough impredicativity over the domain of propositions and attitude
operators for the definition of a Stalnakerian Common Ground for arbitrary classes of
propositions.
[1]D. Kaplan, A problem in possible world semantics, Modality, Morality, and Belief :

Essays in Honor of Ruth Barcan Marcus (D. Raffman, W. Sinnott-Armstrong, and N. Asher,
editors), Cambridge University Press, Cambridge, 1995, pp. 41–52.

� MICHAEL SHENEFELT ANDHEIDIWHITE,Why does formal deductive logic start with
the classical Greeks?
Liberal Studies, New York University, 26 Broadway, New York 10004, USA.
E-mail: michael.shenefelt@nyu.edu.
E-mail: heidi.white@nyu.edu.
Many ancient people studied logic in the broad sense of argumentation, but the study of

formal deductive validity starts with the classical Greeks. For some reason, the only person
to invent a study of validity in virtue of form was Aristotle, and all other logicians have had
his example to follow. Why?
We contend that formal logic emerged as a result of two factors—one geographical, the

other political.
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First, unlike other regions of the ancient world, classical Greece had a geography that
favored small states, dominated by urban crowds. The ease of navigating the Mediterranean
caused the commercial classes to grow, and the small size of these states meant that these
same commercial crowds dominated the politics of the classical age. As a result, political
questions were settled, not by kings or small groups of nobles, but in mass meetings like
the Athenian Assembly. The mechanics of these meetings put special emphasis on public
argumentation.
Second, these same crowds, when called to make political decisions, often behaved ir-

rationally. Such crowds had dominated the Athenian Assembly, but when Athens lost its
war against Sparta, and then followed with the execution of Socrates, a reaction among
intellectuals led to the development of formal logic. Philosophers focused increasingly on
the difference between rational argumentation and irrational, and this theme, developed by
Plato but later expanded by Aristotle, culminated in the first known system of formal logic.
We attribute the Greek relish for logical demonstration, even in mathematics, to an argu-

mentative political environment, and we draw our argument from our book. If A, Then B:
How the World Discovered Logic (Columbia University Press).

� ANDREI SIPOŞ, Proof mining in convex optimization.
Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700
Bucharest, Romania.
Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14,
010014 Bucharest, Romania.
E-mail: Andrei.Sipos@imar.ro. http://imar.ro/∼asipos
Proof mining is a research program introduced by U. Kohlenbach in the 1990s ([2] is a

comprehensive reference, while [3] is a survey of recent results), which aims to obtain explicit
quantitative information (witnesses and bounds) from proofs of an apparently ineffective
nature. This offshoot of interpretative proof theory has successfully led so far to obtaining
some previously unknown effective bounds, primarily in nonlinear analysis and ergodic
theory. A large number of these are guaranteed to exist by a series of logical metatheorems
which cover general classes of bounded or unbounded metric structures.
For the first time, this paradigm is applied to the field of convex optimization (for an

introduction, see [1]). We focus our efforts on one of its central results, the proximal point
algorithm. This algorithm, or more properly said this class of algorithms, consists, roughly,
of an iterative procedure that converges (weakly or strongly) to a fixed point of a mapping,
a zero of a maximally monotone operator or a minimizer of a convex function. Similarly to
other cases previously considered in nonlinear analysis, we may obtain rates of metastability
or rates of asymptotic regularity. What is interesting here, however, is that for a relevant
subclass of inputs to the algorithm—“uniform” ones, like uniformly convex functions or
uniformly monotone operators—we may obtain an effective rate of convergence. The notion
of convergence, being represented by a Π3-sentence, has been usually excluded from the
prospect of being quantitatively tractable, unless its proof exhibits a significant isolation of
the use of reductio ad absurdum (see [4,5]). Here, however, a peculiarity of the input, namely
its uniformity, translates into a logical form that makes possible this sort of extraction.
These results are joint work with Laurenţiu Leuştean and Adriana Nicolae.
[1]H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, Springer-Verlag, 2010.
[2]U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their use in Mathe-

matics, Springer Monographs in Mathematics, Springer-Verlag, 2008.
[3] ,Recent progress in proof mining in nonlinear analysis, to appear in forthcoming

special issue of IFCoLog Journal of Logic and its Applicationswith invited articles by recipients
of a Gödel Centenary Research Prize Fellowship, 2016.
[4] L. Leuştean, An application of proof mining to nonlinear iterations. Annals of Pure and

Applied Logic, vol. 165 (2014), pp. 1484–1500.
[5] A. Sipoş, Effective results on a fixed point algorithm for families of nonlinear mappings.

Annals of Pure and Applied Logic, vol. 168 (2017), pp. 112–128.
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� ALEXANDRA SOSKOVA, Structural properties of the cototal enumeration degrees.
Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1124
Sofia, Bulgaria.
E-mail: asoskova@fmi.uni-sofia.bg.
The talk will be an overview on the structural properties of the cototal enumeration degrees

which form a proper substructure of the enumeration degrees. The cototal enumeration
degrees properly extend the substructure of the total enumeration degrees. The skip is a
monotone operator on enumeration degrees.
We study cototality, using the skip operator and give some examples of classes of

enumeration degrees that either guarantee or prohibit cototality. The skip has many of
the nice properties of the Turing jump, but not every e-degree is reducible to its skip. The
e-degrees reducible to their skip are exactly the cototal degrees. The cototal enumeration de-
grees are characterized [1] as the enumeration degrees of complements of
maximal independent sets for infinite computable graphs on the natural numbers. The
image of the continuous degrees, introduced by Joseph Miller [5], is contained in the co-
total enumeration degrees [1]. Further characterizations are given by Ethan McCarthy [4],
Takayuki Kihara, Arno Pauly [2], and Takayuki Kihara by private
conversation.
Recently JosephMiller andMariya Soskova [6] prove that the cototal enumeration degrees

form a dense substructure of the enumeration degrees. Moreover they show that these are
exactly the enumeration degrees which contain sets with good approximations in the sense of
Alistair Lachlan and Richard Shore [3].
Acknowledgments. This is joint work with Uri Andrews, Hristo Ganchev, Rutger Kuyper,

Steffen Lempp, Joseph Miller, and Mariya Soskova.
[1]U. Andrews, H. Ganchev, R. Kuyper, S. Lempp, J. Miller, A. Soskova, and M.

Soskova, On cototality and the skip operator in the enumeration degrees, submitted.
[2] T. Kihara and A. Pauly, Point degree spectra of represented spaces, submitted.
[3] A. Lachlan and R. Shore, The n-rea enumeration degrees are dense. Archive for

Mathematical Logic, vol. 31 (1992), no. 4, pp. 277–285.
[4] E. McCarthy, Cototal enumeration degrees and the Turing degree spectra of minimal

subshifts. Proceedings of the American Mathematical Society, to appear.
[5] J. Miller, Degrees of unsolvability of continuous functions. The Journal of Symbolic

Logic, vol. 69 (2004), no. 2, pp. 555–584.
[6] J. Miller andM. Soskova, Density of the cototal enumeration degrees, submitted.

� YUTA TAKAHASHI, A proof-theoretic semantics for disjunction.
Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
E-mail: yuuta.taka84@gmail.com.
Okada and Takemura ([1]) introduced phase semantics for �-terms of Laird’s dual affine/

intuitionistic �-calculus, whose types are composed from intuitionistic implication→, linear
implication 	, and linear additive product &. The validity in this semantics has several
key features of the validity in proof-theoretic semantics (PTS), which was introduced by
Prawitz ([2]) and analyzed by Schroeder-Heister ([4]), so one can provide Okada–Takemura’s
semantics with a PTS-style foundation. This poses the following question: Can one supply
Okada–Takemura’s semantics with an interpretation of disjunction, keeping the connection
to PTS?
First, we introduce a Okada–Takemura-style semantics for the term-calculus M→∧∨ of

minimal propositional logic with the connectives →,∧, and ∨. Our interpretation of dis-
junction ∨ is inspired by Sandqvist’s ([3]) and keeps the connection to PTS. Next, we prove
the completeness of M→∧∨ in the following sense: Every valid term in our semantics is ty-
pable. Finally, we note that strong normalization of M→∧∨ follows from our proof for its
completeness.
Acknowledgments. This is a joint work with Ryo Takemura. The author is supported by

KAKENHI (Grant-in-Aid for JSPS Fellows) 16J04925.
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[1]M. Okada and R. Takemura, Remarks on semantic completeness for proof-terms with
Laird’s dual affine/intuitionistic �-calculus, Rewriting, Computation and Proof (H. Comon-
Lundh, C. Kirchner, and H. Kirchner, editors), Springer, Berlin, 2007, pp. 167–181.
[2]D. Prawitz, Ideas and results in proof theory, Proceedings of the Second Scandinavian

Logic Symposium (J. E. Fenstad, editor), North-Holland, Amsterdam, 1971, pp. 235–307.
[3] T. Sandqvist, Base-extension semantics for intuitionistic sentential logic. Logic Journal

of the IGPL, vol. 23 (2015), no. 5, pp. 719–731.
[4] P. Schroeder-Heister, Validity concepts in proof-theoretic semantics. Synthese, vol.

148 (2006), no. 3, pp. 525–571.

� BENNO VAN DEN BERG,Models of set theory in path categories.
Institute for Logic, Language and Computation, University of Amsterdam, Science Park
107, 1098 XG Amsterdam, The Netherlands.
E-mail: bennovdberg@gmail.com.
A classical result by PeterAczel from 1978 [1] shows how one can interpret the constructive

set theory CZF in Martin-Löf’s constructive type theory, by regarding sets as well-founded
trees modulo bisimulation. Moerdijk and Palmgren [4] showed that the same sets-as-trees
idea can be used to build models of CZF in suitable “predicative toposes”. We revisit the
work byAczel,Moerdijk, and Palmgren in the light of recent developments in homotopy type
theory. The claim is that the sets-as-trees interpretation never uses any definitional equalities
and up-to-homotopy versions of the various type constructors suffice to interpret CZF. The
main challenge is to avoid subtle mistakes involving universes and our main categorical tools
are the notion of a path category and the theory of fibred categories.
This is joint work with Ieke Moerdijk and based on the preprints [2,3].
[1] P. Aczel, The type theoretic interpretation of constructive set theory, Logic Colloquium

’77, (Proc. Conf., Wrocław, 1977), Studies in Logic and the Foundations of Mathematics,
vol. 96, North-Holland Publishing Co., Amsterdam, 1978, pp. 55–66.
[2] B. van den Berg, Path categories and propositional identity types, arXiv:1605.02534,

September 2016.
[3] B. van den Berg and I. Moerdijk, Exact completion of path categories and algebraic

set theory—Part I, arXiv:1603.02456, October 2016.
[4] I. Moerdijk and E. Palmgren, Type theories, toposes and constructive set theory:

Predicative aspects of AST. Annals of Pure and Applied Logic, vol. 114 (2002), pp. 155–201.

� WEI WANG, On the computability of perfect subsets of sets with positive measure.
Institute of Logic andCognition, SunYat-senUniversity, 135XinGangXiRoad,Guangzhou
510275, China.
E-mail: wwang.cn@gmail.com.
It is well-known that every set of reals with positive measure contains a perfect subset.

In a joint project of Chong, Li, Yang, and Wei Wang, we study the computability of such
perfect subsets. We show that every effectively closed set C with positive measure contains a
low perfect subset. Moreover, the Turing degrees of perfect subsets of C contain all degrees
above the halting problem. We also prove that every set with positive measure contains a
perfect subset not computing any given noncomputable set.

� ANDREAS WEIERMANN, On generalized Goodstein sequences.
Department of Mathematics, Ghent University, Krijgslaan 281 S25, 9000 Ghent, Belgium.
E-mail: Andreas.Weiermann@UGent.be.
We define generalized Goodstein sequences with respect to the Schwichtenberg–Wainer

hierarchy of fast growing functions. The resulting Goodstein principles will then not be
provable in the usual theory for noniterated inductive definitions.
The results are partly in joint work with T. Arai and S. Wainer.

� FELIX Q. WEITKÄMPER, Constructing and classifying stability-preserving substructures.
Merton College, Merton Street, OX1 4JD, Oxford, UK.
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E-mail: weitkamper@maths.ox.ac.uk.
Algebraic Stability Theory is the branch of Model Theory that applies concepts from

stability theory to concrete mathematical structures. Its most fundamental problems are of
the form “Given a mathematically interesting class of structures, which of them stand at a
certain level of the stability hierarchy?”
Paradigms for results of this sort are Macintyre’s theorem that all �-stable fields are al-

gebraically closed on the one hand and Hrushovski and Itai’s theorem that there are many
non-differentially-closed �-stable differential fields on the other hand. Tackling these prob-
lems at any level of generality seems unfeasible, however, if one takes “(�-)stable structure”
to mean “structure with an (�-)stable first-order theory”. This is because the existence of an
�-stable theory of differential fields, for example, requires the existence of a well-behaved sat-
urated differential field, and determining saturated models will usually require a discussion of
axiomatisability issues. Such issues, though, are highly dependent on the concrete algebraic
properties of the class in which one is working. We argue that the more general context of
HomogeneousModel Theory provides amore appropriate interpretation for questions of this
type, in which “stable structure” is taken to mean “stable homogeneous structure” instead.
In this framework, we provide a general construction scheme for substructures preserving
degree of stability and discuss how understanding the close connection between these derived
structures and their parent structure could help us ask more meaningful questions in this
fundamental area of Algebraic Model Theory.

� HANWENWU AND HONGWEI XI,Multirole Logic.
Department of Computer Science, Boston University, 111 Cummington Mall, Boston, MA
02215, USA.
E-mail: hwxi,hwwu@cs.bu.edu.
URL Address: http://www.cs.bu.edu/∼hwxi/.
We formulate multirole logic [1] as a new form of logic and naturally generalize Gentzen’s

celebrated result of cut-elimination between two sequents into one between n sequents for
any n ≥ 1.
While the first and foremost inspiration for multirole logic came to us during a study on

multiparty session types in distributed programming [2], it seems natural in retrospective
to introduce multirole logic by exploring the well-known duality between conjunction and
disjunction in classical logic. Let ∅ be a (possibly infinite) underlying set of integers, where
each integer is referred to as a role. In multirole logic, each formula A can be annotated with
a setR of roles to form the i-formula [A]R. For each ultrafilter U on the power set of∅, there
is a (binary) logical connective ∧U such that [A1 ∧U A2]R is interpreted as the conjunction
(disjunction) of [A1]R and [A2]R ifR ∈ U (R #∈ U) holds. Furthermore, the notionof negation
is generalized to endomorphisms on ∅. We formulate both multirole logic (MRL) and linear
multirole logic (LMRL) as natural generalizations of classical logic (CL) and classical linear
logic (CLL), respectively. Among various metaproperties established for MRL and LMRL,
we obtain one named multiparty cut-elimination stating that every cut involving one or more
sequents can be eliminated. For instance, the cut-rule in CL is generalized to the following
one:

Γ1, [A]R1 . . . Γn, [A]Rn
Γ1, . . . ,Γn

,

where R1 % · · · %Rn = ∅ is assumed. Note that Gentzen’s cut-elimination is the special case
where n = 2.
[1]H.WuandH.Xi,Multirole logic (extended abstract),arXiv:1703.06391 [math.LO],

2017.
[2] , Propositions in linear multirole logic as multiparty session types,

arXiv:1611.08888 [cs.PL], 2016.

� SUSUMU YAMASAKI, A modal operator in multimodal mu-calculus and induced semiring
structure.
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Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan.
E-mail: sya2012shinpei@gmail.com.
The meanings of formulas in multimodal mu-calculus (as an extended version of action

logic [2]) are presented by the author, where the states for interactive communication and
function application are monitored (conditioned) by formulas. The syntax of the formulas
is give in BNF: ϕ ::= tt | p | ¬ϕ | ∼ϕ | ϕ ∨ ϕ | 〈c〉ϕ | �x.ϕ | ϕ〉t〉, with the truth tt,
propositions p, two kinds of negation ¬ and ∼, the disjunction operator ∨, the least fixed
point operator �, and prefix/postfix modal operators 〈c〉 (for communications) and 〉t〉 (for
terms).
This contribution is concerned with the case that the postfix modal operator 〉t〉 (in the

above logic) is provided with (another type of) logical formulas. The modal operator might
be related to and motivated by decralative programming, originating from: (i) propositional
formulas of the expression ∧j(l j1 ∧ · · · ∧ l jnj → l j) (where l ji and l

j are literals) and (ii)
their models (by taking correspondence with a Heyting algebra on {0, 1/2, 1}). Regarding
the model, an extended version of fixed point theory (in [1]) is available so that the pair form
(P-set, N -set) may be constructed, where P-set and N -set are positive and negative sets of
propositions assigned to 1 and to 0, respectively.
As a next step to the modal operator, the model pair is abstracted into the form for

sequential and alternative effects because the meaning of modal operator is involved in a
transition system and thus contains state-transition effects of sequence and alternation. In
this contribution, the sequential effect is restricted only to the positive set “P-set”, such that
a form (P-seq, N -set) is aimed at, where P-seq is a subset of the set containing all the finite
proposition sequences (formed by concatenation) from the set of propositions. Taking the
alternation (for concatenation formation) into consideration, the form Σi (P-seqi , N -seti)
(where Σi is a direct sum) would be defined.
The set of the forms Σi (P-seqi , N -seti) might be finally constructed into a semiring, with

the operations addition and multiplication in accordance to alternation and concatenation,
respectively. This construction is well managed with the effects of the negative sets (N -set’s).
[1] A. Van Gelder, K. A. Ross, and J. S. Schlipf, The well-founded semantics for general

logic programs. Journal of the ACM, vol. 38 (1991), no. 3, pp. 619–649.
[2]M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency.

Journal of the ACM, vol. 32 (1985), no. 1, pp. 137–161.

� AIBAT YESHKEYEV, Some properties of central types for EPSCJ theories.
Faculty of Mathematics and Information Technologies, Karaganda State University, Uni-
versity Str., 28, Building 2, Kazakhstan.
E-mail: aibat.kz@gmail.com.
This abstract is associated with the concepts of convexity theory in the class Existentially

Prime Jonsson theories. We denote such theories as Existentially Prime Strongy Convex
Jonsson (EPSCJ).
Also we have concentrating our attention to not arbitrary subsets but use have deal with

Jonsson subsets ([1,2]) of some semantic model for fixing Jonsson theory.
First of all, we are interested in describing models of central types of Jonsson fragments [3]

with respect to stability topics.
Definition 1. Let T is an arbitrary Jonsson theory in the language of the first order

signature �. Let C is a semantic model of theory T . Let A ⊆ C is a Jonsson set of theory T .
Let �Γ(A) = �∪{ca |a ∈ A}∪Γ, Γ = {P}∪{c}. Let TCA = T ∪Th∀∃(C, a)a∈A∪{P(ca)|a ∈
A} ∪ {P(c)} ∪ {′′P ⊆′′} where {′′P ⊆′′} is an infinite set of sentences expressing the fact
that the interpretation of symbol P is existentially closed submodel in the language of the
signatures �Γ(A) and this model is a definable closure of the set A. It is understood that the
consideration the set of sentences is Jonsson theory and this theory generally is not complete.
Let T ∗ is the center of the Jonsson theory TCA and T

∗ = Th(C ′) where C ′ is a semantic
model of the theory TCA . By restriction theory T

C
A to signatures �Γ(A)\{c} the theory T ∗

becomes a complete type. This type we call as the central type of the theory T relatively the
Jonsson set A and denoted by PCA .
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Let L be an arbitrary language. Let T be perfect Jonsson theory, complete for existen-
tial sentences in the language L, and its semantic model is C . We say that two Jonsson
(algebraically) sets (equivalent, cosemantic, categorical), if there are respectively, (Jon-
sson equivalent, cosemantic, categorical, syntactically similar, semantically similar, etc.)
the models obtained by the corresponding closure of these sets. Consider, for example,
cosemantic. Two Jonsson sets are cosemantic, if their respective closures are cosemantic,
etc. [1].
Let us consider the stability for fragments of Jonsson sets.
Let X Jonsson set andM is existentially closed model, where dcl(X ) =M .
Consider the fragment of Jonsson set X as the theory Th∀∃(M ) = TM . And we consider

TM instead of theory T in the definition 1. We have the following results:
Lemma 1. TM will Jonsson theory in the enrichment of above signature.
Theorem 1. Let TM , as described above an existentially complete perfect EPSCJ theory. If

� ≥ �, then the following conditions are equivalent:
(1) T ∗ is �-stable, where T ∗ is the center of T ;
(2) TCA is J − �-stable [1].
Theorem 2. Let TM existentially complete EPSCJ theory. Then the following conditions are

equivalent:
(1) T ∗

M − �-categorical;
(2) TCA − �-categorical.
[1]M. T. Kasymetova and A. R. Yeshkeyev, Jonsson Theory and its Classes of Models,

Publisher of the Karaganda State University, 2016, p. 346.
[2] A. Yeshkeyev, On Jonsson sets and some their properties, Abstract Booklet of Logic

Colloquium, Vienna Summer of Logic, 2014, pp. 108–109.
[3] , Properties of central type for fragments of Jonsson sets, Abstract Booklet of

Logic Colloquium, Helsinki Summer of Logic, 2015, pp. 751–752.

� BYEONG-UK YI, Plural categoricals and squares of opposition.
Department of Philosophy, University of Toronto, 170 St. George St., Toronto, ON L5L1J7,
Canada.
E-mail: b.yi@utoronto.ca.
This article studies the logic of plural categoricals: (a) ‘Any unicorns are animals’, (a*) ‘Any

of the unicorns are animals’, etc. To do so, it is important to distinguish between two groups
thereof:

Group 1 (G1)
A: Any Ps are Qs. E: No Ps are Qs.
I: Some Ps are Qs. O: Some Ps are not Qs.

Group 2 (G2)
A*: Any of the Ps are Qs. E*: None of the Ps are Qs.
I*: Some of the Ps are Qs. I*: Some of the Ps are not Qs.

G1 categoricals (e.g., (a)) are not logically equivalent to matching G2 categoricals (e.g.,
(a*)) (see [6]). Modern logic gives essentially correct accounts of G1 categoricals. Regard-
ing G2 categoricals, however, traditional logic arguably yields correct accounts. Assume,
following Strawson [4]– [5], that G2 categoricals presuppose that the plural terms replacing
‘the Ps’ (e.g., ‘the horses’) refer to some things (see [1]). Then all the theses in the tradi-
tional square of opposition (see [2]) hold. But E* and I*, unlike E and I, are not convertible
(see [3]).
[1] T. McKay, Plural Predication, Oxford University Press, 2006.
[2] T. Parsons, The traditional square of opposition, Stanford Encyclopedia of philosophy,

Summer 2017 ed. (E. Zalta, editor), URL = 〈 https://plato.stanford.edu/archives/
sum2017/entries/square/〉, forthcoming.
[3] T. Smiley,Mr. Strawson on traditional logic.Mind, vol. 76 (1967), no. 301, pp. 118–120.
[4] P. Strawson, On referring.Mind, vol. 59 (1950), no. 235, pp. 320–344.
[5] , Introduction to Logical Theory, Mathuen, 1952.
[6] B.-U. Yi, Quantifiers, determiners, and plural constructions, Unity and Plurality: Logic,

Philosophy, and Linguistics (M. Carrara, F. Moltmann, and A. Arapinis, editors), Oxford
University Press, Oxford, 2016, pp. 121–170.
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� S. S. BAIZHANOV AND B. SH. KULPESHOV, On preserving properties under expanding
models of quite o-minimal theories.
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: sayan-5225@mail.ru.
International Information Technology University, Almaty, Kazakhstan; Institute of Mathe-
matics and Mathematical Modeling, Almaty, Kazakhstan.
E-mail: b.kulpeshov@iitu.kz.
Here we discuss properties that are preserved under expanding models of an ℵ0-categorical

quite o-minimal theory by a convex unary predicate. We prove that the following properties
as quite o-minimality [2], ℵ0-categoricity and convexity rank [3] are preserved under such
expansions.
LetM be a weakly o-minimal structure, A,B ⊆ M ,M be |A|+-saturated, and let p, q ∈

S1(A) be nonalgebraic types.

Definition 1. [1] We say that p is not weakly orthogonal to q if there are an A-definable
formulaH (x, y), α ∈ p(M ), and �1, �2 ∈ q(M ) such that �1 ∈ H (M,α) and �2 #∈ H (M,α).
Definition 2. [2] We say that p is not quite orthogonal to q if there is an A-definable

bijection f: p(M )→ q(M ). We say that a weakly o-minimal theory is quite o-minimal if the
relations of weak and quite orthogonality for 1-type coincide.

Quite o-minimal theories form a subclass of the class of weakly o-minimal theories pre-
serving a series of properties of o-minimal theories. For instance, in [4], ℵ0-categorical quite
o-minimal theories were completely described. This description implies their binarity (the
similar result holds for ℵ0-categorical o-minimal theories).
Theorem 3. Let M be a model of an ℵ0-categorical quite o-minimal theory, M ′ be an

expansion ofM by an arbitrary finite family of convex unary predicates. ThenM ′ is a model of
an ℵ0-categorical quite o-minimal theory of the same convexity rank.
[1] B. S. Baizhanov, Expansion of a model of a weakly o-minimal theory by a family of

unary predicates. The Journal of Symbolic Logic, vol. 66 (2001), no. 3, pp. 1382–1414.
[2] B. S. Kulpeshov, Convexity rank and orthogonality in weakly o-minimal theories.News

of theNationalAcademyof Sciences of theRepublic ofKazakhstan, Physical andMathematical
Series, vol. 227, 2003, pp. 26–31.
[3] , Weakly o-minimal structures and some of their properties. The Journal of

Symbolic Logic, vol. 63 (1998), no. 4, pp. 1511–1528.
[4] , Countably categorical quite o-minimal theories. Journal of Mathematical Sci-

ences, vol. 188 (2013), no. 4, pp. 387–397.

� MARTIN MOSE BENTZEN, Logic without unique readability—a study of semantic and
syntactic ambiguity.
Department of Management Engineering, Technical University of Denmark, Diplomvej,
Building 372, 2800 Lyngby, Denmark.
E-mail: mmbe@dtu.dk.
One of the main reasons for introducing a formal language is to remove ambiguity, the

possibility of assigning several meanings to a linguistic expression. Typically, this is achieved
through ensuring unique readability of formulas by using brackets (or another convention,
such as Polish notation). Unique readability implies meaning uniqueness, exactly one valu-
ation of a sentence given an interpretation of basic formulas and recursive truth conditions.
Obviously, in natural language this one-to-one correspondence between syntax and seman-
tics is absent, the unique readability assumption does not hold true universally. Whereas,
e.g., scope ambiguities in natural languages have been studied extensively, ambiguous formal
languages have not been the focus of in depth research. Here, we lift the assumption of
unique readability by omitting the brackets from propositional logic, making it possible to
formally distinguish between syntactic and semantic ambiguity. A valuation then amounts
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to a semantic disambiguation, and rather than a unique valuation (truth value), there is a set
of valuations corresponding to ways a formula could have been constructed. We show what
happens to familiar concepts of logic such as definability, satisfiability, and validity. Here fol-
lows two simple examples illustrating the relation between syntactic and semantic ambiguity.
In some cases unique readability can be regained through careful construction of formulas.
E.g., although an attempt to define p → q as ¬p∨ q would be syntactically and semantically
ambiguous, one may define it as q ∨¬p, which can be read only one way (but obviously this
construction is not stable under substitution). Syntactic ambiguity does not imply semantic
ambiguity, although it is typically the case. For instance, although the formula p ∧ ¬p ∧ p
can be read in three ways, it has only one possible meaning (a contradiction).

� JOHN CORCORAN,Meanings of statement, proposition, and sentence.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
The three Written English expressions ‘statement’, ‘proposition’, and ‘sentence’ used in

logic and philosophy of logic are ambiguous (multisense, polysemic): people use each with
multiple normal meanings (senses, definitions). Several of their meanings are vague (im-
precise, indefinite): they admit borderline (marginal, fringe) cases. This article juxtaposes,
distinguishes, and analyses several senses of these words focusing on a constellation of rec-
ommended senses.
As recommended, a statement is a unique event, a speech-act performedby a unique person

at a unique time and place. By contrast, propositions and sentences are timeless and placeless
abstractions. A proposition is an intensional object, a sense composed of senses (concepts).
A sentence is a linguistic entity (string-type) composed of character-types. Sentences in
themselves are meaningless.
It is only a proposition that is properly said to be true or to be false, although—with suitable

qualification—statements, or even sentences, may be said to be true or false in appropriate
derivative senses.
Persons use sentences to express the propositions they state in the statements they make.

As examples make clear, one and the same sentence is routinely used on different occasions
to express different propositions. Likewise clarified by examples is the fact that different
sentences express one and the same proposition. Persons make statements; they don’t make
sentences or propositions.
This article clarifies, qualifies, and, in a few cases, retracts various views previously ex-

pressed by the author. It is intended as a philosophical sequel to [1], [2], and [3]
[1] J. Corcoran,Meanings of implication. Diálogos, vol. 9 (1973), pp. 59–76.
[2] , Argumentations and logic. Argumentation, vol. 3 (1989), pp. 17–43.
[3] , Sentence, proposition, judgment, statement, and fact: Speaking about the Writ-

ten English used in logic, The Many Sides of Logic (W. Carnielli et al., editors), College
Publications, 2009, pp. 71–103.

� JOHN CORCORANAND GEORGE BOGER,Meanings of contradicts.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Philosophy, Canisius College, Buffalo, NY 14208-1098, USA.
E-mail: boger@canisius.edu.
The ambiguous verb ‘contradicts’ and its cognates play important roles in logic and logic-

related literature. We study their uses. We build on [3]: a treatment of the verb ‘implies’
and its cognates. We exploit similarities with ‘implies’ as studied in [1], which observes that
the verb ‘implies’ as a relation verb can express relations of various semantic categories:
for example, person-to-proposition relations as well as proposition-to-proposition relations:
as in ‘Cantor implies that omega exists’ and ‘Zorn’s Lemma implies the Choice Axiom’,
respectively.
The verb ‘contradicts’ expresses person-to-person relations ([2, pp. 52 et al.]), person-

to-proposition relations ([2, pp. 68, 108, et al.]), and proposition-to-proposition relations
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([2, p. xxvii et al.]) (to mention only three): as in “Cantor contradicts Brouwer”, ‘Brouwer
contradicts Bivalence’, and ‘Bivalence contradicts Trivalence’. Of course there are several
more, e.g., the set-to-proposition relation: a given set of propositions contradicts a given
proposition iff the set implies the negation of the given proposition: ‘Lobachevskian Geom-
etry contradicts Euclid’s Parallel Postulate’.
The noun ‘contradiction’—besides being used as a proper name of various relations in-

cluding the one that holds from a set to a proposition iff the former contradicts the latter—has
various uses as a common noun applying to propositions, for example, to those whose nega-
tions are tautological. It also serves as a part of ambiguous expressions such as ‘the principle
of contradiction’ [4].
The string ‘contradicting’ is found in different grammatical categories; [2] uses it in three

categories on a single page, p. xxviii.
[1]K. Barber and J. Corcoran, Agent and premise implication, this Bulletin, vol. 15

(2009), p. 235.
[2]M. Cohen and E. Nagel, Introduction to Logic, second ed. (J. Corcoran, editor),

Hackett, 1993.
[3] J. Corcoran,Meanings of implication. Diálogos, vol.9 (1973), pp. 59–76.
[4] J. Corcoran and J. Legault, Aristotle, Boole, and Tarski on contradiction, this

Bulletin, vol. 19 (2013), p. 515.

� JOHN CORCORAN AND HASSAN MASOUD, Teaching universalized-conditionals and
Hazen’s Theorem.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Philosophy, University of Alberta, Edmonton, AB T6G2E7, Canada.
Where S(x) and P(x) are predicates in the sense of [1] and [2], the predicate [S(x)→ P(x)]

is called the conditional [predicate] with antecedent S(x) and consequent P(x). The sentence
∀x[S(x) → P(x)], which is the universalization of the conditional [S(x) → P(x)], is said to
be the universalized-conditional [sentence]with antecedent S(x) and consequent P(x). Students
should note that universalized-conditionals are universals; no universalized-conditional is a
conditional.
The universalized-conditional ∀x[(S(x) & ∼ P(x)) → P(x)] is the negated-consequent-

qualification [NCQ] of the universalized-conditional ∀x[S(x) → P(x)]. It is easy to see
that the NCQ of a universalized-conditional is logically-equivalent to the universalized-
conditional itself.
Moreover, the existentialized-conjunction corresponding to an NCQ, say, ∃x[(S(x) & ∼

P(x)) & P(x)], is evidently inconsistent and thus not implied by its NCQ unless the latter is
inconsistent. This shows that no consistent negated-consequent-qualification has existential
import in the sense of [1] and [2].
But since every universalized-conditional is logically equivalent to its NCQ, we have

the Hazen Lemma: every consistent universalized-conditional is logically-equivalent to a
universalized-conditional without existential import.
One important question—answered definitively by Allen Hazen in correspondence with

Corcoran and Masoud—concerns which universalized-conditionals with existential-import
are logically-equivalent to universalized-conditionals without existential-import.
Hazen’s Theorem: A universalized-conditional with existential-import is logically equiva-

lent to some universalized-conditional without existential-import iff it is consistent.
Hazen’s contributions nicely complement our results in [1] and [2]. They use none of our

previously published conclusions: they are entirely new.
[1] J. Corcoran and H. Masoud, Existential-import today. History and Philosophy of

Logic, vol. 36 (2015), pp. 39–61.
[2] , Existential-import mathematics, this Bulletin, vol. 21 (2015), pp. 1–14.

� VALERIA DE PAIVA AND GISELLE REIS, Benchmarking linear logic.
Nuance Communications, 1198 E. Arques Ave, Sunnyvale, CA 94085, USA.
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E-mail: valeria.depaiva@gmail.com.
Benchmarking automated theorem proving (ATP) systems using standardised problem

sets is a well-established method for measuring their performance, especially in the case of
classical logical systems. However, the availability of such libraries for nonclassical logics is
very limited. For intuitionistic logic several small collections of formulas have been published
and used for testingATP systems and Raths, Otten, andKreitz [2] consolidated and extended
these small sets to provide the ILTP Library http://www.cs.uni-potsdam.de/ti/iltp/.
For quantified modal systems we have both Wisniewski, Steen and Benzmüller’s as well as
the Raths and Otten libraries of problems.
In this work we seek to provide a similar benchmark for Girard’s Linear Logic [1] and

some of its variants. For quick bootstrapping of the collection of problems we use Girard’s
translation of the collection of intuitionistic theorems discussed in the ILTP library. Even-
tually we hope to compare different Linear Logic provers over an augmented collection of
problems.
[1] J.-Y. Girard, Linear logic. Theoretical Computer Science, vol. 50 (1987), no. 1, pp.

1–101.
[2] C. Kreitz, J. Otten, and T. Raths, The ILTP problem library for intuitionistic logic.

Journal of Automated Reasoning, vol. 38 (2007), no. 1–3, pp. 261–271.

� KIT FINE ANDMARK JAGO, Semantics for exact entailment.
Department of Philosophy, New York University, New York 10003, USA.
E-mail: kit.fine@nyu.edu.
Department of Philosophy, University of Nottingham, Nottingham, UK.
E-mail: mark.jago@nottingham.ac.uk.
URL Address: markjago.net.
An exact truthmaker for A is a state which, as well as guaranteeing A’s truth, is wholly

relevant to it. States with parts irrelevant to whether A is true do not count as exact truth-
makers for A. Giving semantics in this way produces a very unusual consequence relation,
exact entailment, understood in terms of preservation of exact truthmakers from premises to
conclusion. On this understanding, conjunctions do not exactly entail their conjuncts. This
feature makes the resulting logic highly unusual.
In this article, we set out formal semantics for exact entailment in terms of mereological

structures on a domain of states. The main result of the article is a characterisation theorem,
which establishes the syntactic form premises and conclusions must take in an exact entail-
ment. This gives us a conceptual handle onwhen an exact entailment holds. In intuitive terms,
it holds when some ground for the conclusion lies ‘in between’ a ground for one premise and
a ground for all premises taken together. Using this theorem, we show that exact entailment
is compact and decidable.
We then investigate the effect of various restrictions on the semantics. The first is to

nonvacuous models, wherein every atomic sentence letter has a truthmaker and a falsemaker
somewhere in themodel. The second is to convexmodels, whereby states lying in-between two
truthmakers for some A must also be truthmakers for A. We show that neither restriction,
in isolation, affects the entailment relation. But their combination produces a stronger logic,
for which we provide a further characterisation theorem.
Finally, we formulate a sequent-style proof system for exact entailment and give soundness

and completeness results.

� RANJANMUKHOPADHYAY, Intrinsic harmony and total harmony.
Department of Philosophy and Comparative Religion, Visva-Bharati University, Santinike-
tan, India.
E-mail: ranjan.mukhopadhyay@visva-bharati.ac.in.
When placed within the context of proof-theoretic justification of deduction (Dummett,

Prawitz) recent studies on the question of stability of intelim rules reveal the importance of
the two distinct notions of intrinsic harmony, and, total harmony (or, what is the same thing:
the satisfaction of the requirement of conservative extension (Belnap)) with respect to the
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intelim rules. The inversion principle of Prawitz captures the notion of intrinsic harmony.
But nonsubstructural weak disharmony (Dicher) can creep in even if the inversion principle
is satisfied by a constant, as can be seen in the case of the constant called ‘knot’ (Dicher)
which is the dual of ‘tonk’ (Belnap). Dicher’s study hints that lack of nonsubstructural weak
disharmony amounts to stability for intelim rules which are insulated from tinkering with
structural rules. For Dummett, harmony along with this sort of stability make a constant
self-justifying. So, intrinsic harmony does not entail the satisfaction of the requirement of
conservative extension. Does the satisfaction of the requirement of conservative extension
entail intrinsic harmony? The present article attempts to show that the intelim rules for con-
stants of minimal logic (system M of Prawitz) when satisfy the requirement of conservative
extension in the context of the language for deducibility-as-such (Belnap, ‘Tonk, plonk and
plink’) also have intrinsic harmony, i.e., respect the inversion principle. It goes by contrapos-
itively showing that within the specified context, if the inversion principle is violated then
conservative extension is also violated. Dummett conjectured that ‘intrinsic harmony implies
total harmony in a context where stability prevails’ (The Logical Basis of Metaphysics, HUP,
1991, p. 290). In such a case, given that total harmony entails intrinsic harmony in a spec-
ified context, intrinsic harmony coupled with stability (or, lack of nonsubstructural weak
disharmony), and total harmony would coincide in that context.
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