DIAGRAMMATIC SYNTAX AND ITS CONSTRAINTS

ANDREI RODIN

1. INTRODUCTION: APPLICATIONS AND FOUNDATIONS

In their recent papers Zynovy Duskin and his co-authors stress the following problem
concerning diagrammatic tools currently used in Computer Science:

The industrial demand greatly energized building formal semantics for di-
agrammatic languages in use, and an overwhelming amount of them was
proposed. The vast majority of them employ the familiar first-order (FO)
or similar logical systems based on string-based formulas, and fail to do the
job because of unfortunate mismatch between the logical machineries they
use for formalization and the internal logics of the domains they intend to
formalize.[3]

Parallelism of specification and graphical visualization is provided by the
graph-based nature of the sketch logic, and sharply distinguishes sketches
from those visual models which are externally graphical, yet internally are
based on predicate-calculus-oriented string logics. The repertoire of graphi-
cal constructs used in these models has to be bulky since all kinds of logical
formulas require its special visualization. Configurations/shapes of these vi-
sualization constructs can be rather arbitrary because there are no evident
natural correlations between graphics and logical string-based formulas. [2]

The problem stressed in these passages has an interesting relevance to philosophy. The
predicate-calculus-oriented string logic plays a prominent role in todays philosophy and
particularly in the todays mainstream philosophical tradition called Analytic. When Ana-
lytic philosophers talk about Classical, Intuitionistic, Modal or another logic they always
talk about some kind of predicate-calculus-oriented string logic. In particular, they view
the predicate-calculus-oriented string logic as a basic element of foundations of mathemat-
ics (consider the case of axiomatic set-theories like ZF.) Classics of Analytic philosophy
including Russell and Quine (to give only a couple of most influential names) argued that
a particular kind of predicate-calculus-oriented string logic should be the basic logic un-
derlaying our best scientific theories. The following proliferation of logical calculi gave rise
to a more liberal attitude called logical pluralism (see [1]).

As any open-minded attitude the logical pluralism is a good thing. However by itself it can
hardly support a system of logic that is not a predicate-calculus-oriented string logic; at best
1
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it can only tolerate it. Since Founding Fathers of Analytic philosophy (many of which were
also active logicians) explained us how a a predicate-calculus-oriented string logic connects
basic metaphysical features of what there is (Quine) with basic features of how we reason
about what there is (as these later features are expressed linguistically in our everyday
talks) it is not so easy to imagine how to do logic differently! Earlier Aristotle and his
followers made a similar job with a different system of logic called syllogistic. This historical
example shows that the situation is not as hopeless as it might seem: there is a good
chance that logico-metaphysical dogmas of Analytic philosophy will be soon destroyed by
new scientific developments after the Scholastic dogmas of Aristotelian metaphysics.

The above remarks may suggest that philosophy is not particularly helpful for doing sci-
ence in general and for doing logic in particular. I think however that this is a wrong
conclusion. Its true that philosophical prejudices often become an obstacle for scientific
progress. But its also true that philosophical prejudices can be effectively eliminated only
with philosophical means. To eliminate old foundations when they turn into prejudices
and replace them with new foundations is a job of philosophy. Such activity is an essential
element of science.

In the rest of this paper I shall describe a philosophically-laden project aiming at making a
diagram-based logical syntax into foundations of mathematics. I hope that the elimination
of some old and recent prejudices about logic, which this project implies, can be helpful
for solving technical problems stressed in the beginning of this Introduction.

2. SETS OF SETS AND CATEGORIES OF CATEGORIES

In his [5] Lawvere suggests to use The Category of Categories as a Foundation for Mathe-
matics (this is the title). In order to understand Laweveres project of Category-theoretic
foundations it is instructive to compare it with more familiar Set-theoretic foundations. As
far as the mathematical notion of set is not used for foundational purposes people may talk
about sets of various sorts of mathematical objects like numbers or points. But axiomatic
theories of sets like ZF assume primitive objects of a single sort called sets and a single
non-logical primitive relation of membership, so that every set within such a theory is a set
of sets (with the only noticeable exception of the empty set for which the expression set of...
is irrelevant). The idea of making ZF or a similar theory into foundations of mathematics
amounts to an attempts to think of every mathematical object (like a number or a point)
as a set of sets. Lawveres idea is similar in this respect. Mathematicians usually talk about
categories of mathematical objects (or mathematical structures) introduced independently:
this is the case of category of groups, category of topological spaces, category of sets, etc.
Lawveres axiomatic theory of categories makes notions of category and functor into prim-
itives; the usual categories just mentioned are supposed to be reconstructed from these
primitive notions by axiomatic means. (Lawvere shows how it works for the category of
sets.) Since Lawvere identifies a given category with its identity functor he doesnt actually
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use two different primitive notions here, so the only primitive notion of his theory is that
of functor.

Lawveres theory begins like ZF or any other similar axiomatic theory: he assumes the
Classical predicate calculus (that is, the usual variant of predicate-calculus-oriented string
logic), choose few primitive non-logical predicates (namely, one assigning to a given functor
its domain, another assigning to a given functor its co-domain and finally one assigning to
a pair of appropriate functors a third functor called their composition) and writes down
the usual axioms of category theory with these means. This first block of his first-order
theory Lawvere calls the elementary theory of categories; I shall call it ET in what follows.
A category this author defines as an arbitrary model of ET..

Noticeably ET by itself doesnt provide a notion of category which would allow for con-
struing mathematical objects as categories of categories in a way similar to which they are
construed as sets of sets. What we get with ET is a notion of category abstracted from
the usual examples mentioned above, i.e. the notion of category of something. It can be a
category of categories but it should not be. This feature is related to the following foun-
dational difficulty. Arguably ET involves a primitive notion of class , which comes along
with the very axiomatic setting underlying this theory: in order to interpret ET (i.e. to
build its model) one should first of all consider a class of abstract individuals to be called
morphisms or functors and then define suitable relations between these individuals. Even
if classes involved here are not sets in the sense of ZF the notion of class qualify as set-
theoretic in a broader sense of the work. Hence, so the argument goes, ET cannot provide
a self-standing foundation of mathematics; even if ET doesnt depend on ZF it depends on
a primitive non-axiomatic notion of class or collection. !

Mayberry in his [6] puts the above argument forward and concludes that Lawveres idea
of pure category-theoretic foundations is futile because a primitive non-axiomatic notion
of set (class, collection) is indispensable in mathematics. I buy the argument but dont
buy Mayberrys conclusion. The notion of class comes to ET with the standard axiomatic
setting. Mayberrys conclusion follows only if one assumes that this axiomatic setting is the
only possible one. As I shall argue in the next section this assumption is erroneous.

On the basis of ET Lawvere builds another theory, which he calls basic theory of categories
(BC). Formally speaking BC is an extension of EC with some additional axioms. But it
also involves a deep change of the whole foundational viewpoint as we shall now see. The
idea behind BC is this: using the notion of category developed in ET conceive of category
C of all categories; then pick up from C an arbitrary object A (i.e. an arbitrary category)
and finally specify A as a category by internal means of C stipulating additional properties
of C when needed. More precisely it goes as follows (I omit details and streamline the
argument). Stipulate the existence of terminal object 1 in C, i.e. the object with exactly
one incoming functor from each object of C. Then identify objects (= identity functors)

ISince objects in the obtained category are not necessary categories the term morphism is more appro-
priate in this context.
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of A as functors of the form 71— A. Stipulate also the existence of initial object 0, i.e.
the object with exactly one outgoing functor into each object of C. Then consider in C
object 2 of the form 0—1 and stipulate for it some additional properties among which is
following: 2 is universal generator which means that:

G (generator): for all f, g of the form:
A—=B
and such that f # g there exist x such that:

2—m>A:g>>B

and xzf # xg.

U (universal): if any other category N has the same property than there are y, z such
that:

y
<—Z>B

and yz = 2.

This allows Lawvere to identify internal functors (morphisms) of A as functors of the form
2— Ain C. For the fact that 2 is the universal generator (that is unique up to isomorphism
as follows from the above definition) assures that categories are determined ”arrow-wise”:
two categories coincide if and only if they coincide on all their arrows. This new definition
of functor also allows one to make a sense of the notion of a component of a given functor of
the form h: A — B, which in ET is understood as a map m sending a particular morphism
2f of A into a particular morphism ¢ of B . In BC m turns into this commutative triangle:

2A categorical diagram is said to commute or be commutative when the compositions of all morphisms
shown at the given diagram produce other morphisms shown at the same diagram in appropriate places,
so that any ambiguity about results of the compositions is avoided. For example, saying that the triangle

B
/ X
_ >
A . C
is commutative is simply tantamount to saying that fg = h. Morphisms resulting from composition of

shown morphisms can be omitted at a commutative diagram when this doesnt lead to an ambiguity. For
example, saying that this square
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2

/N

This, once again, significantly changes the whole perspective: categories and functors are
no longer built ”from their elements” but rather ”split them into” their elements when
appropriate.

A

B

Further consider this triangle which Lawvere denotes 3:

0

SN\

(it should satisfy a universal property which I omit). 3 serves for defining composition
of morphisms in our ”test-category” A as a functor of the form 83— A in C. Finally, in
order to assure the associativity of the composition Lawvere introduces category 4 that is
pictured as follows:

1

2

(The associativity concerns here the path 0 — 1 — 2 — 3.)

This construction provided with appropriate axioms makes A into an ”internal model” of
ET in the following precise sense: If F' is any theorem of ET then "for all A, A satisfies
F” is a theorem of BT.. 3

A—2s

!

O—>W

¢
is commutative is tantamount to saying that fg = hi.
3Isbell in his review [4] of Lawvere’s [5] points to a technical flaw in Lawveres proof of this theorem .
This flaw is fixed, in particular, in [7].
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3. PURIFYING CATEGORICAL FOUNDATIONS

As we have seen Lawveres construction involves two different steps, which correspond to ET
and BT. At the first step Lawvere formalizes usual axioms and definitions of the informal
abstract Category theory with usual means, namely with Classical predicate calculus. At
the second step Lawvere uses categorical resources obtained with ET for introduction (or
rather re-introduction) of basic categorical concepts including the basic concept of functor
(remind that in BC an internal functor of a test-category is defined as a commutative
triangle of a special form). As I have already explained this apparently strange move al-
lows Lawvere to treat any category as a category of categories in a way similar to which
in axiomatic theories of sets people treat any set as a set of sets. Thus the two layers
of Lawveres construction correspond to two different foundational projects. The first one
(ET) is standard: it is designed after the example of ZF or any similar first-order theory.
The second (BT) involves an original method of building a theory with Category-theoretic
means. The combination of the two methods suggested in [5] qualifies as a sound a prag-
matic solution. However it is natural to ask whether or not the latter categorical method
may work independently and so provide purely categorical foundations, which wouldnt
involve any primitive notion of class.

In order to get an answer let us see more precisely what the first standard step of Lawvere’s
construction serves for. First of all it introduces the preliminary notion of category, which is
used at the second step. I suggest that this preliminary notion of category can be assumed
informally and then made more precise by means of BC. An analogy with Set theory is once
again helpful. Axiomatic set theories use a preliminary informal notion of collection and
then make it more specific and more precise; they dont produce sets ex nihilo. Categorical
foundations, in my view, should be built similarly: one begins with an informal intuitive
notion of category and then use it for making this very notion more precise and better
behaved. Such circularity is not vicious in the case of sets and it is not vicious in the case
of categories either.

However this doesnt solve the whole problem since BT like ET uses standard logical means;
remind that the former is an axiomatic extension of the latter. Although axioms of BT are
represented with categorical diagrams it is assumed that they can be always rewritten with
the standard logical syntax. Commenting on the role of diagrams in his theory Lawvere
says:

Commutative diagrams in general are regarded as abbreviated formulas,
signifying the usual indicated systems of equations. For example, our state-
ment above of the associativity axiom becomes transparent on contemplat-
ing the following commutative diagram...

(The associativity axiom is first written as an equation; the corresponding diagram follows
the quote.)
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If the diagram makes the meaning (or more precisely the intended meaning) of the asso-
ciativity axiom transparent what is the reason for writing this axioms also in the form of
equation? The obvious answer is this: because the equation unlike the diagram can be
treated as a formula of the Classical first-order calculus; the equational form of the axiom
allows one to apply to the given this standard logical machinery. In order to treat dia-
grams similarly one need a system of diagrammatic logical syntax, which could replace the
standard linear syntax. With such a diagrammatic syntax and an informal notion of cate-
gory BT can be indeed built independently of ET. This would provide a purely categorical
method of theory-building and purely categorical foundations of mathematics, which dont
involve any primordial notion of collection or class.

4. SOME CONSTRAINTS OF DIAGRAMMATIC REPRESENTATION

Diagrams seem to have a stronger intuitive appeal than strings of formulae written with
usual symbols. Nevertheless diagrams like symbols need to be interpreted. The idea that
the meaning of a given diagram can be captured through a pure contemplation is erroneous.
Lets consider the case of categorical diagrams where categorical morphisms (functors) are
represented by arrows. There are at least two problems with this representation. Any
trajectory in a space can be followed in both directions; any spatial motion can be reversed.
At least this is how we usually think about a space. But categorical morphisms are,
generally, non-reversible. This is why we represent them by arrows rather than by lines.
To be read correctly a categorical diagram should be thought of as a spatio-temporal object
rather than a merely spatial object.

The other problem is this. Different geometrical figures have different points; when the
figures coincide on all their points they are the same. But two morphisms coinciding an all
their points are, generally, different. (By a point in this latter context I understand as usual
any morphism from the terminal object of a given category.) This means that one cannot
add points for free to a given categorical diagram as we usually do this with geometrical
diagrams. Although categorical morphisms can be conceived of as transformation (in the
most general sense of the work) the idea that a given transformation can be fully analyzed
in terms of momentary states should be definitely abandoned in this case.

5. CONCLUSION

The fact that a diagrammatic syntax is both a matter of industrial demand and an open
problem in foundations of mathematics seems me significant. A foundational turn is helpful
because it allows one to learn how to think about old notions in a new way. I suspect that
the claim that every mathematical object is a category may sound for a working mathe-
matician or computer scientist as another example of a philosophical absurdity just like the
earlier claim that every mathematical object is a set. Nevertheless it would be quite hard
to imagine how computer science and computer technology develop without modern logical
means, which in their turn emerged as a part and parcel of the foundational revolution in
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mathematics in the first half of 20th century. The ongoing revision of foundations through
Category theory and related field may have a similar long-term effect.
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