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Abstract. Equating objects with logical individuals is a way to get around the problem
of objecthood as it has been stressed by Cassirer in 1907. Using the rudimentary Category
theory and some hints from the history of 19th century geometry I propose a tentative
solution of this problem in the context of today’s Categorical mathematics.

1. Historical background

Following Frege many today’s philosophers (particularly from the Analytic tradition)
equate objects with logical individuals. For example, Charles Parsons describes his most
general notion of object as follows:

I will fix the way I wish to use the term “object” and simultaneously say
what I think useful in such abstract discussions [about objects in general
- A.R.] by saying that the usable general characterization of the notion of
object comes from logic. We speak of particular objects by referring to
them by singular terms [..]. [5], p. 3

This familiar promiscuous use of the term “object” (not only in the common talk but
also in the current philosophical literature) stands in sharp contrast with the way in which
this term has been used by Kant and his Neo-Kantian followers. For this latter category
of thinkers being an object always implies being represented in space and time. Equating
objects with individuals (as does Frege) destroys the fundamental Kantian distinction be-
tween (i) the transcendental logic, i.e., logic dealing with objects of possible experience,
and (ii) formal (or as Kant call it general) logic, i.e., logic dealing with all things indis-
criminately. I take it here for granted that any theory of objects, which does not involve
in some form this distinction between the two sorts of logic, cannot qualify as Kantian.
Thus the above terminological difference concerning the term “object” as it is used in the
Analytic and in the Kantian philosophical tradition reflects a fundamental difference in
how these two influential schools think about logic.

A reason why Kantian philosophy ceased to be a mainstream lays outside the domain of
speculative philosophy in the history of mathematics. The rise of Non-Euclidean geometry
in the 19th century made doubtful Kant’s original arguments which depended on the
(implicit) assumption according to which mathematics offers a unique notion of space,
namely Euclidean space. In this new context Kant’s original analysis of his contemporary
mathematics and mathematically-laden physics seemed to be no longer adequate to the
changed scientific landscape. At the same time the alternative approach offered by Frege,
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Russell and other early figures of the rising Analytic philosophy seemed more adequate and
more promising. In his important paper Kant and New Mathematics published in 1907
Cassirer criticizes Russell’s approach (and the name of logistics) as follows:

Here rises a problem that lies wholly outside the scope of “logistics” [..] All
empirical judgements [..] must respect the limits of experience. What logis-
tics develops is a system of hypothetical assumptions about which we cannot
know, whether they are actually established in experience or whether they
allow for some immediate or non-immediate concrete application. Accord-
ing to Russell even the general notion of magnitude does not belong to the
domain of pure mathematics and logic but has an empirical element, which
can be grasped only through a sensual perception. From the standpoint of
logistics the task of thought ends when it manages to establish a strict de-
ductive link between all its constructions and productions. Thus the worry
about laws governing the world of objects is left wholly to the direct obser-
vation, which alone, within its proper very narrow limits, is supposed to tell
us whether we find here certain rules or a pure chaos. [According to Russell]
logic and mathematics deal only with the order of concepts and should not
care about the order or disorder of objects. As long as one follows this line
of conceptual analysis the empirical entity always escapes one’s rational un-
derstanding. The more mathematical deduction demonstrates us its virtue
and its power, the less we can understand the crucial role of deduction in
the theoretical natural sciences.([1], p. 43)

As I argue elsewhere the problem stressed by Cassirer in the above quote still remains
wide open and becomes particularly pertinent in the context of the alleged “unreasonable”
character of the effectiveness of mathematics in today’s natural sciences [6], [7]. Leaving
further general discussion on this important issue aside I would like to propose in this paper
a sketch of object concept, which is of geometrical character (and thus doesn’t reduce to
the concept of mere logical individual) but unlike the traditional Kant’s object concept
doesn’t require the assumption about the special role of Euclidean geometry. This object
concepts issues from an application of mathematical Category theory to the history of
19th century geometry. I shall show how this modern apparatus allows one to reveal in
this history some interesting features, which have been missed by Russell and his modern
followers. The rudimentary Category theory used in this construction can be found at first
several pages of [3]

2. Objecthood and Categorical geometry

Given a surface one can think of it (i) in the usual way as a two-dimensional object
living in the Euclidean 3-space and (ii) as a 2-space on its own rights (characterized by the
intrinsic properties of the given surface), which is a home for its points, lines, triangles,
etc.. Generally, a geometrical object can be described as a map of the form s : B → C
where B is a type of the given object and C is a space where the given object lives and
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instantiates (or represents, which in the given context is the same) its type. This way of
thinking about spaces and objects in spaces can be represented by this diagram:

TY PE
object// SPACE

It is suggestive also to think about a general categorical morphism in this way. Since
we interpret all domains as spaces and all codomains as types these notions are relational
in the given context (each type serves as a space for incoming morphisms and each space
serves as a type for outgoing morphisms). I shall illustrate this way of thinking about
objects, spaces and types at some elementary geometrical examples.

I shall write EPLANE for Euclidean plane construed as a 2-space, and write eplane for
Euclidean plane construed as an object living in the Euclidean 3-space (ESPACE). Then
an eplane can be presented as a map:

EPLANE
eplane // ESPACE

Such maps are many (there are many planes in the space) but they all “are of” the same
type; this type in its turn is inhabited (as a space) by objects of different types:

CIRCLE
circle // EPLANE

A more interesting example I borrow from Lobachevsky [4]. Although Lobachevsky rea-
soned about the hyperbolic space intuitively without using Euclidean models he actually
used what in modern term can be described as a non-standard hyperbolic model of Eu-
clidean plane. Namely, he found in the hyperbolic space a special surface that he called
the horisphere and showed that intrinsically the geometry of this surface is the plane Eu-
clidean geometry. (This helped Lobachevsky to develop the hyperbolic trigonometry and
on this basis build an analytic model for his geometry.) Thus we have got an object of
type EPLANE that does not look like eplane:

EPLANE
horisphere// HSPACE

(HSPACE stands for hyperbolic space). We can see that the idea to classify geometrical
objects into types by their shapes and forms is misleading because it works only when
the background space is fixed. However one can learn about any geometrical type by
studying it intrinsically as a space, i.e., by studying objects of all types living in it. My
suggested approach (unlike Riemann’s approach) does not in any way privilege the intrinsic
description against the extrinsic one: the fact that a horisphere is intrinsically an Euclidean
plane (in the sense of being of type EPLANE) is just as significant as the fact that this
horisphere is an object in the hyperbolic 3-space (HSPACE): when one studies geometrical
objects there is, generally, no epistemic reason for privileging their types over their spaces
or privileging their spaces over their types.

The geometrical objects so construed are composeable in the obvious way. Here is an
example of composite object:
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CIRCLE
circle1//

circle2
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EPLANE
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ESPACE

In the given situation we tend to identify circle1 living on EPLANE with circle2 living
in ESPACE. However if ESPACE is projected back onto EPLANE and this projection
turns circle2 into an oval the difference becomes obvious.

Developing this toy categorical geometry it is suggestive to think about spaces as places
where objects meet:
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think about types as places where objects split:
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and think about the composition of objects as an operation that glues spaces and types
together:
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and thus form new objects capable for “self-representation”:
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Among such self-representing objects there is one that we call identity object and denote
1; the identity object is distinguished by the usual conditions ( f1 = f for each object f
represented in the same space, and 1g = g for each object g of the same type), which in the
given context are read as the conditions of being neutral with respect to the composition
of objects. Think about EPLANE for example. We know how EPLANE represents
objects of various types (circles, triangles and the like) and we also know how EPLANE
is represented in its turn in various other spaces. Now in order to make sense of saying that
all these representations are representations in and of the same thing one should think of
this thing itself as an object that represents itself in a way, which stabilizes the dynamics
of all inner (incoming) and outer (outgoing) representations.

The associative composition of objects and the above assumptions about the identity
objects makes these objects into a category, which I denote Geo for further references.
Although Geo does not qualify as a well-defined geometrical category [2] it provides a
suggestive way of thinking about categories geometrically and thinking about geometry
categorically. As a bonus we get here a reasonable general notion of object, which does not
involve any fixed representation space (like Euclidean space of Kant’s theory of objects).

As the reader may have noticed what in category theory is usually called morphism
I call object and what in category theory is usually called object I call identity object.
This suggested terminological change is not without a reason. The distinction between
objects and morphisms is useful in the structural mathematics because it helps to construct
categories from structures of certain types (like groups) and appropriate morphisms of these
structures (like group homomorphisms). Geo can be also construed in this way as the
category of differentiable manifolds and differentiable maps (assuming that differentiable
manifolds are construed as structured sets) or as some other similar category. However I
suggest a different way of thinking about Geo and about categories in general. Before I shall
try to clarify this different way of thinking let me remind that the usual distinction between
objects and morphisms of categories is formally dispensable: since with each object A of
given category C is associated a unique identity morphism 1A, one may formally identify
objects of C with their corresponding identity morphisms and thus consider objects as
morphisms of special sort. Thus, formally, a general category can be described as a class
of things called morphisms provided with a (partial) binary associative operation called
composition. I claim that the name of objects is more appropriate for these things than the
name of morphisms. Saying this I do not mean that any such thing can be called object in
the most general sense of the word used by Parsons [5]). Instead I have in mind a particular
notion of object, which implies that objects form categories. This way of thinking about
objects can be expressed by the slogan objects are maps.

One may wonder why I am not happy with the established mathematical terminology and
don’t want to get rid of the term “object” altogether and talk about maps or morphisms.
The reason is that the term “object” does not belong exclusively to mathematics but has
also a philosophical meaning. Although the proposed notion of object is not standard for
the 20th century philosophy and for the 20th century mathematics, as I have explained in
the last section, it is rooted both in an earlier philosophy and in an earlier mathematics.
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3. Conclusion

The principal modification of Kant’s original viewpoint, which I suggest, is the following:
while Kant assumed that all objects are represented in the same space I allow for represen-
tations in different spaces (making at the same time the very notion of space relational).
We have seen that the 19th century geometry provides us with relevant examples. The
example of Lobachevsky’s horisphere is particularly useful in this respect because it shows
that geometrical objects, generally, are determined not only by their types (i.e., by their
intrinsic properties) but also by spaces in which they are represented. We have also seen
that the modern mathematical notion of category provides a suitable framework for such
objects if one identifies these objects with morphisms of some category. Since the language
of Category theory is very general and covers most (if not all) of today’s mathematics,
the proposed categorical notion of object rooted in the 19th century mathematics and
philosophy can be considered as a tentative solution of Cassirer’s problem in the today’s
mathematical context. (More details can be found in my recent monograph [6], ch. 8.)
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