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Abstract. The received notion of axiomatic method stemming from Hilbert is not fully

adequate to the recent successful practice of axiomatizing mathematical theories. The

axiomatic architecture of Homotopy type theory (HoTT) does not fit the pattern of

formal axiomatic theory in the standard sense of the word. However this theory falls

under a more general and in some respects more traditional notion of axiomatic theory,

which I call after Hilbert and Bernays constructive and demonstrate using the Classical

example of the First Book of Euclid’s Elements. I also argue that HoTT is not unique

in the respect but represents a wider trend in today’s mathematics, which also includes

Topos theory and some other developments. On the basis of these modern and ancient

examples I claim that the received semantic-oriented formal axiomatic method defended

recently by Hintikka is not self-sustained but requires a support of constructive method.

Finally I provide an epistemological argument showing that the constructive axiomatic

method is more apt to present scientific theories than the received axiomatic method.

1. Introduction

In a recent paper, which surveys di↵erent ways of using axioms in mathematical practice,

Dirk Schlimm [44] provides the following general definition of axiomatic theory and claims

that it applies to “all instances of axiomatics from Euclid to the present” (op. cit. pp.

43-44):
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I consider an axiom system to consist of a number of statements (the ax-

ioms) and a notion of consequence, which is employed to derive further

statements from them; the resulting axiomatic theory includes all state-

ments that are derivable from the axioms and which might also contain

terms that are defined from the primitive terms that occur in the axioms

(i.e., the primitives of the system). (op. cit., p. 40)

By a “statement” the author understands here either a meaningful proposition (the case of

material aka contentful axiom system) or a propositional form, which becomes a meaningful

proposition through an interpretation (op. cit., p. 44) 1.

The above definition is fairly standard. At the first glance it appears that it covers ev-

erything that can be reasonably called an axiomatic theory. My aim is to persuade the

reader that this is not the case. For this end I shall point to certain theories, which are

commonly called axiomatic but which do not fall under the above definition of axiomatic

theory. Then I shall propose a broader notion of axiomatic theory (and of axiomatic

method), which covers these problematic cases. As the reader will see such problematic

cases are not marginal and exotic but belong to the mainstream mathematics of di↵erent

epochs including today’s mainstream mathematics. In short, in this paper I argue that the

received notion of axiomatic method is biased and propose an improvement.

My main examples are (i) Euclid’s geometrical theory of Book 1 of his Elements (see

Section 5) and (ii) the recent Homotopy Type Theory (HoTT, see Section 8), which makes

part of a new perspective foundations of mathematics called Univalent Foundations (UF,

see [6]). I argue contra Schlimm (see op. cit. p. 50) that if one reads Euclid carefully

and avoids any hasty modernization of his text then one is not in a position to qualify

his geometrical theory as an instance of (contentful) axiomatic theory in Schlimm’s sense.

1Schlimm claims, in full generality, that “any finite set of axioms can be reduced to a single axiom by

conjunction” (op. cit., p. 67). Since conjunction is a logical operation on propositions (and by extension -

also on propositional forms) I conclude that in Schlimm’s understanding the axioms qualify as propositions

or propositional forms.
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Although the overall importance of Euclid’s Elements for the axiomatic thinking is hardly

contestable one may still argue that the particularities of Euclid’s axiomatic approach,

to which I attract the reader’s attention, are archaic and today may have only historical

significance. This is why the case of HoTT-UF, which represents the edge of the current

mathematical research, is more essential for my argument. I shall show that HoTT-UF

does not qualify as an axiomatic theory in the received sense of the term either. Even

if the significance of UF for the whole of today’s mathematics remains controversial, it is

clear that this theory reflects an important part of the mainstream mathematical practice

of last decades. I shall argue that the special character of the axiomatic architecture of

HoTT represents a wider trend in the 20th century logic and mathematics (Sections 6, 7).

The fact that the axiomatic architecture of HoTT also shares certain key features with the

old good Euclid’s geometry is an additional reason why I believe that the received notion

of axiomatic method established in the 20th century is biased.

The rest of the paper is organized as follows. In the next Section I discuss the received

notion of axiomatic method and make explicit some epistemological assumptions, which

are usually associated with this method. In Section 3 I overview the continuing discussion

on constructive aka genetic method started by Hilbert [11]. In Section 4 I motivate and

introduce the notion of emphconstructive axiomatic method, which combines the key fea-

tures of the genetic method and the received axiomatic method. In Section 5 I treat the

historical example of Euclid’s Elements, Book 1 and show that Euclid’s axiomatic theory

qualifies as constructive in the relevant sense of the term. In Section 6 I discuss the notion

of Curry-Howard correspondence and its role in the Categorical logic. This Section serves

me as a necessary historical and theoretical preliminary to Sections 7 and 8 where I treat

two modern examples of axiomatic theories: Topos theory and HoTT. In the concluding

Section 9 I argue that the constructive axiomatic method has some important epistemolog-

ical advantages over the received axiomatic method, which make it more apt to prospective

applications in physics and other natural sciences. This latter discussion is construed as a

critique of the recent account of axiomatic method given by Hintikka [16].
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2. The Received Views on the Axiomatic Method: Semantic and Syntactic

Approaches

At an early stage of his life-long work on axiomatic foundation of mathematics (1893-1894)

Hilbert describes his notion of well-founded axiomatic theory as follows:

Our theory furnishes only the schema of concepts connected to each other

through the unalterable laws of logic. It is left to human reason how it wants

to apply this schema to appearance, how it wants to fill it with material.

([9], p. 104)

The two key features of this notion of theory are (i) its schematic character and (ii) its

logical grounding. Let me first focus on (ii). Hilbert refers to the “unalterable laws of logic”

as something definite and somehow known. A weaker assumption which we may attribute

to Hilbert and which still allows us to make sense of his words is that the laws of logic

are epistemically more reliable than any specific mathematical and scientific knowledge, so

these laws should serve as a foundation for all mathematical and scientific theories.

The assumption of fixity of logic is crucial for understanding the schematic character (i) of

Hilbert-style axiomatic theories. Axioms and theorems of non-interpreted formal theory are

propositional forms, which admit truth values (and thus turn into full-fledged propositions)

through an interpretation. An interpretation of a given propositional form amounts to

assigning to terms like “point”, “straight line”, etc. certain semantic values, which can

be borrowed from another mathematical theory or from some extra-theoretical sources

like intuition and experience [16]. One and the same propositional form (and hence one

and the same axiomatic theory), generally, admits multiple interpretations. In order to

make sense of the idea of propositional form one needs a further assumption, which is the

following. The game of multiple interpretations does not equally concern all terms of a

given schematic theory. Some terms, namely logical terms, have fixed meanings, which (at

least in the early versions of Hilbert’s axiomatic approach) is supposed to be self-evident.

The di↵erent treatment of logical and non-logical terms reflects assumption (ii) according
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to which logical concepts are epistemically prior. In practice this assumption requires to

“fix logic” first and then use it as a tool for building various axiomatic theories in a view

of their intended models.

Although Schlimm’s definition of axiomatic theory does not commit one to any particular

epistemological view on logic, his examples of “imaginary”, i.e., non-interpreted axioms

([44], p. 44) are all of the same sort: they contain some meaningful logical terms and

some meaningless (i.e., open to multiple possible interpretations) non-logical terms. This

lets me think that the fundamental epistemic assumption (ii) about the logical grounding

of axiomatic theories makes proper part of the received view on the axiomatic method as

described in Schlimm’s paper.

As it stands Schlimm’s definition of axiomatic theory identifies such a theory with a set

of “statements”, i.e., propositions, related by some relation of logical inference aka deriv-

ability. Let us now consider the case when the axioms are schematic and formulated in a

certain symbolic language with a precise syntax (like in ZF). Then we have at least two

possibilities for specifying the wanted relation of logical inference: it can be construed ei-

ther (i) syntactically as a part of the language (in symbols A ` B) or (ii) semantically as

follows: B follows from A just in case when:

In all interpretations where A is true B is also true.

(in symbols A |= B; a more precise definition of semantical consequence is given in Section

9 below). If the two relations coincide extensively on the set of all propositions of some

given axiomatic theory T then T is said to be semantically complete.

Whether the syntactic consequence relation (i) or the semantic consequence relation (ii)

is epistemically prior is a subject of continuing philosophical controversy. Taking the

latter semantic view, one may go further and identify a theory with a class of its models

rather than with any particular axiom system together with all theorems derivable from

the given set axioms. (Notice that one and the same class of models can be, generally

speaking, axiomatized in many di↵erent ways.) In a di↵erent paper Schlimm considers this
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controversy and quite rightly stresses the fact that it remains wholly within the scope of the

received notion of axiomatic method [43]. Schlimm makes this claim contra van Fraassen

who defends a strong version of semantic view (identifying a scientific theory with the

class of its models) and on this ground denies the relevance of axiomatic method in science

altogether ([50], p. 65). Unlike Schlimm I don’t think that van Fraassen’s rejection of the

received axiomatic method is a result of a simple terminological confusion. After all the

lack of any significant impact of the axiomatic approach onto the mainstream 20th century

physics (unlike the 20th century mathematics) is evident and, in my opinion, needs a better

explanation. My tentative explanation is this: the way in which an axiomatic theory (in

the received sense of the term) specifies the class of its model is not appropriate (or at least

not su�cient) for building physical models. The constructive axiomatic method discussed

below in this paper is expected to fix this major shortcoming of the received method. I shall

come back to this issue and provide an argument supporting these claims in the concluding

Section 9.

3. Genetic method versus Axiomatic method

In this Section I overview the continuing discussion on the constructive aka genetic method

of introducing mathematical concepts and building mathematical theories, which often (but

not always as we shall shortly see) is opposed to the (received) axiomatic method. I show

that the distinction between the methods of theory-building is not quite clear-cut and for

this reason needs a revision.

The current discussion on the genetic method goes back to Hilbert’s early paper on the

concept of number ([11], English translation [13], where the author explains how the con-

cepts of whole, rational and real numbers can be construed from (or as Hilbert puts this

“engendered [erzeugt] by”) the concept of natural number (provided that this latter con-

cept is taken for granted). This can be done in a number of ways, di↵erences between which

are not essential for Hilbert in this context. In particular, real numbers can be construed

either as Dedekind cuts or as Cauchy sequences of rational numbers, rational numbers
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can be construed as pairs of whole numbers numbers, and whole numbers - as pairs of

natural numbers. Such procedures Hilbert calls genetic and opposes them to axiomatic

procedures. He remarks that historically the genetic method has been used in arithmetic

while the axiomatic method has been used only in geometry. Assuming that

[d]espite the high pedagogic and heuristic value of the genetic method, for

the final presentation and the complete logical grounding of our knowledge

the axiomatic method deserves the first rank. ([13], p. 1093)

Hilbert develops then an axiomatic theory of arithmetic.

The distinction between the two methods has been widely discussed in the later literature

[4], [5], [36] 2 , [46], most recently by Elen Landry [19]. Landry uses this distinction

for making an argument against Feferman’s claim according to which axiomatic theories

of categories (such as EM, ETCS and CCAF, see [33]) cannot serve as an independent

foundations of Category theory and of the rest of mathematics because they all allegedly

use some prior notions of collection (or class) and operation. Landry argues back that these

notions are used only for a genetic underpinning of Category theory but play no role in the

logical axiomatic foundation of this theory stricto sensu. Instead of defining a category in

terms of classes of things called “objects” and “morphisms” Landry proposes to think of

axiomatic theories of categories as follows:

[T]he category-theoretic structuralist simply begins by assuming the exis-

tence of a system of two sorts of things (namely “objects” and “morphisms”)

and then brings these things into relationships with one another by means

of certain axioms. (op. cit. p. 44)

In a following footnote Landry explains that

What is doing the work here is neither the notion of a system nor the notion

of an abstract system, rather it is the Hilbertian idea of a theory as a schema

2Piaget calls the genetic method operational.
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for concepts that, themselves, are implicitly defined by the axioms. Thus

we don’t need a “fixed domain of elements” [..], we do not need a system

as a “collection” of elements [..] (op. cit. p. 44) 3

For reasons, which I cannot discuss here I do believe together with Landry that a proper

axiomatic construction of Category theory should not logically depend on any prior notion

of class. However I am not convinced by her argument and do not think that axiomatic

theories like EM, ETCS and CCAF (in the received sense of “axiomatic”) indeed achieve

this goal. My objection to Landry is this. (For saving space I shall refer to EM; to ETCS

and CCAF my argument applies similarly.) First of all, I assume (following [16]) that EM

requires a notion of semantic consequence making part of its underlying logic. In order

to construe the relation of semantic consequence properly one needs to fix some formal

semantical framework (again as a part of the logical machinery). When one uses for this

end a Tarski-style model-theoretic semantics it does involve some notion of class (collection,

universe) of individuals. In this case thinking about categories introduced through EM in

terms of classes is not just a convenient way of representing categories, which has evident

heuristic and pedagogical values, but a proper part of the very axiomatic construction of

EM, which belongs to its logical machinery. Thus in this case Landry’s argument doesn’t

go through. Now one may look for a di↵erent logical machinery using a di↵erent formal

semantics, which may allow one to construe the notion of semantic consequence without

using the notion of class or similar. However Hilbert’s notion of theory as a schema referred

to by Landry does not immediately provide such an alternative semantical framework. The

only way to get around this objection that I can see is to take a strictly syntactic view on

the axiomatic method and thus get rid of the notion of semantic consequence altogether.

Following Hintikka [16] I believe that this notion is an essential element of the axiomatic

method, and so such a price is unacceptable.

3Interestingly Landry diverges here from a later Hilbert’s view according to which a “fixed” domain is

a hallmark of formal axiomatic method, see the quotes from [14] In Section 4 below.
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The purpose of the above argument is not to settle the axiomatic foundations of Category

theory (this topic lies outside of the scope of this paper) but demonstrate that the dis-

tinction between the genetic and the axiomatics methods is less clear-cut than it might

seem. Whether the class-based definition of category is qualified as axiomatic or genetic

depends on one’s general ideas about logic and logical semantics, which can be a subject

of philosophical controversy. If one takes Tarski-style logical semantics to be a part of

logic then the class-based definition of category counts as fairly axiomatic. But Landry’s

“category-theoretic structuralist” sees the same definition as merely genetic.

4. Constructive Axiomatic Method

In this Section I introduce a generalized method of theory-building, which includes the

received axiomatic method as well as the genetic method as special cases. After Hilbert

and Bernays I call this generalized method the constructive axiomatic method. I also trace

here some historical origins of this idea.

4.1. The Idea. The lack of clear-cut distinction between the genetic and the (received)

axiomatic method suggests the idea of combining the two method into one. The common

ground that I use for combining the two methods is the concept of rule. On the one hand,

any axiomatic theory comprises rules for handling propositions, which we commonly call

logical rules (or logical laws) 4. On the other hand, any genetic theory comprises rules for

handling objects of non-propositional types such as arithmetical or geometrical objects.

Just as logical rules regulate forming further propositions (theorems) from certain given

propositions (including axioms), genetic rules regulate forming further objects from cer-

tain given objects. Now think of a theory, which comprises a set of rules, which apply to

4As it is well-known a deductive system can be formally presented either in Hilbert style (i.e., with

many logical axioms and only few rules) or in Gentzen style (with many rules and few axioms). A Gentzen

style presentation may have zero axioms. But a Hilbert-style system needs at least one rule (usually modus

ponens). The notion of deductive system without rules obviously doesn’t make any sense while logical

axioms (tautologies) turn to be dispensable (in their role of logical axioms).
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propositions as well as to objects of some other types. I shall call such a theory construc-

tive axiomatic theory and call the method of building such a theory constructive axiomatic

method. This general notion of constructive axiomatic theory allows for using di↵erent sets

of rules. This concerns both logical rules (di↵erent axiomatic theories may involve di↵erent

logical calculi) and non-propositional “genetic” rules (di↵erent theories may allow for dif-

ferent procedures of object-construction). The proposed notion of constructive axiomatic

theory is more general than the received notion of axiomatic theory because a constructive

axiomatic theory directly operates with objects of multiple types while an axiomatic theory

in the received sense of “axiomatic” directly operates only with propositions.

One may now remark that propositions typically tell us something about certain non-

propositional objects (but may also tell us something about other propositions and about

themselves). Thus an axiomatic theory which involves only propositions (axioms and

theorems), i.e., an axiomatic theory in the received sense of the word, typically deals with a

bunch of non-propositional objects. The mechanism of aboutness which links propositions

to non-propositional objects is complicated and not yet fully understood[52]. An essential

element of this mechanism is the (semantic) reference, which allows for interpreting non-

logical terms in (non-interpreted) axioms and theorems as described in Section 2 above.

Having this remarkable feature of propositions in mind one may wonder whether there is

indeed a need to modify the received notion of axiomatic theory by including rules for

non-propositional types on equal footing with logical rules.

My answer to this question is twofold. The first part of the answer comes from my analysis

of mathematical practice: I show that the theory of Book 1 of Euclid’s Elements (Section 5)

and the recent HoTT (Section 8) simply do not qualify as axiomatic theories in the received

sense of the term but do qualify as constructive axiomatic theories in the above sense. The

second part of the answer derives from an epistemological argument developed in Section

9. I disagree with the view according to which the genetic method of theory building

has only certain heuristic and pedagogical significance and show that it is also needed for

construing the concept of semantic consequence properly. On this ground I claim that an
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axiomatic theory in the received sense of the term always needs to be supported by certain

mathematical constructions built genetically 5. The notion of constructive axiomatic theory

provides a better theoretical framework for analyzing this situation than the talk about

two di↵erent notions of theory (genetic and axiomatic) because it allows one to specify

more clearly the interplay between propositional and non-propositional objects and the

corresponding rules for operating with these objects. In Section 8 I show that Martin-Löf’s

Type theory (MLTT) can be used as a formal framework for such an analysis.

4.2. Some Historical Sources. The idea of combining the genetic and the (received)

axiomatic methods is not entirely new. I shall mention here three sources from the earlier

literature where this idea is discussed in some form. This list is not supposed to be

complete and it doesn’t include more recent discussions, which I review in other parts

of this paper.

1) Vladimir Smirnov in his 1962 paper on the genetic method [46] argues that an adequate

modern formalization of genetic theories can be achieved not through their axiomatization

(by which he understands a presentation of such theories “in the form of axiomatic calcu-

lus where rules of inference [..] control the transition from one proposition to another”)

but rather through a “direct formalization of recursive techniques, i.e., of algorithmic pro-

cesses”. For this end, the author argues, one should “broaden the scope of logic” by

considering “stratagems of actions” and “such forms of thought as prescriptions and sys-

tems of prescriptions” as a properly logical subject-matter (op. cit. p. 275-276). We can

see that even if Smirnov keeps the genetic and the axiomatic methods apart he tends to

consider them from a common logical point of view.

5This point can be illustrated with Landry’s example of axiomatic Category theory EM discussed in

Section 3. Let us assume after Landry that the standard class-based axiomatic definition of category is ge-

netic. I claim that without this or some other genetic underpinning the axiomatic introduction of categories

cannot work. As I have already explained the role of genetic underpinning in this case is not psychological

or pedagogical but properly logical because it concenrs the logical notion of semantic consequence.
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2) A similar idea aiming at broadening the scope of logic has been put forward in a di↵erent

context earlier by Kolmogorov [17] in the form of “calculus of problems”. As the author

explains in a later note, his 1932 paper

was written with the hope that the logic of solutions of problems would later

become a regular part of courses on logic. It was intended to construct a

unified logical apparatus dealing with objects of two types - propositions

and problems. ([18], p. 452)

In Section 6 I shall explain how this Kolmogorov’s idea relates to Curry-Howard correspon-

dence and today’s Categorical logic including Topos logic.

3) The relationships between the genetic and the axiomatic methods are described by

Hilbert and Bernays in the Introduction to their two-volume Foundations of Mathematics

[14], (Eng. tr. [15]). This Introduction first published in 1934 provides a picture, which

significantly diverges from what Hilbert says about the same issue in his 1900 paper [11]

reviewed in the last Section. Here is how Hilbert and Bernays see the relationships between

the two methods in 1934:

The term axiomatic will be used partly in a broader and partly in a nar-

rower sense. We will call the development of a theory axiomatic in the

broadest sense if the basic notions and presuppositions are stated first, and

then the further content of the theory is logically derived with the help of

definitions and proofs. In this sense, Euclid provided an axiomatic ground-

ing for geometry, Newton for mechanics, and Clausius for thermodynamics.

[..]. [F]or axiomatics in the narrowest sense, the existential form comes in

as an additional factor. This marks the di↵erence between the axiomatic

method [in the narrow sense?] and the constructive or genetic method of

grounding a theory. While the constructive method introduces the objects

of a theory only as a genus of things, an axiomatic theory refers to a fixed

system of things [..] given as a whole. Except for the trivial cases where
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the theory deals only with a finite and fixed set of things, this is an idealiz-

ing assumption that properly augments the assumptions formulated in the

axioms. ([15], p. 1a)

We can see that this time Hilbert includes the genetic (aka constructive) method as well as

the formal (aka schematic) axiomatic method under the scope of the concept of axiomatic

method in the “broadest sense”. What exactly is this new “broadest” notion of being

axiomatic? Whether or not Hilbert understands here the genetic method in the same sense

as he did this in his 1900 paper?

The received notion of being axiomatic suggests the following reading. Hilbert has changed

his earlier idea of genetic method and in 1934 identified it with the traditional contentful

(material) version of the (received) axiomatic method. In this case the “broadest” ax-

iomatic method in the above quote is the same as the received axiomatic method. The

distinction made by Hilbert and Bernays in the above quote is one between the contentful

and the schematic versions of axiomatic method.

The above reading does not seem me convincing. Here is just one reason why. In the same

Introduction we find the following interesting remark:

Euclid does not presuppose that points or lines constitute any fixed domain

of individuals. Therefore, he does not state any existence axioms either,

but only construction postulates. (op. cit. p. 20a)

The Editors of the English edition of this text (C.-P. Wirth, J. Siekman, M. Gabbay, D.

Gabbay) rightly notice here that

[u]nless we see construction as a state-changing process, this [Hilbert and

Bernays’ ] remark is actually not justified: From a static logical point of

view, existence sentences are always implied by construction postulates (op.

cit. p. 20, footnote 20.3)
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I choose to read the above passage charitably and assume that Hilbert and Bernays do

see Euclid’s geometrical constructions as state-changing processes, i.e., as genuine genetic

constructions in the sense of Hilbert’s 1900 paper. Now given that (i) Hilbert and Bernays

qualify Euclid’s theory as axiomatic in the “broadest” sense and that (ii) the identification

of the “broadest” axiomatic method with the received notion of axiomatic method implies

that Hilbert and Bernays’ remark about Euclid is obviously erroneous, I conclude that (iii)

Hilbert and Bernays’ “broadest” axiomatic method is broader than the received axiomatic

method and includes the genetic method in the sense of Hilbert’s 1900 paper. Thus if I am

right the idea of combined genetic/axiomatic method is already present in [14].

In addition to the general idea and the name I take from Hilbert the following insight.

Recall that in [11] Hilbert qualifies as genetic the introduction of real numbers through

Dedekind cuts (on sets of rational numbers) and through Cauchy sequences of rational

numbers. Unless some further precautions are taken (for example, by saying that all Cauchy

sequences in question are Turing computable) these ways of introducing new theoretical

objects obviously do not qualify as constructive in anything like the usual sense of the

term - whether this later sense of being constructive is made precise through the concept

of Turing computability, through the concept of general recursiveness or in any other way,

which determines what does it mean to “construct” a mathematical object in terms of

certain procedures (like computation) and rules for these procedures. Understandably

Hilbert finds the naive genetic “constructions” of Dedekind cuts and Cauchy sequences

to be epistemically unreliable and proposes instead to build the theory of real numbers

axiomatically. Nevertheless I find it useful and interesting to develop (in a modern context)

Hilbert’s general notion of mathematical construction (in [11] ), which is not limited by any

particular set of “constructive” procedures (and rules for such procedures) and may cover,

in particular, this naive Dedekind’s construction. Notice that the modern received notion

of axiomatic theory does not specify by itself any particular logical calculus, which can be

used for building such a theory. Similarly the right general notion of being constructive



important
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should not, in my view, delimit any particular set of “constructive” procedures. Such

procedures may vary from one constructive theory to another.

5. Euclid: Problems versus Theorems

In this Section I show that the geometrical theory of Euclid’s Elements, Book 1, if one

read it verbatim and avoids convenient paraphrasing, qualifies as a constructive axiomatic

theory (in the sense explained in the last Section) but not as an axiomatic theory in the

received sense of the word.

Euclid’s theory is based on 5 Axioms (aka Common Notions), 5 Postulates and 23 Defini-

tions. The special historical character of Euclid’s Common Notions and Definitions is not

relevant to the present discussion, so I leave them apart and focus on Postulates. The first

three Postulates are as follows (verbatim after [7]):

[P1:] to draw a straight-line from any point to any point.

[P2:] to produce a finite straight-line continuously in a straight-line.

[P3:] to draw a circle with any center and radius.

As they stand the three Postulates are not propositions and admit no truth-values. Hence

they cannot be axioms in the received sense of the word. In their original form the Postu-

lates cannot be used as premises in logical inferences - if by logical inference one understands

an operation that takes some propositions (premises) as its input and produces some other
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proposition or propositions (conclusion) as its output 6. In fact Postulates 1-3 are them-

selves schemes, aka rules, of certain basic operations, which take some geometrical objects

as input and produce some other geometrical objects as output. P1-3 qualify as rules in

the same sense of the term in which one usually talks about rules of inference in logic.

However P1-3 apply to geometrical rather than to logical operations. The table below

specifies inputs (operands) and outputs (results) for operations falling under P1-3:

operation type input output

P1 two (di↵erent) points straight segment

P2 straight segment (extended) straight segment

P3 straight segment and one of its endpoints circle

These operations are partly composable in the obvious way: the output of P1-operation

is used as input for P2- and P3-operations. This system of operations extended by some

further basic operations assumed tacitly 7 serves Euclid for introducing objects of his the-

ory. Such an introduction is systematic in the sense that it does not reduce to a simple act

of stipulation: it is a procedure, which involves certain elementary operations (including

P1-P3) and complex operations obtained through the composition of the elementary oper-

ations. As soon as the term deduction is understood liberally as a theoretical procedure,

6The non-propositional character of Euclid’s Postulates has been earlier noticed by A. Szabo, see [48],

p. 230. More recently K. Manders [28], [29] stressed the fact that the Greek “mathematical demonstrative

practice” as represented by Euclid does not reduce to its propositional content, which is made explicit

through “the notions of mathematical theory and formal proof on which so much recent work in philosophy

of mathematics is based” ( [29], p. 68). This remark shows that Manders’ reading of Euclid is compatible

with mine. However I don’t follow Manders when he describes the non-propositional content of Euclid’s

proof as a special feature of his “practice”. Having in mind the notion of constructive axiomatic theory

I consider Euclid’s non-propositional Postulates as proper elements of his theory . I don’t deny that the

di↵erence between theory and practice makes sense in this context but I disagree with how exactly Manders

draws this distinction here.
7Including the construction of the intersection point of lines in an appropriate position, compare Prop.

1 of Book 1. For further details see [35]. The incompleteness of P1-3 has no bearing on my argument.
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which generates some fragments of a given theory from the first principles of this theory,

one can say that Euclid’s geometrical constructions are deductive. The deductive order of

geometrical constructions can be called in this case the genetic order. As we shall shortly

see in Euclid’s theory such a “constructive deduction” is tightly related to the more familiar

kind of logical deduction, which operates with propositions. In what follows we shall see

how the same phenomenon arises in Topos theory (Section 7), MLTT and HoTT (Section

8).

Postulates and Axioms of are followed by the so-called Propositions. This commonly used

title is not found in Euclid’s original text where things called by later editors “Propositions”

are simply numbered but not called by any common name [7]. From Proclus’ Commentary

[38], (Eng. tr. [39]) written in the 5th century A.D. we learn about the tradition dating

back to Euclid’s own times (and in fact even to earlier times) of distinguishing between the

two sorts of “Propositions”, namely Problems and Theorems. Euclid’s Theorems by and

large are theorems in the modern sense of the word: propositions followed by proofs. But

Problems are something di↵erent: they are derived rules for making complex geometrical

constructions. Like Postulates Problems admit no truth-values and thus don’t qualify as

propositions either. Unlike Postulates Problems always require a justification aka solution.

This is why I call these further rules derived. As we shall now see Euclid’s Problems are

not solved on the basis of (and hence are not derived from) P1-3 and tacit constructive

rules alone: the propositional part of Euclid’s theory also plays a role in it. 8.

Indeed what is said so far may suggest that Euclid’s theory splits into two separate parts:

one consisting of constructive rules derived from Postulates and the other consisting of

8As an example of Problem consider the initial fragment of Proposition 1, Book 1: “To construct an

equilateral triangle on a given finite straight-line”. It is followed by (i) an appropriate construction and

(ii) a proof that the obtained construction is equilateral triangle. For interpretation of this Proposition as

a rule see [35], p. 93. Panza says here that this Proposition “provides a new constructive rule”. I make a

stronger claim saying that this Proposition (which is not a proposition in the usual logical sense) is this

new rule. Saying that I distinguish as usual between a given Problem (= constructive rule) and solution of

this Problem, which justifies this rule.
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propositions derived from Axioms. Such a split does not occur for two complementary

reasons (which I formulate informally):

- (solutions of) non-trivial Problems require (propositional) proofs, which show that the

obtained constructions have the required properties;

- (proofs of) non-trivial Theorems require constructions, which are conventionally called

“auxiliary”.

This explains why the logical deductive order of Theorems and the genetic order of Prob-

lems in Euclid’s theory do not exist independently but form a joint deductive order 9.

The above observations are fairly straightforward and can hardly remain unnoticed by any

attentive reader of Euclid. Why in this case Schlimm [44] and many other authors tend

to think of Euclid’s theory as a system of propositions? An obvious explanation is this.

All Euclid’s Postulates and initial fragments (i.e., bare formulations) of Problems can be

easily paraphrased into propositions. This can be done at least in two di↵erent ways. The

following paraphrases of P1 are self-explanatory:

P1m (modal): Given two (di↵erent) points it is always possible to produce a straight

segment from one given point to the other given point.

P1e (existential): Given two (di↵erent) points there exists a straight segment having these

given points as its endpoint.

P1e instantiates what Hilbert and Bernays call the “existential form” used in their formal

axiomatic method. The key logical feature of this paraphrase (which it shares with P1m) is

this this: it translates Euclid’s non-propositional Postulates and Problems into propositions

(in case of P1e - to existential propositions). For further references I shall call a procedure,

which aims at replacement of all non-propositional content of a given theory by some

suitable propositional content, the propositional translation of this theory.

There are di↵erent ways of thinking about propositional translation of given theory T . In

particular, this procedure may be conceived of as

9A more detailed analysis of this deductive structure is found in [42], ch.2.
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(i) a purely linguistic procedure, i.e., a special kind of linguistic paraphrasing, which helps

to present the theoretical content of T in the standard propositional form;

(ii) a procedure, which separates the theoretical content of T from its non-propositional

content, which has no theoretical significance;

(iii) a procedure, which transforms T into a new theory T

0 which, generally, has a di↵erent

theoretical content.

Each of (i) and (ii) is su�cient for justifying the identification of Euclid’s theory with

the result of propositional translation of this theory. I believe that those authors who

readily accept such an identification usually have in their minds some combination of

these two assumptions. However in my view both these assumptions are erroneous. (i)

is ruled out by the remark that making up a proposition from something, which is not

a proposition, is not innocent from a logical point of view. The type di↵erence between

propositions and non-propositions matters logically and hence theoretically. Remark that

the propositional translation of Elements, Book 1, is a matter of its logical reconstruction

rather than merely linguistic paraphrasing. It doesn’t work as straightforwardly as it does

with single Postulates. (ii) depends on a strong epistemological assumption according to

which all theoretical knowledge is a propositional knowledge, i.e., the knowledge-that [8].

This strong assumption deserves a special discussion, which I postpone until Section 9

where I argue that this assumption is not acceptable either.

Thus my working understanding of propositional translation will be (iii). Accordingly I

do not identify Euclid’s theory of geometry presented in Elements, Book 1 with the result

of any propositional translation of this theory. Since Euclid’s theory in its original form

includes a non-propositional content in the form of Problems and Postulates I claim that

this theory is an instance of constructive axiomatic theory in the sense of Section 4 but
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not an instance of a purely propositional axiomatic theory, i.e., of an axiomatic theory in

the received sense of the word 10.

6. Curry-Howard Correspondence and Cartesian Closed Categories

The present Section is a historical and theoretical preliminary to the following two Sec-

tions 7, 8 where I treat modern examples of axiomatic theories. In a nutshell the idea of a

Curry-Howard correspondence is given in Kolmogorov’s 1932 paper [17] already discussed

in Section 4 where the author establishes that his newly proposed calculus of problems has

the same algebraic structure as the intuitionistic propositional calculus published earlier in

10Thanks to Proclus we know that the idea of propositional translation of Problems into Theorems

is very old. From the same source we also know about the contemporary competing idea of translating

Theorems into Problems of a special sort (see [39], p. 63-64). Here is the relevant passage:

Some of the ancients, however, such as the followers of Speusippus and Amphinomus,

insisted on calling all propositions “theorems”, considering “theorems” to be a more

appropriate designation than “problems” for the objects of the theoretical sciences, es-

pecially since these sciences deal with eternal things. There is no coming to be among

eternals, and hence a problem has no place there, proposing as it does to bring into being

or to make something not previously existing - such as to construct an equilateral triangle

[..]. Thus it is better, according to them, to say that all these objects exist and that we

look on our construction of them not as making, but as understanding them [..] Others,

on the contrary, such as the mathematicians of the school of Menaechmus, thought it

correct to say that all inquiries are problems but that problems are twofold in character:

sometimes their aim is to provide something sought for, and at other times to see, with

respect to determinate object, what or of what sort it is, or what quality it has, or what

relations it bears to something else.” ([39], p. 63-64).

Speusippus [408 - 338/9 B.C.] is Plato’s nephew who inherited his Academy after Plato’s death. Amphi-

nomus is otherwise unknown (except few other references found in the same Commentary) Speusippus’

contemporary. Menaechmus [380 - 320 B.C.] is mathematician of Plato’s circle. The dates of these people

suggest that these ideas had been already around for quite a while before Euclid completed his Elements

at some point between 300 and 265 B.C. .

skip
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1930 by Heyting 11. It turns out that this correspondence is extendible onto a large class of

symbolic calculi including those, which have been developed independently and apparently

for very di↵erent purposes. So there were established a number of correspondences (i.e., of

more and less precise isomorphisms) between (proof-related) logical calculi (propositional,

first-order or higher-order), on the one hand, and computational calculi (the simply-typed

lambda calculus, type systems with dependent types, polymorphic type systems), on the

other hand [47]. This led to the so called “proofs-as-programs and propositions-as-types”

paradigm in logic and Computer science where propositions are treated as types of objects

(namely of their corresponding proofs) along with other (non-propositional) types of ob-

jects belonging the same theory 12. Within this paradigm building proofs is a special case of

building theoretical objects in general. Notice that a constructive axiomatic theory in the

sense of Section 4 similarly allows for building systems of propositions (i.e. deriving theo-

rems from axioms) on equal footing with building non-propositional constructions.

The Curry-Howard correspondence shows that certain symbolic calculi of di↵erent kinds

share a common structure. It is natural to ask whether this shared structure can be

presented in some invariant way, which would not depend on particularities of syntactic

presentations of these symbolic calculi. This problem has been solved in 1963 by means

of mathematical Category theory by Lawvere [23], who observed that certain categories

called Cartesian closed categories (CCC) “serve as a common abstraction of type theory

and propositional logic” ([25], p. 1). In 1968-1972 this observation has been developed

11Artemov stresses that the Curry-Howard correspondence doesn’t provide a general formal semantics

for Kolmogorov’s calculus of problems, which is known as BHK-semantics (after Brouwer, Heyting and

Kolmogorov) [1]. However Curry-Howard serves as a more special constructive computational semantics

for the same formal structure (the intuitionsistic calculus). Some historical material concerning the history

of Curry-Howard correspondence can be found in [3] and [45] but a more focused historical study on the

development of Kolmogorov’s logical ideas and of the concept of Curry-Howard correspondence still waits

to be written.
12I emphasize that we are talking here about the same theory because propositions and proofs of given

theory can be also made into objects otherwise, namely, by considering them as objects of a metatheory of

the given theory. But this is a di↵erent matter.
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by Lambek into what is now known under the name of Categorical Logic. The three way

correspondence between (i) logical calculi (propositions), (ii) computational calculi (types)

and (iii) (objects of) CCC and some other appropriate categories) is called in the literature

the Curry-Howard-Lambek correspondence [26].

Let me now tell a bit more about a relevant part of Lawvere’s work that touches upon

the issue of axiomatic method directly. Lawvere discovered CCC during his work on an

alternative axiomatization of Set theory 13. His idea was that the non-logical primitive of

standard axiomatic Set theories like ZF, namely the binary membership relation 2, was

badly chosen. Lawvere suggested to use instead the notion of function and the binary

operation (i.e., ternary relation) of composition of functions. The resulting axiomatic

theory is known as the Elementary Theory of Category of Sets (ETCS) [20], [24], [33].

This proposal may appear radical to one who has habituated oneself to ZF and its likes

but as it stands this proposal does not require any modification of the standard formal

axiomatic method. The new choice of primitives allowed Lawvere to see that the condition

of being CCC makes part of the wanted axiomatic description of the category of sets

(Set). In this context the further observation that CCC provides a structural description

of Curry-Howard correspondence appears as a bonus.

Let us see more precisely what happens here. The standard axiomatic approach requires to

fix logic first and then use it for sorting out intuitive ideas about sets, numbers, spaces and

whatnot. If one encounters then some di�culties of a logical nature one may try to modify

the assumed logical principles and try this again. However in the case of ETCS something

di↵erent happens: the axiomatization reveals the fact that Set is equipped with its proper

internal logically-related structure, namely CCC, which is not simply transported from the

chosen background logic but emerges as a specific feature of category Set.

Although this fact does not prevent one from construing ETCS as a standard formal

axiomatic theory [33] it suggests a reconsidering the place and the role of logic in this

13Lawvere also had other important motivations for introducing CCC, see [21].
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theory. In the next Section we shall see how the similar case of axiomatic Topos theory

connects to the idea of constructive axiomatic method.

7. Topos theory

The concept of topos first emerged in Algebraic Geometry in the circle of Alexandre

Grothendieck around 1960 as a far-reaching generalization of the standard concept of

topological space and didn’t have any special relevance to logic. In his seminal paper

[22] Lawvere provided an axiomatic definition of topos called today elementary topos 14.

Like ETCS the axiomatic theory of elementary topos does not bring by itself any unusual

notion of axiomatic theory. However any systematic exposition of topos theory contains a

chapter on the internal logic of a topos. In standard textbooks the internal logic is intro-

duced as an extra feature on the top of the basic topos construction [33], [27]. As usual

it has a syntactic part (Mitchel-Bénabou language) and a formal semantic part, which in-

terprets the Mitchel-Bénabou syntax in terms of constructions available in the base topos

(Kripke-Joyal semantics). Kripke-Joyal semantics assigns to symbols and syntactic expres-

sions, which have an intuitive logical meaning (logical connectives, quantifiers, truth-values,

etc.), explicit semantic values, which otherwise can be called geometrical (since the base

topos is a generalized space). This is not something wholly unprecedented in the history of

the 20th century logic: think, for example, of Tarski’s topological semantics for Classical

and Intuitionistic propositional logic [49]. However this feature of Kripke-Joyal semantics

makes it quite unlike a notion of semantics derived from the idea of interpreting a for-

mal theory by assigning explicit semantic values only to its non-logical elements (compare

Section 2 above).

14The title “elementary” reflects the fact that Lawvere’s definition (unlike Grothendieck’s original defi-

nition) is expressible in the standard first-order formal language [33]. The concept of elementary topos is

more general than that of Grothendieck topos: there are elementary toposes, which are not Grothendieck

toposes. A precise axiomatic characterization of Grothendieck toposes is given by Giraud’s axioms, see [27],

p. 575.



quick
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Internal logic LT can be used for developing further axiomatic theories “internally” in

given topos T . It also provides an additional “internal” description of T itself ([33], Ch.

16). If one looks at Lawvere’s [22] where the axioms for elementary topos first appeared

in the press, one can see that namely the internal logical analysis of topos concept allows

Lawvere to formulate these axioms: Lawvere observes that the internal logical properties of

general topos and the internal logical properties of Set share the CCC property (cartesian

closedness) and this observation helps him to obtain the wanted axioms for Topos theory

through a modification of ETCS axioms. Although Lawvere didn’t use the notion of internal

logic of a given category in its explicit form of Mitchel-Bénabou language, he figured out

how standard logical concepts (propositional connectives, truth-values, modality, etc.) can

be “encoded” into this given category:

[A] Grothendieck “topology” appears most naturally as a modal operator,

of the nature “it is locally the case that”, the usual logical operators, such

as 8, 9, ) have natural analogues which apply to families of geometrical

objects rather than to propositional functions. [..] [I]n a sense logic is a

special case of geometry. ( [22], p. 329)

I consider this Lawvere’s observation as a genuine logical analysis of Grothendieck’s geo-

metric topos concept and at the same time observe that it is quite unlike the kind of

logical analysis, which led Hilbert to his axiomatic theory of Euclidean geometry [10]. Un-

like Hilbert, Lawvere does not use logic as a ready-made tool (recall Hilbert’s “unalterable

laws of logic”) for sorting out certain informal geometrical concepts. Instead Lawvere’s

analysis reveals a specific logical framework within the given geometrical concept. This in-

ternal logical framework remained wholly unnoticed by Grothendieck and his collaborators

when they first developed the topos concept.

One may argue that the specific character of Lawvere’s logical analysis, which I have just

stressed, can matter only when we are talking about the way and the context in which

the axioms for the elementary topos have been first obtained but not when we are talking

about the axiomatic topos theory in its accomplished form. This argument goes through
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as far as one uses the received notion of axiomatic theory for distinguishing the final result

from the context of its discovery. However this case suggests a reconsidering of this received

notion. Indeed Lawvere’s dictum “logic is a special case of geometry” is incompatible with

the construal of Topos theory as axiomatic theory in the received sense of “axiomatic”.

For the standard architecture of axiomatic theories is based on the assumption according

to which the scope of logic L used for building some theory T is broader than the scope of

T . By this I mean precisely that L can be used not only for reasoning in T but also for

reasoning elsewhere, say, in theory T

0. Let T be the standard axiomatic Topos theory as in

[33], L be Classical (or Intuitionstic) first-order calculus and T

0 be ZF (or its Intuitionistic

version). I can see no sense in which L can be called as a special case of geometry in this

standard setting. Logic L can rather be described here as a common background for a large

spectrum of theories, which includes geometrical as well as non-geometrical theories.

At the same time Lawvere’s idea of logic as a part of geometry makes perfect sense if by

T one understands a hypothetical constructive axiomatic theory of toposes (in the sense

of “constructive” specified in Section 4 above) and by L - the propositional segment of

T . Since T is a geometrical theory (because toposes belong to geometry) its objects are

geometrical objects. These geometrical objects are of various types including the type of

propositions. Thus propositional objects 15 are geometrical objects of sort and logic, by

Lawvere’s word, is a special case of geometry. 16.

By the date such a constructive axiomatic theory of toposes doesn’t exists in an accom-

plished form. However I have shown in this Section how Lawvere’s work on axiomatization

15As we shall shortly see in MLTT such objects are identified with proofs of their corresponding

propositions.
16Lawvere’s general ideas about logic are strongly motivated by Hegel’s logic and in particular by Hegel’s

distinction between the objective and the subjective logic. Hegel’s inclusion of the subjective logic into the

objective logic corresponds to Lawvere’s inclusion of logic into geometry. For further details see [42], Section

5.8.
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of Topos theory relates to the idea of constructive axiomatic theory 17. In the next Section

I describe a more recent theory which uses a constructive axiomatic architecture explicitly

and thus serves me as a major motivation for this concept (along with historical motivations

mentioned in Section 4.2 above).

8. Homotopy Type theory and Univalent Foundations

Homotopy Type theory (HoTT) is a recently emerged field of mathematical research, which

has a special relevance to philosophy and logic because it serves as a basis for a new tentative

axiomatic foundations of mathematics called the Univalent Foundations (UF)[51], [6]. In

this paper I do not attempt to review HoTT and UF systematically but only describe a

special character of its axiomatic architecture.

HoTT emerged through a synthesis of two lines of research, which earlier seemed to be

quite unrelated: geometrical Homotopy theory and logical Type theory. The key idea is

that of modeling types (including the type of propositions) and terms (including proofs)

in Type theory by spaces and their points in Homotopy Theory. Beware that along with

basic spaces Homotopy theory also studies path spaces where “points” are paths in the

basic spaces, spaces of “paths between paths” called homotopies, spaces of “paths between

paths between paths” and so on. All these higher-order spaces are also used for interpreting

types.

Like in Topos theory, in HoTT geometry and logic are glued together with appropriate

category-theoretic concepts. The central categorical concept used in HoTT is that of

! � groupoid. In the standard category theory a groupoid is defined as a category where

all morphisms between objects are reversible, i.e., are isomorphisms. !-groupoid is a higher-

categorical generalization of this concept (called in this context 1-groupoid) where usual

morphisms are equipped by morphisms between morphisms (called 2-morphisms), further

17For a discussion on constructive aspects of Category theory and Topos theory see [34]. This discussion

is useful but it ignores the aspect of constructivity, which I just have stressed in the main text.
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morphisms between 2-morphisms (called 3-morphisms) and so on up to the first infinite

ordinal !). An analogy between spaces equipped with paths between points, homotopies

between those paths, etc. is straightforward. It allows for mixing the geometrical and the

categorical languages and talk interchangeably, e.g., about “spaces of paths”, “groupoids

of paths” and “groupoids” simpliciter.

The axiomatic HoTT uses Constructive Type theory with depended types due to Martin-

Löf [32] (MLTT) for turning the tables at this point. The notion of !-groupoid aka

space aka homotopy type is taken as primitive while the notions of proposition, set, (one-

dimensional) groupoid, category, etc. are construed as derived notions with MLTT. Types

(and, in particular, propositions) and terms (and, in particular, proofs) in MLTT are in-

terpreted, correspondingly, as spaces and points of these spaces. I skip further details. The

obtained interpretation of MLTT in the categorically construed Homotopy theory directly

translates all constructions in MLTT into geometric constructions. Then one may consider

some further axioms such as the Axiom of Univalence (AU), which gives its name to the

Univalent Foundations. In this paper I consider HoTT (with or without AU) only as an

axiomatization of modern Homotopy theory. The idea of UF according to which HoTT can

be used for developing the rest of mathematics has no bearing on my argument but implies

that the special character of HoTT axiomatic architecture may be of general importance

for logic and mathematics.

The constructive character of HoTT is already fully present in MLTT. Unlike ZF and

other standard formal axiomatic theories, MLTT is not a system of propositions or propo-

sitional forms. MLTT construes propositions as a particular type of things among other

non-propositional types 18 . It comprises rules, which apply to types and their terms in

general and to propositions and their proofs in particular. In MLTT, “the mathematical

activity of proving a theorem is identified with a special case of the mathematical activity

18By propositions I mean here what in [6] is called “mere propositions”: a type P is a mere proposition

if for all x, y : P we have x = y (op.cit. p. 103). In a more general sense each type can be described as a

proposition through the Curry-Howard correspondence.
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of constructing an object - in this case, an inhabitant of a type that represents a propo-

sition” ([6], p. 17). Since in MLTT the object construction does not reduce to proving

propositions this theory qualifies as constructive axiomatic theory (in the relevant sense)

but not as an axiomatic theory in the received sense. The unusual perspective on logic

supported by MLTT has been earlier noticed by Michael Rathjen and described in the

following words:

The interrelationship between logical inferences and mathematical construc-

tions connects together logic and mathematics. Logic gets intertwined with

mathematical objects and operations, and it appears that its role therein

cannot be separated from mathematical constructions. [..] [L]ogical op-

erators can be construed as special cases of more general mathematical

operations. ( [41], p. 95)19

The homotopical interpretation of MLTT (namely, the !-groupoid interpretation) brings

geometry into the picture 20 and thus makes this case more similar to Euclid’s. For example,

MLTT validates the following rule (as a special case of a more general rule that I shall not

discuss):

(F): Given types A, B to produce type A ! B of functions with domain A and codomain

B.

Under the homotopical interpretation this rule becomes

19Notice the analogy with Lawvere’s view on logic as a special case of geometry.
20In addition to the homotopical !-groupoid model HoTT with AU has other “natural” models [2].

Studying and comparing these models from an unified viewpoint largely remains an open research problem.

However the !-groupoid model plays a special role in foundations of mathematics because it supports the

idea of reconstructing the world of today’s everyday mathematics using homotopy types as its building

blocks. This idea represents what Marquis calls the “geometrical point of view” in foundations of math-

ematics [30], [31], which this author opposes to the more familiar Quinean “logical point of view” [40]. I

leave a further discussion on this foundational issue for another occasion.
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(HF): Given spaces A, B to produce space A ! B of continuous maps from space A to

space B,

which has the same form as Euclid’s First Postulate allowing for producing a straight

line from a given point to another given point 21. Once again I would like to stress that

the non-propositional form of (F) and (HF) just as the non-propositional form of Euclid’s

Postulates 1-3 is not only a matter of one’s favorite style of axiomatic presentation. The case

of MLTT/HoTT allows us to see this more clearly than Euclid’s case. The type di↵erence in

general and the di↵erence between the type of propositions and non-propositional types in

particular belongs to the core of MLTT/HoTT, so we cannot switch here between di↵erent

types for free. Surely (F) and (HF) can be given a propositional form in a meta-language.

However this remark has no bearing on my argument since we are now talking about MLTT

and HoTT (i.e., develop an informal metatheory of these theories if one likes) but not

discussing the logical form of possible representations of MLTT and HoTT in metatheories

of these theories. In MLTT/HoTT propositions has their proper place and rules (F)/(HF)

also have their proper place. These places are di↵erent. Metatheoretical propositional

translations of (F)/(HF) do not belong to MLTT/HoTT and cannot be treated on equal

footing with those propositions, which do so. It would be interesting to develop a formal

theory of possible metatheoretical propositional translations for rules in MLTT/HoTT and

I leave this task for a future research. So far I only claim that the propositional translation

of these rules is a meta-theoretical procedure but not just a possible informal interpretation

of the same formal structure. 22. Claiming that HoTT is a constructive axiomatic theory I

need to pay a particular care for disambiguating the term “constructive” properly. MLTT

is constructive in a strong sense, which makes this theory computable. It is not known

to the date whether or not HoTT with AU is constructive in the same strong sense or

not; prima facie it is not ([6], p. 11). But in any event HoTT with AU is constructive

in the sense of being constructive which I use in this paper. This amounts to saying that

21For another analogy between HoTT and Euclid’s geometry see [6], p. 56-57.

22Compare Section 5 above on propositional translation of Euclid’s Postulates 1-3.
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HoTT with AU includes non-propositional types along with the type of propositions. As I

have already said HoTT inherits this feature from MLTT. However only in HoTT the non-

propositional types are identified as types of certain geometrical objects while in MLTT in

its original form such types are presented as a bare type-theoretic abstraction.

9. What is Constructive Axiomatic Method?

In the preceding Sections I motivated, introduced and demonstrated with some examples

the concept of constructive axiomatic theory. In this final Section I would like to evaluate

this concept from an epistemological viewpoint. As my point of departure I shall take

Hintikka’s recent paper [16] where the author defends a semantic version of received ax-

iomatic method and analyses its epistemological significance. I shall try to show that this

received method of theory-building is not self-sustained (both logically and epistemically)

and needs to be supported by a constructive method like one used in HoTT.

Hintikka:

What is crucial in the axiomatic method [..] is that an overview on the

axiomatized theory is to capture all and only the relevant structures as so

many models of the axioms. ([16], p. 72)

Where these structures come from? Hintikka gives the following answer:

The class of structures that the axioms are calculated to capture can be

either given by intuition, freely chosen or else introduced by experience

(ib., p. 83)

One may wonder how a mathematical structure or a structure of some di↵erent sort can be

“given” or “introduced” without being construed axiomatically beforehand. Should we take

at this point a Platonistic view according to which mathematical structures in some form

exist independently of our axiomatic descriptions of these structures? Hintikka’s answer
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is di↵erent. He rejects the notion of intuition understood as an intellectual analogue of

sense-perception and describes the relevant notion mathematical intuition as follows:

[N]ew logical principles are not dragged [..] by contemplating one’s mathe-

matical soul (or is it a navel?) but by active thought-experiment by envis-

aging di↵erent kinds of structures and by seeing how they can be manipu-

lated in imagination. [..] [M]athematical intuition does not correspond on

the scientific side to sense-perception, but to experimentation. (ib., p. 78)

Thus we get the following picture. Building an axiomatic theory is a complicated two-way

process; it is a game with Nature (and perhaps also with Society) where raw empirical

and intuitive data e↵ect one’s axiomatic construction in progress while this construction

in its turn e↵ects back one’s choice of further data, which become in this way less raw and

more structured. Asking where the process starts exactly is the chicken or the egg kind of

question. Hintikka’s IF logic with its intended game-theoretic semantics provides a precise

mathematical model for such games [37].

My concern is about the kind of games that we need to play with Nature for doing science

and mathematics. Although yes-no questioning games indeed play an important role in

science and perhaps also in mathematics I claim that this is only the top of an iceberg. The

main body of this iceberg is filled by mathematical and empirical constructive activities

such as designing new experiments. Considering applications of mathematics outside the

pure science we may also mention the importance of mathematics for engineering. In order

to design a bridge or a particle accelerator one usually plays with certain mathematical

models of these things, not with formal axioms.

Since such activities qualify as instances of Hintikka’s “active thought-experiment” I hardly

diverge from Hintikka up to this point. The divergence comes next. I don’t grant Hin-

tikka’s view according to which the mathematical thought experimentation is, generally, a

spontaneous activity, which should be studied by “empirical psychologists” rather than lo-

gicians and epistemologists (ib. p. 83). I observe that constructive axiomatic theories like
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Euclid’s geometry, Newton’s mechanics, Lawvere’s axiomatic Topos theory and Voevod-

sky’s HoTT-UF greatly increase one’s capacities of mathematical thought experimentation

by providing basic elements (like points and straight lines in Euclid) and precise rules (like

Euclid’s Postulates) for it. I understand that the spontaneity may play a creative role

in mathematics and science just like elsewhere but I claim that typically a constructive

axiomatic organization of science and mathematics makes the thought experimentations in

these fields richer and more powerful. Compare playing with pieces of wood with playing

chess. Such an organized but rather than wholly spontaneous mathematical thought ex-

perimentation is typically used for building mathematical models of physical phenomena,

designing bridges, particle accelerators etc.

What is at issue here is how an axiomatic theory controls its semantic contents. Propo-

sitional axiomatic theory T (i.e. an axiomatic theory in the standard sense) motivated

by certain intended model M controls M through the truth-evaluation of its axioms and

theorems in M . Following Hintikka I shall understand the relation of logical inference in

T as the semantic consequence relation. Having granted this I claim that such a method

of axiomatic control is not e↵ective because the concept of semantic consequence is highly

sensitive to one’s basic semantical setting. As long as the semantic consequence is discussed

with respect to intuitive structures coming from the air (intuition, free choice, experience)

it remains an imprecise intuitive idea itself. I agree with Hintikka that this fact does not

imply that one has here the choice between appealing to irrational resources and giving

up the semantical view on logical consequence altogether (ib., p. 77-78). In order to con-

strue the relation of semantic consequence with a mathematical precision one should fix

some formal semantics, which allows for doing the truth-evaluation properly (like in the

case of Kripke-Joyal semantics for topos logic) 23. For this end one needs to build a basic

23In order to construe a notion of semantic consequence for given formal language L one needs to

- fix a formal semantics M for that language

- take a collections AT of well-formed formulas of L (which may express axioms of a given theory T

formalized with L)

- specify the class M(AT ) of models of AT by evaluating formulas from AT in M
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mathematical model (in the sense of “model” used in science rather than Model theory)

of the appropriate class of intended structures suggested us by intuition, experience and

what not. The yes-no questioning games by themselves cannot bring about such a basic

semantic model because, recall, the wanted model is supposed to allow us to make the

truth-evaluation properly. Unless such a semantic framework is established one is not in

a position to give to yes-no questions definite answers. The wanted semantic framework

cannot be obtained from intuition and experience directly but it can be built through

appropriate mathematical constructive procedures.

The above analysis suggests that the truth-evaluation is an advanced rather than basic fea-

ture of mathematical and other theories 24. Unlike Topos theory, HoTT in its existing form

has no resources for doing truth-evaluation internally. But there is a “general consensus”

that an internal truth-evaluation for HoTT can be construed within a higher-order topos

structure in which HoTT would play the role of internal language ([6], p. 12).

Mathematics and science not only seek truths and logical relations between those truths

but also look for e↵ective methods of doing this and that. These two kinds of knowledge are

known in the literature as the knowledge-that and the knowledge-how [8]. The former kind

of knowledge is propositional but the latter is not. From historical and biological points of

view it appears plain that the knowledge-how is a more primitive form of knowledge, which

can be reasonably attributed to certain other animals than humans. Propositional knowl-

edge is more advanced and special and it can hardly exist without a developed human-like

language. This is why it is plausible that the knowledge-how does not necessarily depend

on some knowledge-that. At the same time at least such a developed form of knowledge-

that as a propositional axiomatic theory clearly does depend on certain knowledge-how,

Formula � is called a semantic consequence of AT , in symbols AT |= �, i↵ � is a tautology in M(AT ).
24In that sense I agree with Hilbert when in [11] he claims the priority of the propositional axiomatic

presentation over the non-propositional genetic presentation (see Section 3 above). However I disagree with

the view according to which a final form of propositional axiomatic presentation can and should not depend

of any genetic presentation (whether or not this latter view is Hilbert’s).
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namely, on the logical knowledge of how to derive theorems from the axioms. In this paper

I have shown that this logical knowledge-how in its turn requires knowing how to build

certain mathematical construction of non-propositional types.

As far as we are talking about logical and epistemological analysis of scientific knowledge

there is a tendency to reduce such knowledge to the relevant knowledge-that and separate

the associated knowledge-how (perhaps except the purely logical knowledge-how) either

into the special domain applied science (and applied mathematics) or into the special do-

main of scientific practice. In this paper I have shown that such a separation doesn’t work

for certain mathematical theories because in these cases the two types of knowledge are

interlaced at the very atomic level of theoretical reasoning. On the basis of the episte-

mological considerations presented in this Section I conjecture that the studied cases are

not exceptional, so the received notion of axiomatic theory as a bare system of proposi-

tions cannot be an adequate theoretical model of an average mathematical theory. The

lack of substantial applications of the received form of the axiomatic method in today’s

mainstream experimental science stressed by Fraassen back in 1980 [50]) suggest that the

received notion of axiomatic theory does not adequately represent physical and other sci-

entific theories either.

On the positive side I proposed in this paper a notion of constructive axiomatic theory,

which can present the knowledge-how (in the form of systems of rules) and the knowledge-

that (in the usual propositional form). The epistemological considerations presented above

in this Section suggest that this sort of axiomatic theories may be more appropriate in

science than the axiomatic theories in the received sense of the term. For recent attempts

to apply (what I call) the constructive axiomatic approach in physics see [?], [?]. This issue

needs a separate discussion, which I leave for another occasion.
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