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Abstract:

In his seminal address delivered in 1945 to the Royal Society Gilbert
Ryle considers a special case of knowing-how, viz., knowing how to
reason according to logical rules. He argues that knowing how to
use logical rules is not an instance of propositional knowledge. We
evaluate this argument in the context of two different types of formal
systems capable to represent knowledge and support logical reasoning:
Hilbert-style systems, which mainly rely on axioms, and Gentzen-style
systems, which mainly rely on rules. We build a canonical syntactic
translation between classes of such systems and demonstrate the cru-
cial role of Deduction Theorem in this construction. We show how the
standard model-theoretic conception of logical consequence supports
a reduction of knowing-how to knowing-that but argue that such a
reduction is untenable because this conception of consequence is not
appropriate in epistemological contexts. Finally we extend our anal-
ysis to the case of extra-logical knowledge-how and discuss a number
of open questions, which concern translations between knowledge-how
and knowledge-that in this more general semantic setting.
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1 Knowing-How without Anti-Intellectualism

1.1 Intellectualism and Anti-Intellectualism

In November 1945 Gilbert Ryle gave his Presidential Address to the Aris-
totelian Society [24], which produced a wide epistemological debate about
the concept of knowledge-how. This continuing debate [3] has been recently
summarized in the following words:

There are two main camps in the debate about the constituent
concepts of knowledge-how. One camp, intellectualism, argues
that knowledge-how involves propositional knowledge [...], whereas
the competing camp argues that knowledge-how does not involve
propositional knowledge - a view called anti- intellectualism. Ac-
cording to anti-intellectualists, whereas propositional knowledge
is a certain type of belief, knowledge-how consists in abilities,
skills, or dispositions [...]. [9, p. 2930]

Even if the titles of intellectualism and anti-intellectualism are often used
in this debate as mere labels pointing to certain accounts of propositional and
non-propositional knowledge, the choice of these words is not arbitrary. Ryle
calls the “intellectualist legend” an epistemological thesis that all knowledge
is knowledge-that, i.e., a knowledge of certain proposition or class of proposi-
tions. He argues that this view of knowledge leaves aside a sort of knowledge
needed for various actions such as riding a bicycle or making logical infer-
ences (more on this last example below), i.e., knowledge-how. Ryle’s use of
word “intellectualist” has a clear pejorative connotation: intellectualists are
people who know a lot but are incapable to undertake an action.

1.2 Rules and Sentences.

As we shall now argue this Ryle’s terminological decision is not simply unfor-
tunate but reflects a genuine conceptual confusion, which continues to affect
the epistemological debate on knowing-how up to the present.

One issue, which is central in this debate, is the distinction between
knowing a proposition and knowing how to act. Another issue, which is
widely discussed as a part of the same debate, is the distinction between
tacit and explicit knowledge. The popular example of knowing how to ride
a bicycle instantiates both these features: it is a knowledge-how and it is
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tacit because even an experienced rider usually cannot explain in words how
she rides a bicycle and cannot transfer this knowledge to another person
by linguistic means. Nevertheless it is wrong, we claim, to generalize upon
this and similar examples of tacit knowing-how. The two aforementioned
distinctions should be analyzed separately. The idea behind the term “anti-
intellectualism” according to which the knowledge-how, generally, has an
intrinsic tacit character (unless it is represented in a propositional form) is
misleading. To see this consider another example of knowing-how that Ryle
uses in the same paper, viz., the case of one’s knowing how to reason logically.
Ryle introduces this example via the following imaginary dialogue:

[T]he intelligent reasoner is knowing rules of inference whenever
he reasons intelligently’. Yes, of course he is, but knowing such a
rule is not a case of knowing an extra fact or truth ; it is knowing
how to move from acknowledging some facts to acknowledging
others. Knowing a rule of inference is not possessing a bit of extra
information but being able to perform an intelligent operation.
Knowing a rule is knowing how. (The emphasis is added by the
authors.) [24, p. 7].

Just like a proposition a rule of logical inference allows for an explicit
linguistic expression — either in a natural language in the form of imper-
ative sentence or in a symbolic logical calculi in the form of syntactic rule.
A competent reasoner who makes an inference according to certain rule R
(say, the rule of modus ponens), and is aware about this fact, instantiates
a case of explicit knowing-how. Rule R expressed linguistically or symboli-
cally represents one’s knowledge of how to act according to this rule in the
same sense in which a sentence may represent one’s knowledge of the propo-
sition that this sentence expresses. Clearly, logic is not the only domain
where explicit rules play a role. Explicit rules are abundant in games, social
and political life, technology and in many other domains. Representation of
knowledge-how in the form of rules and instructions is a way of making this
knowledge explicit. Learning how to act according to linguistically expressed
formal rules and instructions is, at least partly, an intellectual activity. This
is why, in our view, the title of “anti-intellectualism”, which refers to the
allegedly tacit character of knowledge-how, is not an appropriate name for
the view according to which knowledge-how is epistemically significant and
not reducible to propositional knowledge.
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It is generally agreed that knowing a proposition involves such a proposi-
tional attitude as belief. What sort of attitude or relation an epistemic agent
needs to hold to a given rule in order to qualify as a competent knower of this
rule? One the one hand “[a] silly pupil may know by heart a great number
of logicians’ formulae without being good at arguing.” [24, p. 7]. It is clear
that knowing a rule by hart doesn’t imply its knowledge — just like knowing
a sentence by hart doesn’t imply knowledge. One’s understanding of a rule
and willingness to implement it doesn’t imply one’s knowledge of this rule
in Ryle’s intended sense either. On the other hand, “[t]he sharp pupil may
argue well who has never heard of formal logic.” (ibid.) just like a bird
may fly well without knowing aeromechanics. In this latter case, which Ryle
qualifies as a proper instance of knowledge-how, the relation between a rule
and a knower doesn’t involve the knower’s awareness (or at least linguistic
awareness) of the rule. If such a relation between the rule and the agent also
counts as the agent’s knowledge of the rule (which is controversial), such sort
of knowledge-how should be distinguished from one, which requires that the
agent is aware of the rule and implements it intentionally.

Thus the answer to the above question hardly has a single answer: there
are different possible epistemic relations and attitudes to rules, which give rise
to different sorts of knowing-how. In this paper we shall not further explore
such different relations and attitudes and shall not try to represent them
formally. Instead we shall study the mutual roles of rules and sentences in a
large class of formal symbolic calculi and, assuming that rules and sentences
may represent the corresponding two sorts of knowledge, viz., knowledge-how
and knowledge-that, we make on this basis some epistemological conclusions.
In particular, in this way we shed some new light on the widely discussed
question of whether or not knowing-how in some sense reduces to knowing-
that [26], [3].

2 Two Styles of Axiomatic Thought

In this Section we introduce the standard informal distinction between the
so-called Hilbert-style and Gentzen-style symbolic calculi and then explain its
relevance to the epistemological debate on knowing-how and knowing-that.
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2.1 Hilbert-Style

The standard modern notion of axiomatic theory stems from David Hilbert’s
seminal work in foundations of geometry [10]. The idea here is to gener-
ate the intended theory T from a list of axioms Ai by inferring from the
axioms further propositions called theorems. More precisely, axioms in this
setting are propositional forms, which become full-fledged propositions under
an interpretation, which is an assignment to non-logical terms of Ai certain
semantic values borrowed from other theories or, less formally, simply from
the “world out there” . In his later joint work with Ackermann Hilbert ap-
plies the same axiomatic approach to logic itself and presents it in a form of
symbolic calculus via a list of axioms (which in this case are tautologies) and
syntactic rules, which generate from the axioms all other tautologies [11].

Hilbert never explicitly elaborated on the concept of logical inference
but it is plausible that at least in his most influential [10] he had in view
a prototype of the model-theoretic truth-conditional semantical concept of
logical consequence later made explicit by Alfred Tarski [27]:

Definition 1 Propositional form B is a logical consequence of propositional
forms A1, . . . , An iff every interpretation I of the given language, which makes
A1, . . . , An into true propositions AI

1, . . . , A
I
n makes B into true proposition

BI , in symbols A1, . . . , An |= B.

Notice that this conception of logical consequence does not involve that
of rule.

2.2 Gentzen-Style

In 1935 Hilbert’s associate Gerhard Gentzen published a paper [6] where he
argued that

The formalization of logical deduction, especially as it has been
developed by Frege, Russell, and Hilbert, is rather far removed
from the forms of deduction used in practice in mathematical
proofs. [6, p. 68]

and proposed an alternative approach to syntactic presentation of deductive
systems, which involved relatively complex systems of rules and didn’t use
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logical tautologies. In [6] Gentzen builds in this way two formal calculi known
as Natural Deduction (ND) and Sequent Calculus (SC).

Gentzen further remarks that

The introductions [i.e. introduction rules] represent, as it were,
the ’definitions’ of the symbol concerned. [6, p. 80]

This remark is seen today by some authors as an origin of an alternative
conception of logical consequence and alternative logical semantics more gen-
erally, which has been developed in a mature form only in late 1999-ies or
early 2000-ies and is known today under the name of proof-theoretic seman-
tics (PTS). It is instructive to compare Gentzen’s idea to use syntactic rules
as a form of implicit definitions with Hilbert’s use of axioms as implicit defi-
nitions. The two approaches may appear to be very similar but in fact they
are not. Think of the usual axioms of Group Theory. These axioms serve as
a definition of the group concept in the following sense: any structure, which
satisfy the axioms, i.e., is their model, is a group. The relevant concepts of
satisfaction and model have been made precise by Tarski and are now stan-
dard. But what kind of entity X can possibly “satisfy” a rule or a system
of rules, so one could claim that the rules “define” X in some reasonable
sense? How the satisfaction relation (if it can be used here at all) needs to
be construed in this case?

PTS provides some answers to these and other related questions [25], [4],
[20]; here we only highlight some key features of PTS, which are important
for our following discussion.

• Proof Theory referred to in PTS is not the proof theory in Hilbert’s
sense of the word [12] where a proof is identified with a formal derivation
and then made into an object of a meta-mathematical study, but the
General Proof Theory (GPT) due to Dag Prawitz [21], [22]. In a recent
paper Prawitz describes the difference between the proof-theoretic and
the standard truth-conditional approaches to semantics as follows:

[I]n contrast to a truth-conditional meaning theory, [in PTS]
one should explain the meaning of a sentence in terms of what
it is to know that the sentence is true, which in mathematics
amounts to having a proof of the sentence. [20, p. 5-6].
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This quote points to a strong conceptual link between PTS, on the
one hand, and intuitionisitc and constructivist approaches in logic and
foundations of mathematics, on the other hand. We shall explore this
link in Section 5.

• PTS is motivated by a broad philosophical view on meaning (and hence
on semantics), which is conventionally called “meaning-as-use”. This
view on meaning goes back to Wittgenstein and more recently has
been defended by Robert Brandom [1] under the name of inferential-
ism. Since PTS is a formal semantical approach the reference to “use”
amounts here to referring to syntactic rules, which specify the use of
symbols and symbolic expressions in logical calculi.

• PTS is not denotational: it does not assign entities to symbols. It as-
signs to symbols their meaning, which is not construed in this case as
an entity. The procedure of such an assignment is called after Martin-
Löf the meaning explanation and consists, roughly, of the explication of
computational content of logical constructions in terms of their build-
ing blocks, which are presented in a self-explanatory canonical form.
Martin-Löf compares a meaning explanation with a program compiler,
which translate a program written in some higher-level programming
language into a lower-level command language [17].

• The general PTS conception of logical consequence is as follows: B is
a logical consequence of A1, . . . , An iff there exists a proof of B from
assumptions A1, . . . , An. Further details depend on what exactly qual-
ifies as a proof. The standard approach here is to identify proofs with
derivations (and hence the logical consequence with the derivability) in
a suitable deductive system such as ND [18]. However a more nuanced
approach has been recently offered where a PST-based conception of
logical consequence is construed in more abstract terms and is distin-
guished from the derivability [5].

2.3 Comparison of the Two Styles

The difference between Hilbert-style and Gentzen-style formal systems is
usually described in the recent literature by saying that Hilbert-style systems
are typically presented by long lists of axioms or axiom schemes and only few
(typically one) rules, while Gentzen-style systems are presented by a small
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(possibly empty) sets of axioms and long lists of rules . This is a very
loose and informal description — as are the ways in which these titles are
actually used in logicians’ professional parlance. In order to be in a position to
describe the two axiomatic “styles” more rigorously we introduce in the next
Section the concept of (propositional) Hilbertian theory (Def. 11) which is
more narrow than what people may call a Hilbert-style propositional theory.
We shall not provide a complementary syntactic definition of Gentzen-style
theory because in what follows we use in its stead a general syntactic of
symbolic calculus (Def. 2). Since any axiom A can be straightforwardly read
as a rule of form ` A with the empty set of premises, at the syntactic level
Gentzen’s approach is more general than Hilbert’s. So we shall study the
place of Hilbert-style theories in this more general syntactic setting.

Tarski’s truth-conditional semantics and PTS do not depend directly on
syntactic details. Nevertheless both for historical and conceptual reasons
it is natural to associate the truth-conditional semantics with Hilbert-style
and PST with Gentzen-style. Such semantic assumptions, once again, are
stronger that the current use of titles “Hilbert-style” and “Gentzen-style”
may suggest. Authors often use these titles referring only to the syntax
without any semantic commitment. Our formal definitions in the next Sec-
tion are also purely syntactic, so in the formal part of the paper we don’t
go against the common language. However in the following epistemological
discussion the semantic aspects of the two axiomatic styles turn to be crucial.

2.4 Two Axiomatic Styles and the Debate on Knowing-
How and Knowing-That

We assume that axiomatic theory T represents a piece of knowledge; in other
words, we assume that T can be known by an epistemic agent. Since T ,
generally, comprises propositions (axioms and theorems) and rules of infer-
ence, we further assume that one’s knowledge of T splits accordingly into
a propositional (knowledge-that) and a procedural (knowledge-how) parts.
Since every non-trivial axiomatic theory comprises at least one rule of infer-
ence one’s knowledge of a theory always comprises a procedural part. But
in Hilbert- and Gentzen-style theories the procedural and the propositional
knowledge are distributed in different ways. A study of syntactic translations
between Hilbert- and Gentzen-style presentations sheds a light on the issue
of translatability of procedural knowledge into a propositional form and vise
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versa. The question of whether or not the procedural knowledge in some
reasonable sense reduces in a formal axiomatic setting to the propositional
knowledge is treated in Section 4.

3 Translation between the two axiomatic Styles

and the Deduction Theorem

In this Section we study the syntactic translatability between Hilbert-style
and Gentzen-style systems and show the role of Deduction Theorem. This
material is by and large standard but in the view of our epistemological
purpose we present it here in a more general form than usual.
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3.1 Hilbertian Theories

Definition 2 Symbolic calculus comprises:

• alphabet of symbols;

• a set of words wi built with the alphabet;

• a set of rules ri of form w1, . . . , wk ` w, which derive word w from given
words w1, . . . , wk;

• set A (possibly empty) of axioms which are rules of special form ` w.

Definition 3 Propositional language is a calculus with a distinguished fi-
nite set of symbols called connectives, which includes connective “→”; other
symbols are called propositional variables.

Definition 4 Propositional theory is a set T of formulae closed under appli-
cation of the standard modus ponens (MP ) (other rules are allowed but not
required). Elements of T are called theorems of the given theory. The theory
is called axiomatic when it comprises a distinguished subset A ⊂ T of axioms
such that all theorems of T are derivable from the axioms via applications of
MP . The notion of derivation from a set Γ of hypotheses (denoted Γ `T F
or Γ ` F when there is no risk of confusion) is standard.

Definition 5 An axiomatic theory is called Hilbertian when it comprises as
theorems all formulae of the form KA,B and SA,B,C where

KA,B
.
= A→ (B → A)

SA,B,C
.
= (A→ (B → C))→ ((A→ B)→ (A→ C))

and has exactly one rule, namely MP .

3.2 Deduction Property

Definition 6 Theory T is said to have the Deduction Property (DP for
short) if Γ, F ` G entails Γ ` F → G for all Γ, F and G.

DP allows one to represent a rule A ` B by the implication A→ B, which
is a proposition. We assume that one’s knowledge how to derive B from A
is represented in this case, accordingly, by the knowledge that A implies B.
Our next Lemma shows that the concept of Hilbertian theory and that of
theory with Deduction Property are co-extensional:
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Lemma 7 An axiomatic propositional theory is Hilbertian if and only if it
has the Deduction Property.

Proof :
“⇒“ (the “only if” part). The standard proof of the Deduction Theorem

[13].

“⇐“ (the “if” part). By the definition of derivation in propositional
theories we have A, B ` A. Using the deduction property twice we get from
the former formula ` A→ (B → A). Similarly, by using twice the deduction
property from A → (B → C), A → B, A ` C we get ` (A → (B → C)) →
((A→ B)→ (A→ C)). C

Lemma 7 says that the Deductive Property is a proper feature of Hilber-
tian theories (Definition 11), which other propositional theories do not pos-
sess. Among popular logical calculi without Deduction Property are many
versions of Quantum Logic [16]; another family of useful calculi without DP
has been more recently introduced in Computer Science [7], [8], [15].

3.3 Translating between the Two Styles

DP and Lemma 7 bear onto the distribution of propositional and procedural
knowledge within a Hilbert-style axiomatic setting. Our more general goal
is to understand how the procedural knowledge represented with a Gentzen-
style system may (or may not) translate into a Hilbert-style system and
vice versa. At the time of writing we don’t have the full answer to this
question in the form of necessary and sufficient conditions. Below we present
some partial results: we show that Hilbertian theories allow for a canonical
translation into a sequential form (Lemma 9 below) and then specify a class
of Gentzen-style systems which canonically translate into Hilbertian theories
(Lemma 10). We need a preliminary lemma:

Lemma 8 All axiomatic propositional theories have the following property
(rule (→`)): if Γ ` F and Γ, G ` H then Γ, F → G ` H.

Proof :
Given the two above derivations form the following sequence of formulae:

Γ ` F , F → G, Γ, G ` H. The sequence qualifies as a derivation Γ, F →
G ` H. (Some formulae may enter into this sequence more than once but
the definition of derivation does not rule this possibility out.) C
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From a Hilbertian theory to its sequential presentation:
Let T be a Hilbertian theory. Consider the following sequential calculus TG.
Sequences in TG are of form Γ⇒ F . Rules of TG comprise all structural rules
(axioms of form F ⇒ F , contraction, weakening and the cut rule). For each
axiom A of T there is the corresponding sequence ⇒ A in TG. Finally TG

has the usual rules for implication, namely:

Γ⇒ F Γ, G⇒ H
(→⇒)

Γ, F → G⇒ H

Γ, F ⇒ G
(⇒→)

Γ⇒ F → G

Lemma 9 Γ ` F in theory T if and only if sequence Γ⇒ F is derivable in
TG.

Proof:
“⇒“ (the “only if” part): Induction by Γ ` F . If F is an axiom of T or
member of Γ then Γ ⇒ F is derivable using structural rules. Given the cut
MP is admissible:

Γ⇒ A

Γ⇒ A→ B

Γ, A⇒ A→ B

Γ, A⇒ A Γ, A,B ⇒ B
(→⇒)

Γ, A,A→ B ⇒ B
(Cut)

Γ, A⇒ B
(Cut)

Γ⇒ B

“⇐“ (the “if” part): Translation that replaces all entries of⇒ by ` is sound
with respect to all rules of TG. See Lemmas 7,8. C

From a sequent calculus to a Hilbertian theory:
Let sequent calculus TG contain all structural rules and rules (→⇒), (⇒→)
are admissible in TG. TG may also contain other rules. Consider set

T = {F | sequence⇒ F is derivable in TG}

Lemma 10 T is a propositional Hilbertian theory

Proof : Axioms are all formulae of T . Since MP is admissible in TG, T
is closed with respect to MP . Formulae of forms (KA,B) and (SA,B,C) are
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elements of T because sequences ⇒ KA,B and ⇒ SA,B,C are derivable
using rule (⇒→) and the structural rules. C

Lemma 9 tells us that a Hilbertian theory admits a translation into a se-
quential Gentzen-style form, which preserves and reflects its deductive prop-
erties. Lemma 10 says that a sufficiently strong sequent calculus admits a
translation into a Hilbertian theory.

3.4 Richer Systems

The minimal setting where the Deduction Theorem holds (i.e., which has
the Deduction Property) is the minimal logic ML, which comprises only one
connective →, all axioms KA,B; SA,B,C and one rule MP (compare Def. 11
above). So the question whether or not in a given theory T has DP is the
question of whether or not T interprets ML. Hilbertian theories interpret
ML fully and faithfully in the sense that every derivation in T has a pre-
image in ML. But if one adds to MP some further rules then DP, generally,
fails to hold as it happens, for example, in various systems of modal logic. In
some such cases DP can be forced by an appropriate correction of additional
rules. Thus the Deduction Theorem can be proved for usual First-Order
Logic if one uses a convention according to which the usual rule of universal
generalization with hypotheses

Γ ` P (x)

Γ ` ∀x.P (x)

applies only if Γ does not contain variable x in the free form. Without this
additional requirement DP fails to hold.

For these reasons the core content DP can be fully understood and studied
at the propositional level. Richer systems may have this property when
they are used in a restricted form, which is essentially a way to emulate the
propositional reasoning in such systems.

4 An Attempted Reduction of Knowing-How

to Knowing-That

In the last Section we have seen that Hilbertian theories allow for a smooth
passage from Hilbert-style presentation to Gentzen-style and vice versa. Does
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this property of Hilbertian theories allow for a full “reduction” of knowing-
how to knowing-that?

Any axiomatic theory deserving the name comprises at least one rule of
inference (usually MP ). Recall, however, that the Tarskian semantic concept
of logical consequence does not involve the concept of rule. This allows one
to think of rule A ` B (granting soundness of the given theory with respect
to its semantics) as a mere symbolic representation of relation A |= B, which
is a fact of the matter fully explained in terms of truth-conditions. Under
this reading formula A |= B stands for meta-theoretical proposition:

(SCA|=B): All models of A are models of B,

Accordingly, so the argument goes, knowledge of rule A ` B reduces to
knowledge of A |= B, which is propositional knowledge. Now we shall discuss
some details of this argument, reply to some possible objections and finally
present our own objection showing that the argument is invalid.

4.1 Carroll Paradox

Notice that an attempted replacement of rule A ` B by proposition A→ B
with a help of DP does not go through because it leads to an infinite regress
known as Carroll Paradox [2]:

A ` B if and only if ` A→ B
A, A→ B ` B if and only if A ` (A→ B)→ B
A, (A → B) → B ` B if and only if A ` ((A → B) → B) → B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where each application of DP increases the number of implication signs in
each formula by one 1. Since our proposed reduction does not rely on DP it is
immune to Carroll Paradox in this straightforward form. Indeed, SCA|=B is
not a theorem of the same theory T where A ` B belongs; SCA|=B belongs to
the model theory MT of T . But one may argue that in order to make use of
SCA|=B one needs to apply certain logical rules at the meta-theoretical level,
which once again opens Carroll’s infinite regress in a new form. To block this
objection it is sufficient to remark that one doesn’t need to think of MT as a

1Here we follow [24, p. 6-7]
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theory on equal footing with T ; in fact the above argument doesn’t require
that MT has any deduction structure at all. We can describe the proposed
propositional reduction in a clearer form by replacing the usual syntactic
notion of theory T by a semantic conception of theory TS which extends the
syntax of T with a single symbol |= and rule

(`|=) :
A ` B

` A |= B
;

Expressions of form A |= B stand in TS for propositions SCA|=B. Such ex-
pressions are sterile in the sense that they cannot be used in derivations
along with usual formulas (the use of syntactic rules in TS is restricted ac-
cordingly); their sole role is to make explicit the model-theoretic semantics of
derivations. We allow TS to comprise true sentences of form Γ |= B (and, in
particular, |= B : Gödel sentences) when T does not provide corresponding
derivations A ` B (` B). So we get a theory and its rudimentary model the-
ory in one pocket. Since the rudimentary theory in question is deductively
sterile such a combination doesn’t produce an inconsistency. Now the reduc-
tion of knowing-how (i.e., knowing rules) to knowing-that along the above
lines proceeds wholly within a single theory TS.

4.2 Logical Consequence and Logical Inference

The model-theoretic conception of logical consequence has a number of fea-
tures, which makes it vulnerable to an epistemological critique. Prawitz
argues that it involves a form of circularity and is uninformative [22, p. 67-
68)]. A part of the problem is that the extension of expression “all models
of theory T” is not precisely defined. Should one think here only about the
“real world models” developed in natural sciences, models borrowed from
other parts of mathematics or models built with a logically informed meta-
physical speculation? If one determines some domain D of all possible models
of T using another theory S then the above semantic construction of TS is no
longer self-sustained because now its semantic part is essentially determined
by theory S (which, generally, cannot be incorporated into TS as above on
pain of inconsistency). In that case a critic arguing that the model-theoretic
conception of logical consequence opens a regress will be right. There are
two ways of preventing this regress from being infinite. One option, is to
give theory S an exceptional epistemic status of being the universal theory
of most general features of the world (or even of all possible worlds). The
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traditional name of a theory, which may fit this description, is metaphysics.
Another option is to diversify the concept (but not the general conception,
which remains model-theoretic in all such versions) of logical consequence by
making it dependent on S. In this way one can conceive of, for example, of
Quantum Logic as an interpreted logical calculus, which represents symbol-
ically the corresponding special semantic notion of logical consequence that
draws on Quantum Physics.

However all these versions of the model-theoretic conception of logical
consequence leave the idea of an epistemic act (such as acknowledgement,
rejection, verification, falsification or questioning a proposition) outside of
logic proper and place it into the disciplinary domains of Psychology, Soci-
ology and other disciplines, which study the “context of discovery”. This
is why one who believes that the concept of epistemic act is fundamental
and regards logic as a normative discipline that tells one how to perform
such acts properly, cannot accept the idea that the model-theoretic concep-
tion of logical consequence provides a complete account of logical inference
2. For example, to the best of today’s mathematical knowledge the relation
of model-theoretic logical consequence ZFC + U |= FLT where ZFC + U
is a strengthened version of Zermelo-Fraenkel Set theory [19] and FLT is
Fermat Last Theorem, holds. However this model-theoretic relation by itself
does not constitute a proof of FLT and does not validate the inference from
ZFC + U to FLT . Recall that under the PTS-based conception of logical
consequence FLT counts as a consequence of ZFC + U only when there
exists a proof of FLT from axioms of ZFC + U used as assumptions.

The two conceptions of logical consequence represent the two opposite
sides of a genuine philosophical controversy about the nature and the scope
of logic. The model-theoretic conception is associated with a view on logic
as a tool for managing truths and falsities disregarding the question of how
these things are known. The proof-theoretic conception is associated with a
view on logic as an epistemic tool providing norms and techniques of proof.
However in order to evaluate the argument given in the beginning of this
Section we don’t even need to go deep into this controversy. This argument

2

[K]nowing . . . a rule [of logical inference] is not a case of knowing an extra
fact or truth ; it is knowing how to move from acknowledging some facts to
acknowledging others. [24, p. 7]
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supports the claim according to which knowledge-how is a special case of
knowledge-that and thus is epistemological in its character. At the same
time it essentially uses a formal logical semantics, viz., the model-theoretic
semantics, which deliberately leaves epistemological issues aside. As soon as
this semantics is used in an epistemological argument it must be evaluated
from an epistemological viewpoint in its turn. But when one considers the re-
lation of logical consequence from an epistemological viewpoint one comes up
with a different logical semantics, viz., the proof-theoretic semantics, which
no longer supports the argument. This shows that the purported reduction
of knowledge-how to knowledge-that does not go through. Knowing a logical
rule does not reduce to knowing a proposition via the model-theoretic seman-
tic account of logical consequence because this account of logical consequence
is not appropriate for answering epistemological questions. Saying this we
do not claim that this standard notion of logical consequence is incoherent
and cannot be used for some other purposes.

5 Constructive Theories

The explicit form of knowing-how, i.e., knowing how to follow certain formal
rules, is not limited to logic. In this Section we extend our analysis beyond
the “logical” knowing-how, i.e., knowing how to make logical inferences. No-
tice that in the preceding part of the paper we did not apply any formal
criterion of logicality. The syntactic part of our analysis did not involve
anything (except some traditional names), which made it specific to logic.
Now we shall consider some non-logical interpretations of the same or sim-
ilar syntactic constructions. For a suggestive example, which demonstrates
this approach, think of Kolmogorov’s calculus of problems CP [14]. Syntac-
tically CP is identical to the standard intuitionistic propositional logic but
has a different intended semantics known as BHK semantics. This semantics
is not logical or at least not logical in a narrow sense of the word: formu-
lae represent here problems rather than propositions. Following [23] we call
hereafter formal theories, which comprise rules for non-propositional objects,
constructive theories.
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5.1 Constructive Deduction Theorem

Let T be a Hilbertian theory. We associate now with T a typed sequential
calculus CT , which is more apt to standard PTS-style constructive inter-
pretations than the sequential calculus TG from 3.3 above. We prove the
deductive equivalence between T and CT (Lemma 12) and, finally, prove
for CT a “constructive version” of Deduction Theorem (Theorem 13), which
gives us some insights about extra-logical forms of knowing-how.

Definition 11 CT comprises:

• Types of CT are all formulae of T ;

• With each axiom A of T associate constant cA, which we interpret as the
trivial derivation of A in T . In the cases of axioms (KA,B) and (SA,B)
we use the established notation and denote the corresponding constants
as kA→(B→A) and s(A→(B→C))→((A→B)→(A→C)) omitting the upper index
when this cannot cause a confusion.

• Terms of CT correspond to derivations in T ; these terms are built from
variables and constants with a single binary operation (multiplication),
which is an application of rule MP . Each such term determines a
unique binary tree such that its internal nodes are marked by MP
and its leaves (??) correspond either to T -derivations of axioms or to
variables. Rules of CT specify when this tree is the correct tree of
derivation from hypotheses in T .

• Sequences of CT are expressions of form

x1:F1, . . . , xn:Fn ` t:F,

where x1, . . . xn are mutually different variables, F1, . . . Fn, F are types
(formulae) and t is a term. Sequences determine the same trees but
comprise an additional markup: they put label F to the root and attach
mark Fi to each leave xi , which signifies that xi is a variable over
derivations of formula Fi). The obtained tree can get new isolated
nodes marked by variables, which are not elements of term t; leaves,
which are not in the list x1, . . . xn may remain unmarked.

• Axioms and rules of CT :
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– x1:F1, . . . , xn:Fn ` cA:A, where A is an axiom of T ,

– x1:F1, . . . , xn:Fn ` xi :Fi,

–
x1:F1, . . . , xn:Fn ` u: (F → G) x1:F1, . . . , xn:Fn ` v:F

x1:F1, . . . , xn:Fn ` (u · v):G
.

Lemma 12 Every derivable sequence x1 : F1, . . . , xn : Fn ` t : F in CT
corresponds to a unique derivation F1, . . . Fn ` F in T. Each derivation
F1, . . . Fn ` F in T corresponds to a unique term t such that its associated
sequence x1:F1, . . . , xn:Fn ` t:F is derivable in CT .

Proof : Induction by derivations.
Remark: When variable xi is not an element of t the introduction and the
elimination of declaration xi : Fi to/from the given context does not affect
the derivability of the sequence. These operations correspond to introduction
and elimination of hypothesis, which is not used in the derivation.

Theorem 13 (“Constructive” Deduction Theorem or CDP) If sequence x1:
F1, . . . , xn: Fn, x: F ` t : G is derivable in CT , then there exists term u such
that sequence x1:F1, . . . , xn:Fn ` u: (F → G) is also derivable.

Proof: This follows immediately from Lemma 12 and the standard Deduction
Theorem. In Appendix 1 we provide a direct proof, which is instructive
because it makes explicit the computational content of Theorem 13.

The standard PTS-style constructive reading of Theorem 13 is as follows:
if in the given context one is in a position to produce from a given token x
of type F a new token t of type G then one is also in a position to produce
in the same context a token u of type F → G, i.e., a method of producing
tokens of G from tokens of F . In this framework “method” u is an object on
equal footing with tokens of other types such as F and G. Here is a dummy
example: if one knows how to produce porridge from oat one also knows how
to produce a method of cooking porridge from oat - say, in the form of written
recipe. This property of Hilbertian systems can be very useful in applications
but at the same it would be unreasonable to expect that everyone who knows
how to cook porridge also knows how to write cooking books!

21



5.2 Tacit Knowledge Revisited

The constructive Deduction Property sheds some light on the issue of the
allegedly “tacit” character of knowing-how in many practical examples such
as that of riding a bicycle. So far we called knowledge-how explicit when
it involved knowing certain explicitly written rules. Let us now change this
vocabulary and assume for the sake of the argument that in a given symbolic
calculus, which is supposed to represent some bulk of knowledge, all syntactic
rules are hidden from view while all its formulae (words) are observable. Let
us now call one’s knowing of rule

Γ, v :V ` w :W

explicit only if it translates into the the form

u : (V → W )

(in the sense that the given calculus is Hilbertian and hence Γ, v :V ` w :W
entails Γ ` u : (V → W ); otherwise we call this knowledge tacit . Using these
terms we shall now call tacit one’s knowledge how to cook porridge if this
person is unable to write a recipe, and call the same knowledge-how explicit
if this person also has this extra capacity. At the syntactic level the difference
between the two forms of knowing-how corresponds to the difference between
the calculi, which do have and do not have the Deduction Property. As it has
been already shown in Section 3 there is no good reason to expect that all
symbolic calculi, which represent certain useful knowledge-how in the form
of system of rules, have the Deduction Property.

5.3 Which Rules are Logical?

Let C be a sequential calculus interpreted in some constructive terms, which
satisfies conditions of Lemma 10 from 3.3. According to this Lemma C ad-
mits a syntactic translation into Hilbertian form CH that comprises the single
rule MP . As far as one wants to interpret MP in the usual logical sense
of modus ponens one has to interpret formulas in CH as propositions. This
points to a possibility of translating constructive theories into Hilbert-style
axiomatic theories which comprise no extra-logical rules. A historical exam-
ple of such a translation is Hilbert’s semi-formal axiomatization of Euclidean
geometry [10]. It translates Euclid’s Postulates, which are extra-logical geo-
metrical rules (of how to produce a straight segment from given two points
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and other) into a convenient propositional form [23]. There is a general con-
sensus that Hilbert’s axiomatic presentation of Euclidean geometry, which
gets rid of Euclid’s extra-logical rules and in this way makes Euclid’s geo-
metrical proofs “purely logical”, somehow makes this mathematical theory
more rigorous. However formal details of this procedure and the total score
of related epistemic gains and losses remains rather unclear. Since such a
translation essentially involves logical and extra-logical semantics it cannot
be fully analyzed in syntactic terms. We leave a study of semantic aspects
of such translations for our further research.

6 Conclusion

Following Ryle’s remark that “Knowing a rule is knowing how” [24] we ar-
gued, on the contrary to a popular opinion, that knowing-how does not have
an intrinsically tacit character but in many cases allows for an explicit repre-
sentation in the form of formal rules. This holds both for natural languages,
which allow one to formulate rules and related deontic expressions, and formal
languages where rules are represented symbolically and play an important
role in the architecture of formal calculi. Leaving natural languages aside
we reviewed two “styles” of building formal systems one of which employs
few rules and an many axioms (the Hilbert-style) while the other employs
complex systems of rules and may use no axiom (the Gentzen-style). Using
some historical indications we construed the difference between the two styles
not only syntactically but also semantically by associating Tarski’s model-
theoretic semantics with the Hilbert-style and the proof-theoretic semantics
with the Gentzen-style.

In this context we introduced a syntactic definition of Hilbertian theory
(Def. 11), which reflects and narrows the informal idea of “Hilbert-style ax-
iomatic theory”, and proved a lemma (Lemma 7) that says that the concept
of Hilbertian theory is co-extensional with that of theory having Deduction
Property, i.e., a theory for which the Deduction Theorem holds. The De-
duction Property is of interest in the context of epistemological discussion
on knowing-how and knowing-that because there is a sense (which has been
made precise in the paper) in which it represents rule A ` B (and, as we
assume, the associated knowledge of how to follow this rule) in the form of
(knowledge of) proposition A→ B. We also studied how Hilbertian theories
can be syntactically translated into sequent calculi (i.e., in the Gentzen-style
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systems) and vice versa (Lemmas 9 and 10)
These preparatory steps allowed us to attack the question of whether

or not knowing-how in a reasonable sense reduces to knowing-that. First,
we considered the special case of logical knowing-how, i.e., knowing how to
make logical inferences. Our conclusion here is negative: while the model-
theoretic conception of logical consequence allows for seeing syntactic rules as
mere symbolic representations of the meta-theoretical propositions, in terms
of which the logical consequence is defined in this case, this conception of
logical consequence is inappropriate for solving epistemological problems and
thus cannot justify the wanted reduction. The proof-theoretic conception of
logical consequence, which is appropriate in an epistemological discussion,
does not allow for such a reduction.

Finally we considered a more general case of rule-based knowledge-how,
which includes knowledge-how outside logic. For this purpose we proposed
a canonical translation of Hilbertian theories into typed sequential calculi,
which are apt for extra-logical constructive interpretations. For such calculi
we proved the “constructive version” of Deduction Theorem (Theorem 13)
and proposed its informal interpretation in terms of knowing-how. In this
context we pointed to the open problem of semantic translations between
constructive and standard Hilbert-style axiomatic theories.

As a final remark we would like to stress that formal systems, which
admit proof-theoretic semantics, are natural candidates for the role of rep-
resentational tools for the procedural knowledge. Given the importance of
procedural knowledge in the Society one may expect that such systems can
have more applications in Knowledge Representation than they presently
have. There is apparently a general bias towards the Hilbert-style approach
in thinking about knowledge and reasoning in many areas from Philosophy to
Information Engineering. However philosophical questions about the nature
of knowing-how are answered there is no good reason to understate this type
of knowledge in the development of Knowledge Representation Systems and
other relevant applications. Moreover there is no reason to picture this type
of knowledge as somewhat “anti-intellectual”.

Appendix: Direct Proof of Theorem 13

We construct term u using the induction by steps of derivation of the sequence

x1:F1, . . . , xn:Fn, x:F ` t :G.
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Case 1: Axiom of the form (t : G = cA : A). Then u = kA→(F→A) · cA.
Observe that term cA contains no variable. Hence the sequence

x1:F1, . . . , xn:Fn ` cA:A

is also derivable. Then apply the rule

x1:F1, . . . , xn:Fn ` kA→(F→A): (A→ (F → A)) x1:F1, . . . , xn:Fn ` cA:A

x1:F1, . . . , xn:Fn ` (kA→(F→A) · cA): (F → A)

Case 2: Axiom of the form (t : G = xi: Fi, where x is not one of the xi).
Proceed as in Case 1; u = kFi→(F→Fi) · xi.

Case 3: (t :G = x:F ). In this case declaration x:F cannot be eliminated
from the context because t contains x. But in this case F = G, and so the
wanted term u is a Hilbertian proof of formula F → F :

(F → ((F → F )→ F ))→ ((F → (F → F ))→ (F → F )) scheme(S...)
F → ((F → F )→ F ) scheme(K···)
(F → (F → F ))→ (F → F ) (MP )
F → (F → F ) scheme(K···)
F → F (MP )

Thus we obtain the wanted term u = (s(...) · k(...)) · k(...) where the up-
per indexes are the first, the second and the forth lines of the Hilbertian
derivation.

Application of the rule: By the inductive hypotheses the following se-
quences are derivable:

x1:F1, . . . , xn:Fn ` v: (F → (X → G)),
x1:F1, . . . , xn:Fn ` w: (F → X).

Let u = (s(...) · v) ·w, where the type of the first factor is (F → (X → G))→
((F → X) → (F → G)). This guaranties that the product is well-typed in
the same context: the product (s(...) · v) is of type (F → X)→ (F → G) and
term u: (F → G) is as required. C
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