Andrei Rodin

Collection and Connection

Abstract

Spatial thinking is inherent to the concept of **extensionality** and hence to the (extensional) set theory. To make this clear I provide a dual **intensional** reading of ZF which has a *temporal* meaning. This gives a reason to embed a topological structure into the theory (in both cases) instead of putting the structure on the top of it as it is usually made. Combined *spatiotemporal* systems are tentatively considered. Finally I consider a possibility to apply the same approach to logic (challenging Russell's logical atomism).

By a «set» we understand every collection to a whole M of definite, well-differentiated objects m of our intuition or our thought. We call these objects the «elements» of M. *Cantor*, 1895

.. all we are interested in with sets is what members they have. ... *Drake*, 1974

 $x \in y =_{Def} set x is$ **element**of set y; set y is**host**of set x

Why think of sets in terms of their elements but not in terms of their hosts?

ZF	ZF*		
$\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y)$	$\forall x \forall y (\forall z (x \in z \leftrightarrow y \in z) \rightarrow x = y)$		
extensionality:	intensionality (identity of indiscernibles)		
$x \text{ is } \mathbf{atom} =_{\mathrm{Def}} \neg \exists y (y \in x);$	$x \text{ is } \mathbf{world} =_{Def} \neg \exists y (x \in y)$		
given extensionality the atome is unique	given intensionality the world is unique		
$\forall a \forall b (a \neq b \rightarrow \exists p \forall x (x \in p \leftrightarrow (x = a \lor x = b)))$	$\forall a \forall b (a \neq b \rightarrow \exists p \forall x (p \in x \leftrightarrow (x = a \lor x = b)))$		
pairing: shared host: space	connection : shared element: time		
$\forall a(\exists b(b \in a) \rightarrow \exists y \forall x(x \in y \leftrightarrow \exists z (x \in z \& z \in a))$	$\forall a(\exists b(a \in b) \rightarrow \exists y \forall x(y \in x \leftrightarrow \exists z (z \in x \& a \in b)) \rightarrow \exists y \forall x(y \in x \leftrightarrow \exists z (z \in x \& a \in b))$		
a))) union: elements of elements	z))) intersection : hosts of hosts		
y is subset of $z =_{Def} \forall x (x \in y \rightarrow x \in z)$ every	y is superelement of $z =_{Def} \forall x (y \in x \rightarrow z \in x)$		
element of y is an element of z	every host of y is a host of z		
$\forall x(x\subseteq x)$	$\forall x(x \supseteq x)$		
$\forall a \exists y \forall x (x \in y \leftrightarrow x \subseteq a)$	$\forall a \exists y \forall x (y \in x \leftrightarrow a \supseteq x)$		
power : set of (all the) subsets	root : element of (all the) superelements		
given powering no worlds	given rooting no atoms		
predicates generate subsets	abstractors generate superelements		
$\forall a \exists y \forall x \ (x \in y \leftrightarrow x \in a \& \varphi(x))$	$\forall a \exists y \forall x \ (y \in x \leftrightarrow a \in x \ \& \ \phi(x))$		
$(x\neq x)$: the atom (the empty set) exists	the world exists		
$\forall x (\emptyset \subseteq x)$	$\forall x(W \supseteq x)$		
$\exists y(y \in x) \rightarrow \exists y(y \in x \& \forall z \neg (z \in x \& z \in y)$	$\exists y(x \in y) \rightarrow \exists y(x \in y \& \forall z \neg (x \in z\& y \in z)$		
foundation	upside down foundation (cofoundation)		