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ETCS and Elementary Topos

Elementary Theory of Category of Sets (ETCS)

Lawvere 1964

The Idea (back to von Neumann in late 1920-ies): use functions
and their composition instead of sets and the primitive membership
relation € used in the ZF and its likes

Remark: The project as it stands is fully compatible with RAM; the
proposed deviation from the standard approach amounts to a new
choice of primitives.

Foundations of Axiomatic Mathematics



ETCS and Elementary Topos

ETCS 1: ETAC

Elementary Theory of Abstract Categories (Eilenberg - MacLane)

E1) Ai(A5(x)) = By(x)i 1, = 0.1

E2) (T(x,y; u) AT(x,y;0)) = u=1

E3) Jul(x,y; u) & A1(x) = Ao(y)

E4) T(x,y;u) = (Bo(u) = Do(x)) A (Ar(u) = A1(y))

E5) T(Ao(x), x; x) AT (x, A1(x); x)

E6) (MT(x,y; u) AT(y,zzw)AT(x,w; F)AT(u,z;8)) = Ff=g
-E4): bookkeeping (syntax); 5): identity; 6): associativity
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ETCS and Elementary Topos

ETCS 2: Elementary Topos (anachronistically):

» finite limits;

» Cartesian closed (CCC): terminal object (1), binary products,
exponentials;

» subobject classifier

—tq

U
PJ \L true
X 2

for all p there exists a unique x U that makes the square into a
pullback

_

xU
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ETCS and Elementary Topos

ETCS 3: well-pointedness

forall f,g: A— B,ifforallx:1—Axf =xg=ythenf=g

1
VX
f
A——= B
g
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ETCS and Elementary Topos

ETCS 4: NNO

Natural Numbers Object: for all t/, f there exists unique u

t s

1—N—"->N
A*f)A
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ETCS and Elementary Topos

ETCS 4: Axiom of Choice

Every epimorphism splits:
If f: A— B is epi then there exists mono g : B — A (called
section) such that gf = 1p
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ETCS and Elementary Topos

The idea of internal logic: CCC

» Lawvere 1969: CCC is a common structure shared by (1) the
simply typed A-calculus (Schonfinkel, Curry, Church) and (2)
Hilbert-style (and Natural Deduction style) Deductive Systems
(aka Proof Systems).

» In other words CCC is “the” structure captured by the
Curry-Howard correspondence or Curry-Howard isomorphism

» The CCC structure is internal for Set BUT is more general:

Cat (of all small categories) is another example; any topos is
CCC.

» Lawvere's Hegelian understanding of this issue: CCC is
objective while usual syntactic presentations or logical calculi
are only subjective. While syntactic presentations lay out only
formal foundations, CCC lays out a conceptual foundation.
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ETCS and Elementary Topos

Internalization of quantifiers: Hypodoctrines

Suppose that we have a one-place predicate (a property) P, which
is meaningful on set Y, so that there is a subset Py of Y (in
symbols Py C Y) such that for all y € Y P(y) is true just in case
y € Py.

Define a new predicate R on X as follows: we say that for all x € X
R(x) is true when f(x) € Py and false otherwise. So we get subset
Rx C X such that for all x € X R(x) is true just in case x € Rx.
Let us assume in addition that every subset Py of Y is determined
by some predicate P meaningful on Y. Then given morphism f
from “universe” X to “universe” Y we get a way to associate with
every subset Py (every part of universe Y') a subset Rx and,
correspondingly, a way to associate with every predicate P
meaningful on Y a certain predicate R meaningful on X.
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ETCS and Elementary Topos

Internalization of quantifiers: Substitution functor

Since subsets of given set Y form Boolean algebra B(Y') we get a
map between Boolean algebras:

1 B(Y)—= B(X)

Since Boolean algebras themselves are categories f* is a functor.
For every proposition of form P(y) where y € Y functor f* takes
some x € X such that y = f(x) and produces a new proposition
P(f(x)) = R(x). Since it replaces y in P(y) by f(x) =y itis
appropriate to call f* substitution functor.
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ETCS and Elementary Topos

Existential Quantifier as adjoint

The left adjoint to the substitution functor f* is functor

3 B(X)—= B(Y)

which sends every R € B(X) (i.e. every subset of X) into

P € B(Y) (subset of Y) consisting of elements y € Y, such that
there exists some x € R such that y = f(x); in (some more)
symbols

Fr(R) = {y[3x(y = f(x) A x € R)}

In other words 3¢ sends R into its image P under f. One can
describe 3¢ by saying that it transformes R(x) into

P(y) = 3¢xP’(x,y) and interpret 37 as the usual existential
quantifier.
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ETCS and Elementary Topos

Universal Quantifier as adjoint

The right adjoint to the substitution functor * is functor
Ve B(X)——=B(Y)

which sends every subset R of X into subset P of Y defined as
follows:

Ve(R) = {y[vx(y = f(x) = x € R)}
and thus transforms R(X) into P(y) = V¢xP'(x, y).
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ETCS and Elementary Topos

Prehistory of Internal Logic

» Boole 1847, Venn 1882: propositional logic as algebra and
mereology of (sub) classes (of a given universe of discourse);
logical diagrams

» Tarski 1938 topological interpretation of Classical and
Intuitionistic propositional logic

While in Boole, Venn and Tarski an internal treatment is given only
the propositional logic Lawvere develops a similar approach to the
1st-order logic. There is a significant technical and conceptual
advance between the two cases.
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ETCS and Elementary Topos

Quantifiers and Sheaves 1970

“The unity of opposites in the title is essentially that between logic
and geometry, and there are compelling reasons for maintaining
that geometry is the leading aspect. At the same time, in the
present joint work with Myles Tierney there are important
influences in the other direction: a Grothendieck “topology” appears
most naturally as a modal operator, of the nature “it is locally the
case that”, the usual logical operators, such as V, 3, = have
natural analogues which apply to families of geometrical objects
rather than to propositional functions, and an important technique
is to lift constructions first understood for “the” category S of
abstract sets to an arbitrary topos.
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ETCS and Elementary Topos

Quantifiers and Sheaves 1970

We first sum up the principle contradictions of the
Grothendieck-Giraud-Verdier theory of topos in terms of four or five
adjoint functors [..] enabling one to claim that in a sense logic is a
special case of geometry.
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ETCS and Elementary Topos

Internal Logic (more formally)

» Syntax (Mitchell-Bénabou): A sorted language L with lists of
variables of every sort; sorts correspond to objects of the given
topos; logical operations are compatible with usual operations
with topos objects (produce, exponentiation, etc.)

» (External) Semantics (Kripke-Joyal): a formal satisfaction
relation.
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ETCS and Elementary Topos

External vs. Internal View

Def. f : A— B is epiciff for all g, h gf = hf implies g = h.
Def. Object T is terminal if for all object X there is unique arrow
X—-T

Def. Arrow of the form e : T — A is called an element of A:
e=€T A

Fact: f : A — B is epic iff it is internally onto: y.B - (Ix.A)y = fx

Warning: y.B F (3x.A)y = fx does not say that for each y €1 B
there exists some x €1 A such that y = fx. Externally, f is epic but
not necessarily split epic.
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ETCS and Elementary Topos

Notice that L has a double semantics informally described by
Lawvere in the above quote: it is both logical and geometrical. The
same quote makes it evident that the internal logic of topos served
Lawvere as a key for his axiomatization of Grothendieck's topos

concept.

Foundations of Axiomatic Mathematics



MLTT: Syntax

» 4 basic forms of judgement:

(i) A: TYPE;

(i) A=1ype B;

(i) a: A;

(iv) a=ad
» Context : I - judgement (of one of the above forms)
» no axioms (!)

» rules for contextual judgements; Ex.: dependent product :
If Iy x: X A(x): TYPE, then T = (Mx : X)A(x) : TYPE
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MLTT: Semantics of t : T (Martin-Lof 1983)

> tis an element of set T

» tis a proof (construction) of proposition T
(“propositions-as-types")

> tis a method of fulfilling (realizing) the intention
(expectation) T

> t is a method of solving the problem (doing the task) T
(BHK-style semantics)
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Sets and Propositions Are the Same

If we take seriously the idea that a proposition is defined by lying
down how its canonical proofs are formed [...] and accept that a
set is defined by prescribing how its canonical elements are formed,
then it is clear that it would only lead to an unnecessary duplication
to keep the notions of proposition and set [...] apart. Instead we
simply identify them, that is, treat them as one and the same
notion. (Martin-L&f 1983)
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HoTT

MLTT: Definitional aka judgmental equality/identity

x,y : A (in words: x,y are of type A)

x =a y (in words: x is y by definition)
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MLTT: Propositional equality/identity

p:x=ay (in words: x,y are (propositionally) equal as this is
evidenced by proof p)
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Definitional eq. entails Propositional eq.

X =AY
pix=ay

where p =,_,, refl is built canonically
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Equality Reflection Rule (ER)
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ER is not a theorem in the (intensional) MLTT (Streicher 1993).
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Extension and Intension in MLTT

» MLTT + ER is called extensional MLTT

» MLTT w/out ER is called intensional
(notice that according to this definition intensionality is a
negative property!)
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Higher Identity Types

/ /.
» X,y ix=ay

"o /
> X',y X Ex=ay Y
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HoTT: the ldea

Types in MLTT are (informally!) modeled by spaces (up to
homotopy equivalence) in Homotopy theory, or equivalently, by
higher-dimensional groupoids in Category theory (in which case one
thinks of n-groupoids as higher homotopy groupoids of an
appropriate topological space).
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Homotopical interpretation of Intensional MLTT

> x,y: A
X, y are points in space A

> X,y ix=ay
x',y" are paths between points x, y; x =, y is the space of all
such paths

> Xll7y” : X/ :X:Ay yl
x",y" are homotopies between paths x’, y’; x' =,—,, y’ is the
space of all such homotopies
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Definition

Space S is called contractible or space of h-level (-2) when there is
point p : S connected by a path with each point x : A in such a
way that all these paths are homotopic (i.e., there exists a
homotopy between any two such paths).
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Homotopy Levels

Definition

We say that S is a space of h-level n+ 1 if for all its points x, y
path spaces x =s y are of h-level n.
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Cummulative Hierarchy of Homotopy Types

> -2-type: single point pt;

» -1-type: the empty space () and the point pt: truth-values aka
(mere) propositions

» O-type: sets: points in space with no (non-trivial) paths

» 1-type: flat groupoids: points and paths in space with no
(non-trivial) homotopies

> 2-type: 2-groupoids: points and paths and homotopies of paths
in space with no (non-trivial) 2-homotopies
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Propositions-as-Some-Types !
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Which types are propositions?

Def.: Type P is a mere proposition if x,y : P implies x = y
(definitionally).
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Truncation

Each type is transformed into a (mere) proposition when one ceases
to distinguish between its terms, i.e., truncates its higher-order
homotopical structure.

Interpretation: Truncation reduces the higher-order structure to a
single element, which is truth-value: for any non-empty type this
value is true and for an empty type it is false.

The reduced structure is the structure of proofs of the
corresponding proposition.

To treat a type as a proposition is to ask whether or not this type is
instantiated without asking for more.
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» Thus in HoTT “merely logical” rules (i.e. rules for handling
propositions) are instances of more general formal rules, which
equally apply to non-propositional types.

» These general rules work as rules of building models of the
given theory from certain basic elements which interpret
primitive terms (= basic types) of this given theory.

» Thus HoTT qualify as constructive theory in the sense that
besides of propositions it comprises non-propositional objects
(on equal footing with propositions rather than “packed into”
propositions as usual!) and formal rules for managing such
objects (in particular, for constructing new objects from given
ones). In fact, HoTT comprises rules with apply both to
propositional and non-propositional types.
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Constructive Axiomatic Method and Knowledge Representatic

Syntactic and Semantic (aka Non-Statement) Views on
Theories

Syntactic View: A direct Hilbert-style axiomatization of Physical
and other scientific theories (since 1900: Hilbert, Rudolf Carnap,
Carl Gustav “Peter” Hempel and Ernest Nagel)

Semantic View: A typical scientific theory should be identified with
a class with (set-theoretic) models rather than with a particular
axiomatic presentation in a formal language (since late 1950-ies:
Evert Beth, Patrick Suppes, Bas van Fraassen)
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Constructive Axiomatic Method and Knowledge Representatic

Problem:

None of the above two approaches support an adequate
representation of scientific methods including methods of
justification of scientific claims. This concerns both logical and
(particularly) extra-logical methods such as methods of conducting

observations and staging experiments.
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Constructive Axiomatic Method and Knowledge Representatic

Cassirer 1907 contra Russell 1903)

Die Sorge um die Gezetzlichkeit der Welt der Objekte dagegen
bleibt ganzlich der direkten Beobachtung iiberlassen, die allein uns
innerhalb ihrer eigenen, sehr eug gestecken Grenzen zu lehren
vermag, ob auch hier bestimmte Regelmassigkeiten sich finden,
oder aber ein reines Chaos herrscht. Logik and Mathematik haben
es nur mit Ordung der Begriffe zu thun; die Ordnung oder
Verwirrung unter den Gegensténden ficht sie nicht an und braucht
sie nicht zu beirren. So beliebt, wieweit man auf diesem Standpunkt
die Analyse der Begriffe auch treiben mag, das empirische Sein ein
ewig unbegriffenes Problem. Je deutlicher der Wert und die Kraft
der Deduktion im Gebiete der Mathematik sich vor uns offenbart,
um so weniger verstehen wir die gewaltige und entscheidende
Bedeutung, die der Deduktion im Gebiet der theoretischen
Naturwissenschaft zufalt.
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Constructive Axiomatic Method and Knowledge Representatic

Cassirer 1907 contra Russell 1903)

From the standpoint of logistics [= formal mathematics] the task of
thought ends when it manages to establish a strict deductive link
between all its constructions and productions. Thus the worry
about laws governing the world of objects is left wholly to the
direct observation, which alone, within its proper very narrow limits,
is supposed to tell us whether we find here certain rules or a pure
chaos. [According to Russell] logic and mathematics deal only with
the order of concepts and should not care about the order or
disorder of objects. As long as one follows this line of conceptual
analysis the empirical entity always escapes one's rational
understanding. The more mathematical deduction demonstrates us
its virtue and its power, the less we can understand the crucial role
of deduction in the theoretical natural sciences.
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Constructive Axiomatic Method and Knowledge Representatic

Non-Propositional Content in Science

HoTT supports a strong version of Non-Sentence View of Theories
by providing a precise sense in which a theory, generally, does not
reduce to the set of its propositions.

HoTT also supports a Constructive View of theories according to
which the non-propositional Knowldge How is a part of scientific
and technical knowledge, which is at least as much important as
the propositional Knowledge That). HoTT provides a model of how
the two sorts of knowledge relate to each other.
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Constructive Axiomatic Method and Knowledge Representatic

Mathematical Modeling in Science

[E]xperience with sheaves, [..], etc., shows that a “set theory” for
geometry should apply not only to abstract sets divorced from time,
space, ring of definition, etc., but also to more general sets which
do in fact develop along such parameters. (Lawvere 1970 inspired
by Hegel)

Logical and mathematical concepts must no longer produce
instruments for building a metaphysical “world of thought”: their
proper function and their proper application is only within the
empirical science. (Cassirer 1907)
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Constructive Axiomatic Method and Knowledge Representatic

Suppes’ Lesson

A formal representational framework for Science and Technology
should include a formal semantic part rather than apply syntactic
structures to material contents directly.

Suppes and his followers use Set theory for that purpose with a
relatively little success — at least if this success is measured by the
role of formal approaches in the mainstream scientific research. The
homotopical semantics can be more appropriate of the task.
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Constructive Axiomatic Method and Knowledge Representatic

Open Problem

It appears that we still miss a good replacement of Tarski's notion
of model, which could work with HoTT and CAM more generally.
Tarski's notion of satisfaction in its original does not make the
whole job in such a context because it involves the concept of
truth-evaluation and no alternative notion of model is universally
accepted.

The Model theory of HoTT is presently a subject of active research.

This research revises basic conceptual issues such as the concept of
model itself.
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Constructive Axiomatic Method and Knowledge Representatic

Conclusion 1

The constructive axiomatic architecture is rooted in history (Euclid)
as well as in the recent successful practice of axiomatizing
geometrical theories (ET, HoTT).
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Constructive Axiomatic Method and Knowledge Representatic

Conclusion 2

As the examples of ET and HoTT clearly demonstrate CAM
involves a pattern of relationships between Logic and Geometry,
which is quite unlike the corresponding pattern used in RAM.
RAM-based axiomatic architecture leaves no room for a conceptual
linking of geometrical principles to logical ones. Geometrical axioms
appear here as very specific formal principles put on the top of
logical principles and motivated solely by unspecified references to
spatial experiences and intuitions. The CAM-based axiomatic
architecture, in its turn, presents geometrical principles as a
generalization of logical principles: in a CAM-based geometrical
theory such as HoTT “logic is a special case of geometry".
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Constructive Axiomatic Method and Knowledge Representatic

Conclusion 3

RAM proved effective as a very specific representational tool for
meta-mathematical studies. But it appeared to be nearly useless for
more general epistemic purposes, for which this method was
originally designed or tentatively applied later. This includes the
formal proof-checking, developing formal standards in scientific
communication and education, developing a software for
computer-based Knowledge Representation. Today's science and
mathematics applies little of RAM-based methods and of logical
methods more generally. Even in CS and software engineering the
role of logical approaches appears rather modest.
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Constructive Axiomatic Method and Knowledge Representatic

Conclusion 3 (continued)

CAM already has a better performance and a better record in this
respect. Its traditional informal version proved effective in
mathematics (Euclid) and physics (Newton, Clausius). Today's
proof-assistances such as COQ are CAM-based rather than
RAM-based. There are reasons to expect that CAM-based logical
methods (and perhaps HoTT more specifically) will apply in today's
science and technology (including IT) more effectively that the
standard RAM-based methods. In any event it is worth trying.
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Constructive Axiomatic Method and Knowledge Representatic

THANK YOU
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