Renewing Foundations

Andrei Rodin

September 16, 2010
Introduction: Aims of the Talk

Three versions of the Pythagorean theorem
 Euclid’s Elements
 Arnauld’s New Elements
 Doneddu’s Plane Euclidean Geometry

Foundations and Progress of Mathematics
 Two Metaphors of Foundations
 Progress and Persistence of Mathematical Knowledge
 Foundations and Education
 Progress and Renewal of Foundations

Mathematical Foundations of mathematicians and Mathematical Foundations of philosophers

Instead of Conclusion: What is Next?

Appendix: On set-theretic foundations, category-theoretic foundations, and Structuralism
Aims of the Talk

- To develop a dialectical historically-laden notion of foundation for mathematics and science
- To sketch a theory of persistence and evolution of mathematical notions
- To make a number of claims about relationships between mathematics and philosophy (in the Conclusion)
Aims of the Talk

- To develop a dialectical historically-laden notion of foundation for mathematics and science
Aims of the Talk

▶ To develop a dialectical historically-laden notion of foundation for mathematics and science
▶ To sketch a theory of persistence and evolution of mathematical notions
Aims of the Talk

- To develop a dialectical historically-laden notion of foundation for mathematics and science
- To sketch a theory of persistence and evolution of mathematical notions
- To make a number of claims about relationships between mathematics and philosophy (in the Conclusion)
Three versions of the (statement of the) Pythagorean theorem: Version 1: Euclid
Three versions of the (statement of the) Pythagorean theorem: Version 1: Euclid

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.

(Elements, Proposition 1.47)
Three versions of the (statement of the) Pythagorean theorem: Version 2: Arnauld (1667)
Three versions of the (statement of the) Pythagorean theorem: Version 2: Arnauld (1667)

The square of hypothenuse is equal to (the sum of) squares of the two (other) sides (of the given rectangular triangle): \(bb + dd = hh \).

(*New Elements of Geometry, Proposition 14.26.4*)
Three versions of the (statement of the) Pythagorean theorem: Version 3: Doneddu (1965)
Three versions of the (statement of the) Pythagorean theorem: Version 3: Donneddu (1965)

Two non-zero vectors x and y are orthogonal if and only if $(y - x)^2 = y^2 + x^2$

(Donnedu, *Euclidean plane geometry*)
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of principal terms
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of principal terms

- Definition 1.19(2): trilateral figures being contained by three straight-lines
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of principal terms

- Definition 1.19(2): trilateral figures being contained by three straight-lines
- Definition 1.14: A figure is that which is contained by some boundary or boundaries
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of principal terms

- Definition 1.19(2): trilateral figures being contained by three straight-lines
- Definition 1.14: A figure is that which is contained by some boundary or boundaries
- Definition 1.13: A boundary is that which is the extremity of something
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of principal terms

- Definition 1.19(2): trilateral figures being contained by three straight-lines
- Definition 1.14: A figure is that which is contained by some boundary or boundaries
- Definition 1.13: A boundary is that which is the extremity of something
- Definition 1.8: And a plane angle is the inclination of the lines, when two lines in a plane meet one another, and are not laid down straight-on with respect to one another.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of "equal"

Common Notions:

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then the wholes are equal.
3. And if equal things are subtracted from equal things then the remainders are equal.
4. And things coinciding with one another are equal to one another. (NOT the other way round!)
5. And the whole [is] greater than the part.

WARNING: Equality in Euclid is NOT a binary relation.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

- 1. Things equal to the same thing are also equal to one another.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

- 1. Things equal to the same thing are also equal to one another.
- 2. And if equal things are added to equal things then the wholes are equal.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

- 1. Things equal to the same thing are also equal to one another.
- 2. And if equal things are added to equal things then the wholes are equal.
- 3. And if equal things are subtracted from equal things then the remainders are equal.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then the wholes are equal.
3. And if equal things are subtracted from equal things then the remainders are equal.
4. And things coinciding with one another are equal to one another. (NOT the other way round!)
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

► 1. Things equal to the same thing are also equal to one another.

► 2. And if equal things are added to equal things then the wholes are equal.

► 3. And if equal things are subtracted from equal things then the remainders are equal.

► 4. And things coinciding with one another are equal to one another. (NOT the other way round!)

► 5. And the whole [is] greater than the part.
semantics of the Pythagorean theorem: Euclid’s *Elements*: semantics of ”equal”

Common Notions:

1. Things equal to the same thing are also equal to one another.
2. And if equal things are added to equal things then the wholes are equal.
3. And if equal things are subtracted from equal things then the remainders are equal.
4. And things coinciding with one another are equal to one another. (NOT the other way round!)
5. And the whole [is] greater than the part.

WARNING: Equality in Euclid is NOT a binary relation.
semantics of the Pythagorean theorem: Arnauld’s *New Elements of Geometry*
semantics of the Pythagorean theorem: Arnauld’s *New Elements of Geometry*

- Avertissement: We can use here all facts demonstrated in Books 2, 3 for plane magnitudes in general.
semantics of the Pythagorean theorem: Arnauld’s *New Elements of Geometry*

- Avertissement: We can use here all facts demonstrated in Books 2,3 for plane magnitudes in general.
- Definition 5.1: A magnitude is either continuous as extent, time, motion or discrete as number. Continuous magnitude is either successive as time, motion or permanent; the latter kind of magnitude is called space or extent. (MIND THE GAP!)
semantics of the Pythagorean theorem: Arnauld’s New Elements of Geometry

- Avertissement: We can use here all facts demonstrated in Books 2,3 for plane magnitudes in general.

- Definition 5.1: A magnitude is either continuous as extent, time, motion or discrete as number. Continuous magnitude is either successive as time, motion or permanent; the latter kind of magnitude is called space or extent. (MIND THE GAP!)

- Assumption 1.4: We assume that multiplication and division applies not only to number but to all magnitudes. ...
Assumption 1.5: When one supposes that a given magnitude is not generated by multiplication of some other magnitudes one considers this given magnitude as one-dimensional; such magnitudes are called linear. When one supposes that a given magnitude is generated by multiplication of two linear magnitudes one considers this given magnitude as two-dimensional; such magnitudes are called plane.
Assumption 1.5: When one supposes that a given magnitude is not generated by multiplication of some other magnitudes one considers this given magnitude as one-dimensional; such magnitudes are called linear. When one supposes that a given magnitude is generated by multiplication of two linear magnitudes one considers this given magnitude as two-dimensional; such magnitudes are called plane. (NOTICE THE RELATIVITY OF DIMENSION! Dimension is not an intrinsic property of a given magnitude but a way to look at this magnitude.)
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*

- **Definition:** Vector is a class of oriented equipollent segments
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*

- Definition: Vector is a class of oriented equipollent segments
- Definition: Segment is a non-ordered pair of two points called its boundaries
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*

- Definition: Vector is a class of oriented equipollent segments
- Definition: Segment is a non-ordered pair of two points called its boundaries
- Plane geometry is a theory that studies a basic set P called plane. Elements of this set are called points.
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*

- Definition: Vector is a class of oriented equipollent segments
- Definition: Segment is a non-ordered pair of two points called its boundaries
- Plane geometry is a theory that studies a basic set P called plane. Elements of this set are called points.
- Any subset of P is called a figure.
semantics of the Pythagorean theorem: Doneddu’s *Plane Euclidean Geometry*

- Definition: Vector is a class of oriented equipollent segments
- Definition: Segment is a non-ordered pair of two points called its boundaries
- Plane geometry is a theory that studies a basic set P called plane. Elements of this set are called points.
- Any subset of P is called a figure.
- There are two principle elements of geometry: (1) space viewed as a set of points and subsets of this set called figures; (2) group of transformation that determines the notion of ”equality” and that is a source of geometrical properties of figures.
table of contents of Doneddu’s *Plane Euclidean Geometry*

TABLE DES MATIÈRES

PREMIÈRE PARTIE

NOTIONS SUR LES ENSEMBLES ET LES NOMBRES

CHAPITRE 1. — Ensembles et relations.

1. Ensembles .. 3
2. Axiomes de Peano 4
3. Relations ... 5
4. Relation d’inclusion 7
5. Symboles logiques 9
6. Relation d’équivalence 11
7. Relation d’ordre 13

CHAPITRE 2. — Lois de composition.

1. Définitions ... 18
2. Addition et multiplication dans N. 19
3. Addition et multiplication dans Z. 20
4. Addition et multiplication dans Q. 21
5. Propriétés des lois de composition. 23
6. Structure de demi-groupe 25
7. Structure de groupe 29
8. Sous-groupe 31
9. Distributivité 32
10. Structure d’anneau. Structure de corps 34
11. Anneau des nombres p-aires 36
12. Lois de composition externes 37
This was only a VERY superficial semantical analysis of the statement of the theorem. As far as the structure of reasoning (proof) is taken into account the differences are even more striking!
Claim (anticipating what follows): Versions 1-3 of the Pythagorean theorem differ in their foundations, i.e., differ *radically*.
Claim (anticipating what follows): Versions 1-3 of the Pythagorean theorem differ in their foundations, i.e., differ \textit{radically}.

Question: Do they share anything in common?
Claim (anticipating what follows): Versions 1-3 of the Pythagorean theorem share only a common history (= dialectical evolution of the involved conceptual content). Older versions translate into newer versions (but not the other way round!) They do not share an "essence" or a "structure".
Claim (anticipating what follows): Versions 1-3 of the Pythagorean theorem share only a common history (＝ dialectical evolution of the involved conceptual content). Older versions translate into newer versions (but not the other way round!) They do not share an ”essence” or a ”structure”.

An analogy (only): 3D and 4D ontology. However dialectical links between older and newer foundations are neither causal nor contingent.
Two Metaphors of Foundations

Architectural metaphor (responsible for the term).
Two Metaphors of Foundations

Architectural metaphor (responsible for the term).

Contrary to what the architectural metaphor suggests foundations change while the rest remains stable (in the sense explained above)
Two Metaphors of Foundations

Architectural metaphor (responsible for the term).

Contrary to what the architectural metaphor suggests foundations change while the rest remains stable (in the sense explained above) The architectural metaphor applies only locally, it doesn’t work at larger historical scales.
Two Metaphors of Foundations

Architectural metaphor (responsible for the term).

Contrary to what the architectural metaphor suggests foundations change while the rest remains stable (in the sense explained above) The architectural metaphor applies only locally, it doesn’t work at larger historical scales. This is a serious reason for abandoning the term ”foundations” as non-adequate but I shall not do this in the present discussion.
Neurath's Boat:

Andrei Rodin

Renewing Foundations
Two Metaphors of Foundations

Neurath’s Boat:

”We are like sailors who on the open sea must reconstruct their ship but are never able to start afresh from the bottom”

(Anti-Spengler 1921)
Neurath’s Boat:

"We are like sailors who on the open sea must reconstruct their ship but are never able to start afresh from the bottom” (Anti-Spengler 1921)

Neurath’s Boat doesn’t support the notion of progress (hereafter = accumulation of knowledge)
Two Metaphors of Foundations

Neurath’s Boat:

”We are like sailors who on the open sea must reconstruct their ship but are never able to start afresh from the bottom” (Anti-Spengler 1921)

Neurath’s Boat doesn’t support the notion of progress (hereafter = accumulation of knowledge) The traditional metaphor supports the notion of progress locally but not globally.
The notion of progress requires that true knowledge, once it is acquired, then indefinitely continues to be available. (Think again about the Pythagorean theorem.) How is it possible? Where is it stocked?
Popper’s Third World:

Knowledge in the objective sense consists not of thought processes but of thought contents. It consists of the content of our linguistically formulated theories; of that content which can be, at least approximately, translated from one language into another. The objective thought content is that which remains invariant in a reasonably good translation. Or more realistically put: the objective thought content is what the translator tries to keep invariant, even though he may at times find this task impossibly difficult.

(”Three worlds”, 1978)
Claim: Popper’s notion of thought content as an invariant of linguistic translation (may be adequate for describing the content of a religious doctrine but) is not appropriate for describing a mathematical and, more generally, scientific content.
Argument: A literal reproduction of written patterns never played the same role in mathematics (and science) as it did in religion and in general literature. The same holds for reproduction of written patterns up to a ”reasonably good translation”. Unlike religion, mathematics and science have never developed a culture of Great Books (original written sources preserving their textual identity). Mathematical texts are generally reproduced through a permanent revision including the radical revision, i.e., the revision of foundations. This makes a great difference (ignored by Popper) between the retention of mathematical (also scientific) contents and the retention of conceptual contents of other kinds.
Argument: A literal reproduction of written patterns never played the same role in mathematics (and science) as it did in religion and in general literature. The same holds for reproduction of written patterns up to a ”reasonably good translation”. Unlike religion, mathematics and science have never developed a culture of Great Books (original written sources preserving their textual identity). Mathematical texts are generally reproduced through a permanent revision including the radical revision, i.e., the revision of foundations. This makes a great difference (ignored by Popper) between the retention of mathematical (also scientific) contents and the retention of conceptual contents of other kinds. Today’s systematic interest to old mathematical texts identified as written linguistic patterns (i.e. by usual philological rather than specific mathematical standards) is relatively recent (19th century). It belongs to history of mathematics but not to mathematics itself.
A false counter-example: Euclid’s *Elements*

It is often claimed that until recently Euclid’s *Elements* used to be a Bible of mathematics. In fact, the literature published under the title of ”Euclid’s Elements” since the beginning of book printing is surprisingly diverse. Revision of current versions of Euclid’s book was until very recently a rule rather than an exception. The way in which Euclid’s *Elements* preserved its identity through multiple re-publications differs strikingly from how poetical, philosophical and religious texts preserved their identity. The *Elements* barely existed as a fixed written literal pattern until such pattern was fixed by philologists (!) Heiberg and Menge in 1886. The alleged stickiness to Euclid’s letter NEVER existed in mathematics! The history of revisions of Euclid’s *Elements* still waits to be accounted for systematically.
To sum up:
Popper’s notion of thought content as an invariant of linguistic translation is inadequate to mathematics and science. Mathematical and scientific knowledge cannot be stocked in libraries or in a special metaphysical world. This knowledge is continuously reproduced through research and education. Such reproduction has a character of non-trivial renewal rather than mechanical repetition of printed patterns or mere retention of their translational invariants.
The need of renewal of scientific knowledge is related to the fundamental anthropological fact that the human race subsists and evolves through lives of multiple short-living individuals. There is no biological mechanism providing the accumulation of human knowledge. Every new generation, every new student should learn everything anew. It is well known that the non-trivial character of reproduction of short-living individuals (I mean the mutagenesis) is a crucial factor of biological evolution of a given biological species. I claim that the non-trivial character of reproduction of scientific knowledge is equally crucial for scientific progress.

Progress and renewal are two principal ways in which science and mathematics evolve. Renewal without progress is possible (think of Neurath's boat or of the social phenomenon of fashion) but progress without renewal is not (obviously). MOREOVER progress requires a non-trivial renewal. Here is why.

Andrei Rodin
Renewing Foundations
Foundations and Education

The need of renewal of scientific knowledge is related to the fundamental anthropological fact that the human race subsists and evolves through lives of multiple short-living individuals. There is no biological mechanism providing the accumulation of human knowledge. Every new generation, every new student should learn everything anew. It is well known that the non-trivial character of reproduction of short-living individuals (I mean the mutagenesis) is a crucial factor of biological evolution of a given biological species. I claim that the non-trivial character of reproduction of scientific knowledge is equally crucial for scientific progress.
Foundations and Education

The need of renewal of scientific knowledge is related to the fundamental anthropological fact that the human race subsists and evolves through lives of multiple short-living individuals. There is no biological mechanism providing the accumulation of human knowledge. Every new generation, every new student should learn everything anew. It is well known that the non-trivial character of reproduction of short-living individuals (I mean the mutagenesis) is a crucial factor of biological evolution of a given biological species. I claim that the non-trivial character of reproduction of scientific knowledge is equally crucial for scientific progress. Progress and renewal are two principal ways in which science and mathematics evolve. Renewal without progress is possible (think of Neurath’s boat or of the social phenomenon of fashion) but progress without renewal is not (obviously). MOREOVER progress requires a
Foundations and Education

Mathematics greatly progressed during the last several millenia. But learning capacities of students didn’t significantly change. How can education support scientific progress?
Mathematics greatly progressed during the last several millenia. But learning capacities of students didn’t significantly change. How can education support scientific progress? *Specialization* is a partial solution. But it cannot be a long-term solution because an exceeding specialization destroys the systematic unity of mathematics.
Foundations and Education

Mathematics greatly progressed during the last several millenia. But learning capacities of students didn’t significantly change. How can education support scientific progress? *Specialization* is a partial solution. But it cannot be a long-term solution because an exceeding specialization destroys the systematic unity of mathematics. In order to preserve the unity, there should exist a part of mathematics known to every mathematician of the current generation that connects mathematics into a systematic whole. The task of renewal of mathematics as a whole can be then reduced to the renewal of this *generic* element.
Foundations and Education

Mathematics greatly progressed during the last several millenia. But learning capacities of students didn’t significantly change. How can education support scientific progress? *Specialization* is a partial solution. But it cannot be a long-term solution because an exceeding specialization destroys the systematic unity of mathematics. In order to preserve the unity, there should exist a part of mathematics known to every mathematician of the current generation that connects mathematics into a systematic whole. The task of renewal of mathematics as a whole can be then reduced to the renewal of this *generic* element. At every given moment of history this generic element should be capable of providing an epistemic access to any part of the existing mathematics. In order to support progress this generic element should change through history very significantly. This is exactly
Example: Euclid’s *Elements*

Why have Euclid’s *Elements* been generally abandoned as a principal introductory mathematics textbook? Not because people found fallacies in it. Hardly because its standard of rigor was judged insufficient (an introductory textbook is not supposed to meet a high standard of rigor anyway). In principle, this happened because Euclid’s *Elements* could not any longer serve its main purpose, that is, to provide a sufficient basis for further studies in any existing branch of mathematics. Euclid’s *Elements* did this job perfectly well for a while but ceased to do this since mathematics significantly progressed.
Progress and Renewal of Foundations

I shall identify the generic element of mathematics as *foundations* of mathematics.
I shall identify the generic element of mathematics as *foundations* of mathematics.

WARNING: I do NOT suggest that the change of foundations is caused by (is a reaction to) progress. I only claim that the non-trivial renewal of foundations that implies their change is a necessary condition of progress. Obviously, this condition is not sufficient.
The principle method of renewal of foundations is philosophical dialectics which should be definitely distinguished from scientific ways of reasoning appropriate in mathematics and sciences, which serve for achieving a progress in these fields. Strictly speaking, there is no possible progress in foundations. Renewal of foundations is a condition of scientific progress but itself does not qualify as a progress. Philosophy makes progress of mathematics and science possible but does not progress itself.
Example: The Pythagorean theorem

What makes different versions of the Pythagorean theorem into a single whole is the continuity of dialectical transition of foundations corresponding to each of these versions. Newer versions of this theorem make part of mathematics that is further progressed. Hence the difference in foundations.
Example: The Pythagorean theorem

What makes different versions of the Pythagorean theorem into a single whole is the continuity of dialectical transition of foundations corresponding to each of these versions. Newer versions of this theorem make part of mathematics that is further progressed. Hence the difference in foundations. Older versions of the Pythagorean theorem translate into its newer versions but, generally, not the other way round. To see this recall the "relativity of dimension" in Arnauld. "Geometrical algebra” translates into symbolic algebra but, generally, not the other way round.
Mathematical Foundations of mathematicians and Mathematical Foundations of philosophers

My proposed notion of foundations broadly agrees with what working mathematicians say about foundations. It less agrees with what many living philosophers say about foundations.
Manin on foundations

Cantor’s theory of the infinite had no basis in the older mathematics. You can argue about this as you like, but this was a new mathematics, a new way to think about mathematics, a new way to produce mathematics. In the final analysis, despite the arguments, the contradictions, Cantor’s universe was accepted by Bourbaki without apology. They created ”pragmatic foundations”, adopted for many decades by all working mathematicians, as opposed to normative foundations that logicists or constructivists tried to impose upon us. (....) So Bourbaki in fact did something completely different from what these guys (= philosophers, A.R.) think. (...)
A rebuilding of what I call the "pragmatic foundations of mathematics" will continue. By this I mean simply a codification of efficient new intuitive tools, such as Feynman path integrals, higher categories, the "brave new algebra" of homotopy theorists. (...) I am pretty strongly convinced that there is an ongoing reversal in the collective consciousness of mathematicians: the right hemispherical and homotopical picture of the world becomes the basic intuition, and if you want to get a discrete set, then you pass to the set of connected components of a space defined only up to homotopy. I see in this an analogy with a rebuilding of pragmatic foundations in terms of category theory and homotopic topology.
I agree with what Manin says about the rebuilding of foundations but disagree with his notion of ”pragmatic foundations”. I assume that Manin calls foundations ”pragmatic” because he is disappointed by the notion of foundations of mathematics developed in today’s mainstream philosophy. I’m disappointed by this notion of foundations of mathematics too but I still believe that foundations of mathematics deserve and even require a systematic philosophical treatment. I also believe that normative claims can be appropriate in philosophy of mathematics.
A foundation makes explicit the essential general features, ingredients, and operations of a science, as well as its origins and general laws of development. The purpose of making these explicit is to provide a guide to the learning, use, and further development of the science. A "pure" foundation that forgets this purpose and pursues a speculative "foundations" for its own sake is clearly a nonfoundation.
I tend to agree with what Lawvere says in this passage but I realize that the issue deserves a more systematic discussion. I definitely stick to the *audiatur altera pars* principle. The sad reality is that philosophically-minded mathematicians and mathematically-minded philosophers today barely manage to engage themselves into a rational dialog about foundations of mathematics.
Today, as ever, foundations of mathematics need a renewal. Whether set-theoretic foundations will stand or fall in the future does not seem me to be a serious issue. I don’t see any reason why these particular foundations unlike their numerous predecessors may turn to be eternal.
Today, as ever, foundations of mathematics need a renewal. Whether set-theoretic foundations will stand or fall in the future does not seem me to be a serious issue. I don’t see any reason why these particular foundations unlike their numerous predecessors may turn to be eternal. Unless the progress of mathematics stops tomorrow the set-theoretic foundation will soon be no longer adequate to this discipline. Many working mathematicians doing cut-edge research say that set-theoretic foundations of mathematics are already not quite adequate today.
What is Next?

Since the progress of mathematics accelerates (at least in long-term) it is even reasonable to predict that the life span of set-theretic foundations will be shorter than that of any older foundations. Thinking of set-theoretic foundations as if they were eternal seems me not only theoretically wrong but also irresponsible with respect to younger generations of our students.
A more pertinent issue is what is coming next. After Manin and Lawvere, I am enthusiastic about tentative category-theoretic foundations. This ongoing foundational renewal like any other requires further systematic philosophical efforts. I'll briefly describe my approach to this issue in the end of this talk (if I’ll have time for it).
Historicity of Mathematics

The ongoing replacement of set-theoretic foundations by tentative category-theoretic foundations is similar to any other foundational renewal occurred in the past except that it proceeds faster than earlier renewals. This acceleration of foundational renewal is strongly correlated with the acceleration of mathematical progress (without being causally dependent). The acceleration of renewal increases the importance of *historical thinking* in mathematics and its philosophy.
Historicity of Mathematics

Even if a future New Math project will produce in few decades a complete set of introductory mathematical courses based on purely category-theoretic notions - just like the older New Math project did this few decades ago using the naive Set theory - students might still profit from being capable to read older Bourbaki-style mathematical publications. Such reading may turn to be NOT ONLY of purely historical interest: some people may produce new mathematics using these older sources. This is why I believe that future foundations of mathematics should explicitly involve major older foundations and provide some account of the dialectics of their renewal.
Historicity of Mathematics

Stressing the importance of history for mathematics and its philosophy I assume that the projected future is more important than the reconstructed past. So I do not suggest here to confuse doing new mathematics and new philosophy of mathematics with doing history of these subjects. I rather suggest that the future cannot be reasonably projected and theoretical efforts cannot be properly directed unless the past is well understood and taken into account in our today’s actions. This is why I think that the old habit of thinking about mathematics and its foundations sub species aeternitatis is misfortunate and must be definitely abandoned.
Historicicity of Mathematics

Philosophy of mathematics, which uses mathematical texts published a century ago for making up timeless metaphysical theories about the essence of mathematics and mathematical objects, cannot be appealing for working mathematicians, mathematical teachers or any other people interested in mathematics. What philosophy of mathematics can and, in my view, should produce (and permanently reproduce) is a foundation capable to support and facilitate further progress of mathematics preserving its systematic unity. Making outdated mathematical approaches into refined a-historical metaphysical theories about mathematics does not help philosophy to fulfill this task.
Set-theoretic foundations of mathematics allow for building mathematical objects as *structured sets*. A structured set consists of (1) a base set and (2) a system of relations between elements of the base set, which are specified by appropriate axioms. Crucial for set-theretic foundation is the notion of *isomorphism* between structured sets, i.e. one-to-one correspondence between elements of the given sets that preserves relations between these elements.
Structuralism and set-theoretic foundations

In set-theoretic mathematics the notion of isomorphism plays, roughly, the same role as the notion of equality (not to be confused with logical identity) plays in traditional mathematics. In set-theoretic mathematics structured sets are thought of ”up to isomorphism”; a structured set thought of up to isomorphism is colloquially called a structure. A philosophy of mathematics supporting this way of thinking about mathematical object is called Mathematical Structuralism.
Structuralism and set-theoretic foundations

Controversies about Structuralism in set-based mathematics stressed by Benacerraf and other authors are related to controversial attempts to apply the same structural method for construing sets themselves, i.e., attempts to construe sets as structured sets. This is exactly what is going on in axiomatic theories of sets like ZF where sets are construed as sets holding a single primitive relation called ”membership”. (I use here the term ”set” informally as synonymous to ”collection”. In order to avoid the obvious circularity, people distinguish between these things.) However important these controversies can be they have never suggested a new way of doing mathematics that could compete with the structural set-theoretic way of doing mathematics briefly outlined above.
Categorical foundations

An isomorphism can be described as a *reversible transformation*: one-to-one correspondence is a symmetric construction; it has no preferred direction. Thinking about isomorphism as reversible transformation one can describe a structure as an invariant of such transformations of an appropriate kind. In this setting, one can consider transformations of a more general sort called *morphisms* or *functors*, which are, generally, not reversible. Think about group homomorphisms, for example. The project of category-theoretic foundations of mathematics amounts to the attempt of rebuilding the core of older mathematics, and developing new mathematics, on the basis of the notion of morphism (functor) taken as primitive.
Structuralism and category-theoretic foundations

Many enthusiasts of category-theoretic foundations of mathematics consider such foundations as a better realization of principles of Mathematical Structuralism. I disagree. One cannot think "up to homomorphism" in anything like the same way in which people think up to isomorphism doing structuralist mathematics. Non-reversible transformations unlike reversible ones, generally, have no invariants. So in the new setting one cannot, generally, describe mathematical objects as structures. Instead of studying invariants of reversible transformations categorical mathematics studies transformations themselves.
About dialectics

Finally, I would like to stress that the replacement of standard set-theoretic foundations by categorical foundations is not a matter of taste. Unlike Manin, I don’t think about this replacement as a pragmatic solution either. The notion of non-reversible transformation (morphism) is a straightforward generalization of that of isomorphism. There is an objective order of ideas, that leads one from thinking of sets and structures to thinking of categories and functors. It goes without saying that this order exists only in human collective thinking, that is in human intellectual history. This order of ideas is not a deductive order. It is a *dialectical* order.