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Abstract. Turing machine adequately accounts for the temporal aspect of real com-

puting but fails to do so for certain spatial aspects of computing, in particular, in the

case of distributed computing systems. This motivates a search for alternative models of

computing, which could take such spatial aspects into account. I argue that a revision of

the received views on the relationships between logic, computation and geometry may be

helpful for coping with spatial issues arising in the modern computing.

1. Introduction

Computing takes time. For practical reasons it is crucial how much time it takes. Process-

ing speed (usually measured in FLOPS or more generically in cycles per second) is a basic

measure of computer hardware performance. During past several decades of continuing

computer revolution the processing speed of hardware increased dramatically. Computa-

tion time (aka running time) is equally crucial for evaluating the software performance:

invention of faster algorithms is going along with building faster processors.

Computing also takes space. It equally matters how much space it takes. Today’s digital

processors are smaller in size than their early prototypes by several orders of magnitude;

the minimization of physical sizes of computing devices is a continuing technological trend.

In order to see the role of space in computing more clearly it will be helpful to consider
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first a more traditional computing device like a set of pebbles (Latin calculi). Manipulating

with pebbles requires a space. A basic trick of traditional computing is that this required

computation space is more “handy” and usually significantly smaller than the space where

live the counted objects. Suppose for example that one wants to count sheep in a herd.

A reason for replacing sheep by pebbles is that one can manipulate with pebbles in space

by far more easily and more effectively that one can do this with the real animals. Using

pebbles one can even count stars and other objects on which one has no real control at

all. Thus if we consider computing as a process applied to certain external objects rather

than an abstract procedure on its own rights, then we can observe that scaling the system

of objects under consideration down (or up in the case of a microscopic system) to the

spatial and temporal scale where humans may possibly provide for an effective control,

is an essential part of this process. A spatio-temporal scaling is equally at work when

calculations are done symbolically.

If we now turn back to the modern electronic computing then we remark that the spatial

issues enter into the picture in a number of new ways. Spatial issues are dealt by hardware

engineers who seek to make handy human-scale computing devices as powerful as possible.

The distributed computing made possible by the web technology involves the hardware

scattered over the globe, so spatial issues (along with temporal ones) become in this case

more pressing. The case of remote control of spacecrafts where the time of signals’ traveling

between different parts of the same information system becomes an essential factor, makes

a link (practical rather than only theoretical!) between computing and relativistic space-

time. These are but the most apparent ways (chosen by random) in which spatial and

spatio-temporal issues can be relevant to modern computing; developers of information

systems most certainly can specify more.

Theoretically spatial and spatiotemporal aspects of computing have been studied so far

at least in these two directions. In 1969 Konrad Zusse proposed a powerful metaphor of

“computing space” [25] which gave rise to an area of research known as digital physics,

which explores the heuristic idea according to which the physical universe can be described
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as a computing device. Reciprocally, the fact that computing proceeds in the real physical

space and time led a number of authors to reconsidering standard theoretical models of

computation [12] and more recently gave rise to a new field of research named spatial

computing [9].

2. Time and space estimations

A commonly used theoretical model of computation is the Turing machine, which can be

described informally as follows. It consists of an infinite strip of tape divided into equal

cells, which moves forward and backward with respect to a writing device. The device

writes and rewrites symbols into the cells according to a table of rules. Thus the Turing

machine presents computation as a discrete process divided into discrete atomic steps.

According to this model every accomplished calculation is characterized by a certain finite

number n of such steps. This apparently naive model (which can be given a more precise

formal presentation) turns to be surprisingly effective for theorizing about computing in

the context of modern information technology. The Turing machine model allows one to

estimate the computing time straightforwardly. Given that a given algorithm A requires n

Turing moves for accomplishing a given task T , and given that the CPU of one’s computer

makes m operations per second, one can estimate the required running time t as n
m . Since

the Turing machine is an ideal theoretical model but not a real computing hardware, the

above calculation is by far too straightforward. In the real life the exact number n as above

is undetermined, so one can only estimate how n varies with the variation of parameters

T such as the number of elements in sorting. But notwithstanding these details the very

fact that the Turing machine, theoretically described algorithms, algorithms realized in

a software and finally real CPUs all work step-by-step provides a firm ground for time

estimations. The “internal time” of Turing machine measured in elementary moves of its

tape turns to be a good theoretical model for the running time of real computers.

The Turing machine also helps for estimating space required for computing. This is done

by the estimation of number m of the required cells. If one knows how m depends on
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parameters of the given task, one can estimate the volume of required memory, which in its

turn provides a reasonable estimation of size of the real computing device. In that respect

the time estimation and the space estimation are similar. However this very structural

similarity between the temporal and the spatial sides of the Turing machine makes a big

difference in how the Turing model of computation relates to computations made in the

real world. Let me for the sake of the following argument assume that the physical time

and space are classical (Newtonian). The elementary moves of the Turing machine can be

identified with ticks of physical clocks and its tape divided into equal cells can be used as

a ruler. The number of ticks is all one needs for measuring a time span between two events

and the number of cells is all one needs for measuring the distance between two points in

space. What makes the two cases very different is this: while the arithmetic of natural

numbers in a sense comprises the formal structure of classical time (as already Kant rightly

acknowledged) this is not the case regarding the formal structure of classical Euclidean 3D

space. A fundamental property of this space which remains unaccounted in this way is

the number if its dimensions. The one-dimensional Turing tape may serve as a good

instrument for testing various spatial structures - Euclidean and beyond - but it cannot,

generally, represent such structures (including their global topological properties) in the

same direct way in which it represents the running time in real computers. Thus one can

remark a sharp difference between the temporal and the spatial relevance of Turing model

of computation: While this model adequately accounts for the temporal aspect of real

computing (modulo usual reservations explaining the difference between a physical process

and its theoretical model), it fails to do so with respect to certain spatial characteristics of

modern computing devices.

Why this dissymmetry? Or perhaps it is more appropriate to ask why not? The success

of Turing machine and other related models of computing (such as the lambda calculus)

suggests seeing the running time as an essential feature of computing and seeing all spatial

aspects of computing as non-essential. Even if Turing machine says nothing about spatial

issues related to computing it is not obvious that these issues should be taken into account
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by a theory of computing at the fundamental level. Perhaps these spatial issues can be

better accounted for separately after the basic model of computation is already fixed. The

idea to unify spatial and temporal aspects of computing within the same fundamental

theory may appear tempting (and natural from the point of view of today’s physics) but

it certainly needs further arguments in its favor.

In what follows I shall try to provide such arguments. I shall start with some historical

observations concerning the relationships between space, geometry and computing. Then

I consider a recent theory, which reveals a deep link between computing and geometry

in a modern mathematical context. Finally I discuss some related philosophical issues

concerning the relationships between the pure and the applied mathematics.

3. Historical Forms of Computing

Making history of a subject unavoidably involves projecting of the present state of this

subject onto its past. These days by a computer one understands a digital electronic

device, which inputs and outputs sequences of 0s and 1s; a peripheral hardware translates

between between the 0-1 sequences and the data of different types including the data

that can be received and/or outputed by human users immediately (such as strings of

symbols and imagery). Looking for a close historical analogue of the modern computing

one naturally points to arithmetical calculations in its various historical forms, some of

which involve devices of abacus type [16]. However a closer examination shows that the

historical forms of computing are more diverse. Suppose one needs to compute the hight of

an equilateral triangle knowing its side. Such geometrical problems are common in building

construction and many other practical affairs. If one has an electronic calculator at hand

then to compute a decimal fraction approximating
√

3
2 is a reasonable solution. Otherwise

one may use a more traditional tool such as the ruler and the compass for solving the

problem geometrically. If the size of the figure in question does not allow one to apply these

instruments directly one first solves the problem on a sheet of paper or another appropriate

support, and then use a scaling technique (which typically but not necessarily involves
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arithmetical calculations) for applying this geometrical result in the given practical context
2 There is a tendency dating back to Plato to overlook or underestimate the computational

aspect of the traditional elementary geometry as presented in Euclid’s Elements. Whatever

may be philosophical reasons behind it such an attitude is hardly appropriate as long when

one studies the history of computing.

The combination of ruler and compass works as a simple analogue computer. While modern

digital computers use the idea of symbolic encoding, the analogue computers exploit the

idea of analogy between different physical processes. This latter idea can be made more

precise through the concept of mathematical form (which, of course, in its turn needs further

specifications which I omit here). Different physical processes, including those having very

different physical nature, happen to share the same mathematical form; in many case, they

may be adequately described by the same mathematical tools such as differential equations.

Let P be a class of processes sharing the same mathematical form F . Now the idea of

analogue computing can be formulated as follows: choose in P an appropriate process C

(for “computation”), which is artificially reproducible, well-controllable and conceptually

transparent; then use C as a standard representation for F . What one learns about F

through C applies to all other processes in P disregarding their specific physical nature. In

the above example F is the geometrical form of equilateral triangle and C is the standard

construction of such a triangle by the ruler and the compass.

Analogue computers have been largely superseded by their digital rivals at some time in

early 1960-ies (or earlier on some accounts [16]). A thorough discussion on digital and

analogue computing is out of place here but I shall point to one advantage of the digital

computing which obviously contributed to its success. It consists in its universality. What

2The Euclidean space is the only one among Riemannian spaces of constant curvature, which allows for

a simple linear scaling. The importance of scaling in practical matters provides, in my view, a plausible

explanation why the Euclidean geometry for many centuries was considered as the only “true” theory of

space. The fact that the linear scaling property implies Euclid’s Fifth Postulate (aka the Parallel Postulate)

was first realized by Wallis in 1693 [2].



COMPUTING IN SPACE AND TIME 7

we want to call a computer is not just a device that allows one to simulate physical processes

and technological procedures of some particular type P as described above but rather a

universal toolkit, which allows for simulating processes and procedures of many different

sorts. The ruler and the compass meet this requirement only to a certain degree. These

instruments can be used for solving a large class of geometrical problems but this class

turns to be limited in a way, which from the practical viewpoint may appear very strange

and even arbitrary. Why the trisection of a given segment is doable but the trisection of

a given angle is not? Why a regular hexagon can be so easily computed but a regular

heptagon cannot be computed by these means at all? Today we know good theoretical

answers to these questions but they don’t make the ruler and the compass more useful

than they are. Now consider the claim according to which all relevant mathematical proce-

dures and mathematical structures serving as mathematical expressions of various physical

“analogies” in the analogue computing as explained above, can in principle be encoded

into (i.e., represented with) 0-1 sequences and operations with these things. This claim is

problematic from a theoretical point of view (not all mathematical theories currently used

in physics are constructive and moreover computable); it also involves very strong the-

oretical idealizations, which make many theoretical possibilities, which this idea implies,

physically unfeasible. The more computing power we get the more such limitations become

visible. However the idea of a single universal model of calculation appears so attractive

and so promising that our technological development largely follows it anyway.

4. Geometrical Characteristic

Let me now turn from the history of computing to the history of ideas about computing.

Leibniz is commonly and rightly seen as a forerunner of modern computing; his ideas

about this subject he put under the title of Universal Characteristic, which he described

as a hypothetical symbolic calculus for solving problems in all areas of human knowledge.

Although this idea sounds appealing in the modern context to reconstruct it precisely is

a laborious historical task; moreover so since this idea never achieved in Leibniz a stable
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and accomplished form. I shall discuss here only one specific aspect of this general idea,

which is relevant to my argument, namely the notion of Geometrical Characteristic [10],

for partial English translation see [11].

Leibniz builds his idea of Geometrical Characteristic upon Descartes’ Analytic Geometry.

In its original form (unlike its usual modern presentations) this latter concept has little

to do with the arithmetization of geometry through a coordinate system. It has been

rather conceived by Descartes as a geometrical application of a general algebraic theory

of magnitude. This general algebra of magnitudes was supposed to cover both arithmetic

(the case of discrete magnitude) and geometry (the case of continuous magnitude). As

Leibniz stresses in his Geometrical Characteristic paper the general algebra of magnitudes

cannot be a sufficient foundation of geometry because this general algebra treats only

metrical properties of geometrical objects while these objects also have relational positional

properties (which we call today topological). Leibniz tries to push Descartes’ project further

forward by mastering a more advanced algebraic theory capable to account for positional

properties of geometrical configurations along with their metrical properties. He conceives

here of a possibility of replacing traditional geometrical diagrams with appropriate symbolic

expressions and appropriate syntactic procedures on such expressions, which would express

the positional properties directly, without using the Cartesian algebra of magnitudes. For

this end Leibniz observes that the traditional geometrical letter notation (as in Euclid) is

not wholly arbitrary but has a certain syntactic structure, which reflects certain positional

properties. For example when one denotes a given triangle ABC the syntactic rules require

A, B,C to be the names of this triangle’s vertices, and AB, BC, AC be the names of its

three sides. Leibniz’ idea is to develop this sort of syntax into a full-fledged symbolic

calculus similar (on its syntactic side) to Descartes’ algebraic calculus 3.

3An attempt to develop geometry systematically on an algebraic basis (in the form of a general theory of

magnitude) has been made by Descartes’s follower Antoine Arnauld [1]. This Arnauld’s work was carefully

studied by Leibniz and contributed to his thinking about geometrical matters. Another name for the same

circle of Leibniz’ ideas, which connects them to Descartes’ work more directly, is Analysis Situs (Situational
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Leibniz’s idea of Geometrical Characteristic is interesting because it directly links the

symbolic computation to the geometrical reasoning on a fundamental theoretical level -

while in the mainstream 20th-century theoretical works on computation by Church and

others such a link appears to be wholly absent. However in the 19th century the idea

of Geometrical Characteristic has a rich history, which involves works of Grassmann [5],

Peano [17][18] and other important contributors. Even if in the 20th century this circle of

ideas did not make part of the mainstream research in the theory of symbolic computing

(which in this century was largely monopolized by logicians) it continued to develop during

this century within other mathematical disciplines including algebraic geometry. Tracing

this history of ideas continuously up to the present is a challenging historical task, which

I leave for another occasion. In this paper I shall only briefly describe what I see as the

latest episode of this history, which establishes a new surprising theoretical link between

geometry and computing in today’s mathematical and logical setting.

5. Univalent Foundations

The Univalent Foundations of mathematics (UF) is an ongoing research project headed by

Vladimir Voevodsky and his collaborators in Princeton Institute for Advanced Study; this

project is closely related to the recently emerged mathematical discipline of Homotopy Type

theory (HoTT). The backbone of UF/HoTT is a detailed formal correspondence between

a type calculus due to Martin-Löf (MLTT) [15] and a geometrical theory (in a broad sense

of “geometrical) known as Homotopy theory (HT); see [19] for a systematic introduction

and further references. A role in the discovery of this correspondence was played by the

concept of infinite-dimensional groupoid first introduced by Grothendieck in 1983 [6]; more

historical details are found in [21], Ch. 7.

For my present argument it is essential to take into account the specific character of corre-

spondence between the type calculus MLTT and the geometrical theory HT, which gives

Analysis); under this latter name this circle of Leibniz’ ideas plays a prominent role in the early history of

modern topology [3].
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rise to UF/HoTT. It is terminologically correct to say that HT provides a model of MLTT

using the term “model” as it is usually understood in the Model theory. However if one

compares how the concept of model is used here with standard examples of models like

Beltrami-Klein or Poincaré models of Hyperbolic geometry (HG), one immediately notices

a striking difference. A standard axiomatic presentation of HG contains non-logical terms

like “point”, “lies between” , etc, and certain logical terms like “and”, “if then”, “therefore”

etc. As far as one thinks about formal axiomatic theories and their models along the pat-

tern provided by Hilbert in his classical [7], one assumes that the meaning of logical terms

is fixed (and commonly understood), while the non-logical terms are place-holders, which

get definite semantic values only under this or that possible interpretation; when such an

interpretation turns the axioms of the given theory into true statements this interpreta-

tion qualifies as a model of that theory. The distinction between logical and non-logical

terms is of a major epistemic significance here because it usually (and certainly in Hilbert)

goes along with the assumption according to which logical concepts are more epistemically

reliable than mathematical (and in particular geometrical) ones. The assumption about

the epistemic primacy of logic provides a ground for the claim that a Hilbert-style formal

axiomatic presentation of a given mathematical theory is a genuine epistemic gain rather

than just one’s favorite style of writing mathematical textbooks.

In UF/HoTT the above familiar pattern of axiomatic thinking does not apply. For HoTT

provides geometrical interpretations for those terms of MLTT, which by all usual accounts

qualify as logical. The most interesting (both mathematically and philosophically) case in

point is the concept of identity (as in MLTT without the additional axioms of extensionality

which makes the identity concept in this theory trivial) and its homotopical interpretation.

By all usual accounts (including Frege’s classics [4]) the concept of identity is logical. In

HoTT it receives a highly non-trivial geometrical (homotopical) interpretation in the form

of fundamental groupoid of a topological space, which is the groupoid of paths between

points of this space. This construction of usual “flat” fundamental groupoid of paths is
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further extended onto that of infinite-dimensional higher homotopy groupoid, which ac-

counts to higher identity types appearing in MLTT. This geometrical interpretation makes

intelligible the complexity of the identity concept as in MLTT, which otherwise may appear

as unnecessary technically complicated and conceptually opaque. So in this case a logical

concept is analyzed and clarified by geometrical means rather than the other way round.

The reciprocal epistemic impact of logic onto geometry in UF/HoTT is also significant

(see below) but it would be clearly wrong to see this impact as one-sided. What brings

an epistemic gain in this case is a cross-fertilization of logic and geometry rather than an

one-sided influence.

UF/HoTT has a special relevance to computing, which I am now going to describe. MLTT

has been designed from the outset as a formal calculus apt for computer implementations.

It is a constructive theory in the strong sense of being Turing computable. The homotopi-

cal interpretation of MLTT makes possible to see MLTT (possibly with some additional

axioms such as the Univalence Axiom) as a formal version of HT and use program lan-

guages based on MLTT for computing in HT. The fact that MLTT has been designed as

a general formal constructive framework rather than a formal version of any particular

mathematical theory suggests that UF/HoTT may serve as a foundation of all mathemat-

ics and that its computational capacities can be used also outside HT, ideally everywhere

in mathematics and mathematically-laden sciences. Realization of this project remains a

work in progress.

Like Leibniz’s Geometrical Characteristics UF/HoTT can be seen as a theoretical means

for reducing geometrical constructions to symbolic expressions, which can be managed by

the Turing Machine. However the link between geometry and computing established in

UF/HoTT can be also explored in the opposite direction and provide a theoretical ground

for attributing to computations a geometrical (topological) structure. I submit that such

a notion of internal geometrical structure of computing may be used for designing dis-

tributed computing systems and coping with other spatial aspects of modern computing

mentioned above. This is, of course, nothing but a bold speculation à la Leibniz, which I
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cannot support by any specific technical argument. Instead I shall discuss certain related

philosophical issues. One’s stance towards these issues can make the above guess to ap-

pear more reasonable or, on the contrary, less reasonable and direct one’s technical efforts

accordingly. Leibniz’s example demonstrates that in the past philosophical speculations

played a role in later technological developments. I cannot see a reason why this should

not work today and in the future.

6. Geometrical thinking

Is it reasonable to expect that geometrical methods may help one to cope with spatial

issues arising in engineering (including IT engineering)? Two centuries ago the answer

in positive would be a matter of course. However today we live with a very different

received view on the nature and the subject-matter of mathematics. This modern vision

has been strongly influenced by Hilbert’s notion of axiomatic theory and stabilized at

some point in the mid-20th century. A concise presentation of this received view is found

in Professor Mainzer recent monograph [13], where he describes a “mathematical universe”

of “proper worlds and structures existence of which is thought of solely in terms of accepted

axioms and logical proofs” , (op. cit., p. 280, my translation from German). I shall call

this view the standard picture (SP) for further references. It should be understood that

SP is not a description of what mathematicians are doing in their everyday work but

rather a judgement on what the pure mathematics really is in the proper philosophical

analysis. Elementary arithmetical calculations like 7 + 5 = 12 at the first glance do not

look like logical inferences. In order to fit 7 + 5 = 12 into SP one needs to make a

judgement like this: this calculation is ultimately justified by a logical inference, which is

made explicit by through a logical reconstruction of arithmetic, i.e., through presenting this

traditional mathematical discipline in the modern axiomatic form of Peano Arithmetic or

similar. Such a gap between the current mathematical practice and SP exists in all areas

of today’s mathematics including mathematical logic itself. It is a controversial matter

among philosophers whether or not such a gap is tolerable.
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SP implies that there is no direct connection between the “proper worlds” of mathematical

structures and the material world in which we live, act and develop our technologies. How

it happens that some of these structures play a significant role in natural sciences and

technologies constitutes a philosophical puzzle famously called by Wigner [24] the “unrea-

sonable effectiveness ” of mathematics. This puzzle has a number of plausible solutions

compatible with SP (including one explained in Professor Mainzer’s book, ch. 14), which

I shall not discuss here. Instead I shall try to revise SP and briefly present a different un-

derstanding of modern mathematics, which establishes (or rather re-establishes) a stronger

conceptual connection between mathematics, natural sciences and technology. Such a link

was taken for granted by many philosophers, mathematicians and scientists in the past but

was later lost of view in popular 20-th century accounts of the so-called “non-Euclidean

revolution” [23] of the mid 19-th century. Without going into a thorough historical discus-

sion of this matter I shall try to show here that the results of this alleged revolution have

been largely misconceived and somewhat exaggerated.

SP comes with the following assumption, which at the first glance may look merely technical

but in fact is epistemically important: an axiomatic presentation of mathematical (and in

fact also all other) theories involves a definite symbolic syntax. So in addition to the ideal

existence “in terms of accepted axioms and logical proofs” all mathematical objects and

structures enjoy within in SP a more palpable form of existence, namely, the existence

in the form of symbolic presentations. Hilbert, who was a pioneer of formal axiomatic

method, described this double form of mathematical existence explicitly and ontologically

qualified mathematical symbols as the only “real” mathematical objects, while the rest of

mathematical objects on his account were merely “ideal” [8]. Accordingly, he exempted

a part of mathematics from SP and called this special part metamathematics. Hilbert

conceived of metamathematics as a foundational discipline, which allows one to develop

the rest of mathematics safely using symbolic logical methods. Hilbert hoped that the

metamathematics would reduce to a theoretically transparent and wholly unproblematic

fragment of finitary mathematics.
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Thanks to Gödel and others we know today that Hilbert was seriously mistaken here; for

this reason mathematicians and logicians today usually feel free to apply in mathematical

logic and in metamathematics any sort of mathematics that may prove useful, i.e., that may

prove some non-trivial results. Yuri Manin expresses this changed attitude by saying that

“good metamathematics is a good mathematics rather than shackles on good mathematics

” ([14], p. 2). As we have seen HoTT applies the Homotopy theory (HT) for a similar

purpose: it provides a geometrical model for a symbolic calculus (MLTT) the intended

semantic of which is logical (in a broad sense of the word). A logical inference in HoTT is

a different name for a geometrical construction. The “existence of mathematical structures”

in HoTT is as much logical as it is geometrical. This feature of HoTT does not square

with SP. One may point, however, to a theoretical possibility to disregard all such specific

features and treat HoTT by standard logical methods along with the rest of mathematics.

Such a possibility exists. But as I have already explained, resources of HoTT can be

also used more specifically for developing a competing foundational project (UF) based on

different epistemic principles. I shall not discuss these principles here systematically but

only briefly touch upon the issue of relationships between mathematics and the physical

world.

As we have seen Hilbert in 1927 believed that finite strings of symbols are privileged

mathematical objects, which serve as a unique join between the abstract mathematics

and the concrete material world. Even if modern presentations of SP don’t make the

same point explicitly, they need to use this assumption tacitly because it is enforced by

the current standard of formal logical rigor, which requires using symbols. But since

Hilbert’s project of building mathematical foundations on the basis of finitary mathematics

is given up, I can see no further reason to justify the aforementioned assumption either.

Mathematically speaking, the combinatorics of symbols is important but it does not play

a distinguished role in mathematical matters - whether one provides it with one’s favorite

logical semantics or not. Epistemologically speaking, there is no reason to consider symbols

as the sole tool, which connects the human cognition and the human history with the
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outer world. The geometrical intuition is another obvious candidate. One should keep in

mind that the implementation of mathematical ideas in physics and technology is never a

straightforward matter. It is not straightforward even in the Euclidean case, and it is by

far less straightforward in the case of modern geometry. Nevertheless I cannot see that the

modern geometry in this respect so drastically differ from the traditional Euclid’s geometry,

as proponents of the non-Euclidean Revolution often tend to say. Mathematics in general

and geometry in particular is a cognitive activity rooted in human material practices and

experiences, which on this basis explores further theoretic possibilities by modeling them

conceptually. Even if testing of such newly discovered theoretic possibilities against new

experiences and new practices belongs not to the pure mathematics but rather to science

and technology, there is no reason, in my view, to think of mathematics as a genuinely

independent discipline exploring its own “proper world”. Human experiences and practices

do not, generally, simply guide one’s “choice of axioms” for developing on this basis some

useful mathematical theories, as SP suggests, but rather help one to build conceptual

frameworks, in which certain axioms and certain inferences from these axioms can be later

established 4.

On this - admittedly merely speculative - ground I suggest that HoTT indeed qualifies as a

reasonable candidate for a theory of spatial computing or at least for a fragment of such a

theory. In fact, it appears as the only such candidate since no other mathematical theory

treating the concept of computing geometrically, to the best of my knowledge, is presently

known.

7. Conclusion

Computing is an old and very important channel, which connects the research in pure

mathematics (when such an activity is practiced in a society) with the society’s economy,

administration, political institutions, technology and natural science. Professor Mainzer

4For the notion of geometrical intuition in modern mathematical contexts see [20]. For more details

concerning the role of geometrical modeling in axiomatic theories see [22]
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[13] provides a detailed account of how this channel functions in today’s information so-

cieties. In particular, he shows how today’s standard picture of mathematics fits the

contemporary ideas about computing and its implementation in the existing computing

technology. On my part, I tried to suggest a revision of this standard picture and offer a

different view on mathematics and computing, which, as I believe, may help one to cope

with some technological challenges related to the spatial aspect of computing technolo-

gies.

In this context I argued that Hilbert’s view on what is real and what is ideal in mathematics

is biased. However important is the historical impact of alphabetic writing techniques on

mathematics, it is certainly not the only thing, which connects mathematics to the material

world and to human material practices. However impressive is the implementation of these

techniques in the modern digital computing it would be wrong to isolate these specific

techniques from other mathematically-laden material practices and technologies and think

of symbolic proceeding (possibly providing it with one’s favorite logical semantics) as a

unique and exceptional channel that links mathematics to the material works. Among

other things such an ideological focusing on the symbolic processing and on the Turing

model of computation artificially isolates the temporal aspect of computing from the spatial

one and thus makes it more difficult to theorize mathematically about spatial aspects of

computing.

As a possible remedy I pointed to the ongoing research in Univalent Foundations and Ho-

motopy Type theory, which provide a surprising conceptual link between geometry and

computing. Whether or not this theory may indeed help one to cope with distributed

information systems and long-distance control at the present stage of research is wholly

unclear, and in any event there is a very long way to it. However I tried to demonstrate

using this example that the contemporary mathematics - by which I here mean the very

edge of the ongoing mathematical research - can be more friendly to technological imple-

mentations in general and to computer implementations in particular than suggests the
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popular picturing of this mathematics as exceedingly abstract and wholly detached from

all other human affairs.
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