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Euclid, Hilbert and Functorial Semantics

Plan:
1) Euclid: Postulates and Axioms, Problems
and Theorems;

2) Standard framework for theory-building:
Hilbertian scheme. Frege-Hilbert controversy.

3) Critical arguments against Hilbertian
scheme: From sets and structures to
categories and functors.

4) Functorial semantics. Cnanging Lawvere's
views on foundations.

5) Sketch theory and the method of “generic
figures”: back to Euclid?

6) Consclusion
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1)Euclid's Elements

Is the theory of Euclid's Elements a deductive
theory (to be improved)?

YES, if any general method of obtaining
further theoretical content from assumed
first principles qualifies as deduction;

So understood deduction is the same as
generation according to some rules from a
given set of generators.

NO, if deduction is understood as logical
inference from axioms.

Different sorts of first principles in Elements:
Axioms and Postulates (and Definitions, which
I don't consider today)

(hereafter tr. Richard Fitzpatrick 2007)
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Postulates:
1. Let it have been postulated to draw a
straight-line from any point to any point.
2. And to produce a finite straight-line
continuously in a straight-line.
3. And to draw a circle with any centre and
radius.
4. And that all right-angles are equal to one
another.
5. And that if a straight-line falling across two (other)
straight-lines makes internal angles on the same side (of
itself whose sum is) less than two right-angles, then, being
produced to infinity, the two (other) straight-lines meet on
that side (of the original straight-line) that the (sum of the
internal angles) is less than two right-angles (and do not
meet on the other side).

Postulates are NOT first truths; they are NOT
propositions in Frege's sense: they do NOT
have truth-values. Notice the infinitive form
of verbs. "Deduction" from Postulates
(whatever this may mean) is NOT logical
(truth-preserving) inference. Dubious cases: 4
and 5 (Proclus)
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Common Notions [=Axioms: Aristotle]
1. Things equal to the same thing are also
equal to one another.
2. And if equal things are added to equal
things then the wholes are equal.
3. And if equal things are subtracted from
equal things then the remainders are equal.
4. And things coinciding with one another are
equal to one another.
5. And the whole [is] greater than the part.

Unlike Postulates Common Notions (Axioms)
are first truths; they are proposition in
Frege's sense (notice the copula); they can
be used as premises in proofs. Axioms hinge
upon the notion of equality.
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Proclus, Commentary on First Book of Euclid's
Elements, on distinction between Axioms and
Postulates:
"What axioms and postulates share in
common is the fact that they don't require
proofs <...> and serve as foundations for
what follows. Their difference is the same
as the difference between theorems and
problems. <...> A postulate requires to
invent and arrange some simple matter while
an axiom states some essential property well
known to listeners."

On Problems and Theorems:
"Problems are propositions where something,
which was not earlier given, is built, arranged
and exposed while theorems are propositions
where properties belonging or non-belonging
to a subject-matter under consideration are
learnt and proved. In a problem one is
supposed to produce, put, apply, inscribe,
describe, insert, touch, etc.. while in a
theorem one should connect and bind with
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the proof some properties belonging to
geometrical matter."

"A theorem is to be performed as an
assertion, for example "two sides of triangle
are greater than the third" or "angles at the
base of isosceles triangle are equal", while a
problem is to be performed as a question, for
example "is it possible to construct a triangle
on a given side?""

Postulates are first principles for Problems
while axioms are first principles for theorems?
Not really. For the two things are interwoven:
Problems and Theorems share a common
structure. This is a reason why Euclid doesn't
distinguish between them explicitly.
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"Every complete problem and theorem should
have the following parts:

[1] proposition,
[2] exposition,
[3] limitation,
[4] construction,
[5] proof,
[6] conclusion.

Proposition says what is given and what is
wanted. <...> Exposition takes the given and
prepares it for the search. Limitation
separates the wanted and clarifies what it is.
Construction adds to the given what it lacks
and prepares the search of the wanted. Proof
brings together what is present on the basis
of assumed premises. Conclusion returns to
proposition and confirms what is to be
shown."
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Example 1 (a problem): Proposition 1
•  "To construct an equilateral triangle on a given finite

straight-line.
•  Let AB be the given finite straight-line.
•  So it is required to construct an equilateral triangle on the

straight-line AB.
•  Let the circle BCD with centre A and radius AB have been

drawn [Post. 3], and again let the circle ACE with centre B
and radius BA have been drawn [Post. 3]. And let the
straight-lines CA and CB have been joined from the point C,
where the circles cut one another, to the points A and B
(respectively) [Post. 1].

•  And since the point A is the centre of the circle CDB, AC is
equal to AB [Def. 1.15]. Again, since the point B is the
centre of the circle CAE, BC is equal to BA  [Def. 1.15].
But CA was also shown (to be) equal to AB.  Thus, CA and
CB are each equal to AB. But things equal to the same
thing are also equal to one another [C.N. 1].  Thus, CA is
also equal to CB. Thus, the three (straight lines) CA, AB,
and BC are equal to one another.

•  Thus, the triangle ABC is equilateral, and has been
constructed on the given finite straight-line AB. (Which is)
the very thing it was required to do."
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Example 2 (a theorem): Proposition 6
•  "If a triangle has two angles equal to one another then the

sides subtending the equal angles will also be equal to one
another.

•  Let ABC be a triangle having the angle ABC equal to the
angle ACB.

•  I say that side AB is also equal to side AC.

•  For if AB is unequal to AC then one of them is greater. Let
AB be greater. And let DB, equal to the lesser AC, have
been cut off from the greater AB  [Prop. 1.3]. And let DC
have been joined [Post. 1].

•  Therefore, since DB is equal to AC, and BC (is) common,
the two sides DB, BC are equal to the two sides AC, CB,
respectively, and the angle DBC is equal to the angle ACB.
Thus, the base DC is equal to the base AB, and the triangle
DBC will be equal to the triangle ACB  [Prop. 1.4], the
lesser to the greater. The very notion (is) absurd [C.N. 5].
Thus, AB is not unequal to AC. Thus, (it is) equal.

•  Thus, if a triangle has two angles equal to one another
then the sides subtending the equal angles will also be
equal to one another. (Which is) the very thing it was
required to show. "
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Notice that proof is only one element of
problem/theorem among 5 others....

Beware of difference between deixis and
apodeixis in Greek; cf. verbs montrer and
demontrer in French or show and prove in
English. Aristotle's Syllogistics concerns
apodeixis but not the whole of deixis.

Can Postulates be interpreted as existential
propositions? In any event the resulting
theory will differ significantly from Euclid's.
Proclus' Platonic interpretation of Elements
according to which Postulates are first
principles of mathematical Becoming while
Axioms are first principles of mathematical
Being applies more smoothly. It assumes
Platonic distinction btw Being and Becoming
and Platonic notion of mathematics as
intermediate between sensibilia and pure
ideas.
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Aristotle's notion of science as a body of
proposition obtained through logical inference
from axioms provides a poor grasp of (his
contemporary) mathematics.

The theory of Elements combines two
different principles of generation of new
propositions from the first principles; one for
Postulates and the other for Axioms. The
latter works only for proofs in the restricted
sense. The two are deeply interwoven.

2) Standard view: Hilbertian scheme
Frege's notion of theory is similar to
Aristotle's (albeit his logic is different): a
body of propositions derived logically from
certain axioms. No distinction btw axioms and
postulates. In particular this applies to
Geometry as a science of space. Geometrical
axioms are justified by intuition and validity of
inferences is justified by rules of Logic. (The
case of Arithmetic, according to Frege, is
essentially different since Arithmetic is just as
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universal as Logic and arguably makes a part
of it.) Truthfulness of geometrical axioms in
Frege's view guarantees consistency of
Geometry.

Frege, On foundations of geometry (a critical
review of Hilbert's Grundlagen der
Geometrie) :

"[W]hat is called an axiom is a thought whose
truth is certain without, however, being
provable by a chain of logical inferences.
Logical laws, too, are of this nature. <...>
Axioms do not contradict one another, since
they are true."

Frege rejects Hilbert's notions of "formal"
theory and of interpretation of formal theory
arguing that unless the meaning of a given
mathematical statement is fixed it doesn’t
have any definite truth-value and hence
doesn’t count as a proposition (and in
particular cannot count as an axiom).
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Here is Hilbert's reply:

"You say that my concepts, e.g. "point",
"between", are not unequivocally fixed <...>.
But surely it is self-evident that every theory
is merely a framework or schema of concepts
together with their necessary relations to one
another, and that basic elements can be
construed as one pleases. If I think of my
points as some system or other of things,
e.g. the system of love, of law, or of chimney
sweeps <...> and then conceive of all my
axioms as relations between these things,
then my theorems, e.g. the Pythagorean one,
will hold of these things as well. In other
words, each and every theory can always
be applied to infinitely many systems of basic
elements. For one merely has to apply a
univocal and reversible one-to-one
transformation and stipulate that the axioms
for the transformed things be correspondingly
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similar. Indeed this is frequently applied, for
example in the principle of duality, etc."

Notice a common point of Frege and Hilbert:
weak logicism (mathematical propositions are
obtained through pure logical deduction from
axioms). Frege's approach doesn't work.
Formalism is the price for the weak logicism.
The "contentual" mathematics is pushed out
into models.

From sets as "systems of things" to
Axiomatic Set theory.

Metatheory of sets.

Carnap 1947, Formalization of Logic: syntax
and semantics

Model theory
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3) From structures to functors, from sets
to categories

Why Hilbert's talk of "scheme", "form" and
"interpretation"? Standard answer:
recognition of structures. Think of Euclid's
theory of proportions developed separately
for magnitudes (Books 5-6 of Elements) and
for numbers (Books 7-9) and the lack of any
account of their obvious similarity.
In Greek mathematics this account is pushed
out into a "universal mathematics", which is a
metatheory about mathematics. Proclus,
Commentary on Euclid:

"One shouldn't think after Erathosthenes that
Proportion unifies Mathematics. For
Proportion is only one thing shared in
common by mathematical sciences. The
mathematical sciences have many other
features belonging to their common nature.
Mathematical sciences are unified by the one
indivisible Mathematics, which grasps
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foundations of all particular sciences in their
simplest form and considers their differences.
<...> However yet at a higher level
mathematical sciences are unified by
Dialectics."

Notice, however, that there is NO "univocal
and reversible one-to-one transformation"
(Hilbert) between numbers and magnitudes
required by Hilbertian scheme...

Categoricity Problem: Hilbertian scheme
assumes that possible models of a given
formal theory are isomorphic. But generally
they are not. Hence the pursuit of
categoricity. When it doesn't work (like in
case of ZF) people often appeal to the notion
of "standard" or "intended" model, which has
no precise mathematical meaning. So intuitive
considerations strike back! Hilbertian scheme
doesn't work as it is supposed to.
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A deeper reason of Categoricity Problem:
Hilbert has two very different notions of
interpretation in mind. First, he thinks of
interpretation of a given formal theory as an
appropriate intuitive content, which can be
associated with it. This is a philosophical,
psychological and pedagogical issue but not a
mathematical one. (Do different people
imagine Euclidean circles differently?) Second,
he thinks about a model M of a given formal
theory T as a specific construction made
within another theory T' (supplied by some
working model M'). Hilbert's non-trivial
mathematical examples are of this second
kind. Think of arithmetical models of
geometrical theories mentioned in Hilbert's
Grundlagen.   

Claim 1: There is no sufficient reason to treat
both notions of interpretation on equal
footing. This is a confusion of two very
different things.
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Argument:
I leave now the issue of intuition aside. But
the second kind of interpretation can be
better understood as a translation (map,
morphism) between theories T and T' , i.e.
interpretation of the theoretical content of T
in terms of T'. This revised notion of
interpretation (=translation) cannot be
extended to the case of intuitive content
(Hilbert's first kind of interpretation) because
the intuitive content alone doesn't form
anything like a theory.

Claim 2:
Hilbertian distinction between mathematics
and meta-mathematics is not justified.

Argument:
The usual way to treat translation T-->T' as
interpretation in the first (intuitive) sense  -
to qualify deliberately T' as a meta-theory
and on this ground to leave it out of
mathematical consideration - in certain cases
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it leads to sheer epistemic absurdities (cf.
Lobachevsky's "non-standard" model of Plane
Euclidean geometry).

Claim 3:
Mathematically significant translations (maps,
morphisms) between theories are generally
non-reversible, i.e. not isomorphisms.

Argument:
Otherwise, according to Hilbertian criteria,
they are auto-translations of a given theory
into itself. Non-trivial reversible auto-
translations exist (cf. Hilbert's example of
Projective Duality) but are rare. One shouldn’t
generalise upon this Hilbert's example.

Remark:
Talking about arithmetical models of
geometrical theories Hilbert, of course, didn't
mean to identify Geometry with Arithmetic.
But he thought he could "carve out" a
specific arithmetical construction from its
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ambient theory and consider it (with
appropriate arithmetical laws) as a self-
standing embodiment of a geometrical
theory. This is not justified. The construction
cannot survive outside its proper theoretical
framework.

Claim 4:
Hilbertian scheme doesn't survive the
replacement of isomorphisms by general
morphisms.

Argument:
Given reversible map A<-->B one can think of
A, B "up to isomorphism" and identify both A,
B with a new "abstract" or "formal" object C.
So differences between A and B can be
dispenced with. This is possible because the
existence of isomorphism is an equivalence
relation, and C stands for a particular
equivalence class by this relation. But the
existence of general morphism A-->B is NOT
an equivalence relation, so nothing similar
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applies to the general case. Given general
morphism A-->B there is no sense in which
the difference between A and B might not
matter; there is no way to stipulate in this
situation a new "formal" object C like in the
special case of isomorphism (or in some
similar way).

Remark:
Hilbertian Structuralist setting allows for a
rigorous definition and treatment of the
general notion of morphism. I mean the
structuralist notion of morphism as a
structure-preserving map. However this
framework is based on a "preference" of
isomorphisms to begin with. For the very
notion of structure requires the kind of
thinking exemplified by the above quote from
Hilbert's letter to Frege. Thinking about
morphisms as structure-preserving is
misleading.
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Claim 5:
Set theory is a natural framework for
applications of Hilbertian scheme (or a part of
i t).

Argument (hint):
Any correspondence between two given
elements of two given sets is (intuitively)
reversible. In Set theory the notion of non-
ordered pair is primitive but the notion of
ordered pair is derived (construed). In this
sense non-reversible correspondences
between sets (i.e. functions) and maps
between "structured sets" are accounted for
in terms of elementary isos (i.e. pointwise).

Claim 5:
Category theory as a general theory of maps
is a natural framework for the generalisation
of Hilbertian scheme I'm pointing to.

Argument:
Presently we don't have any other proposal.
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4) Functorial semantics; Lawvere on
foundations.  

Functorial Semantics of Algebraic Theories"
(Thesis of 1963, Author's Commentary of
2004)
Elementary Theory of the Category of Sets,
(1964)
The Category of Categories as a Foundation
for Mathematics (1966)
Foundations and Applications: Axiomatization
and Education (2003)

"Old" (non-Set-theoretic) Hilbertian approach:

"By a category we of course understand
(intuitively) any structure which is an
interpretation of the  elementary theory of
abstract categories ..." (Elementary Theory)
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Functions instead of epsilon:

"There is essentially only one category which
satisfies these ... axioms ... , namely the
category S of sets and mappings."
(Elementary Theory)

Here the equivalence of categories replaces
isomorphism but I don't see this change as
significant.

The idea of functorial semantics: models are
functors from a "syntactic" category
presenting a (formal) theory to the category
of sets.

Hilbertain (Tarskian) feature:
the idea of evaluation of a formal theory in
sets (building models out of sets).
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New features:

1) categorical syntax:

"We identify objects with their identity maps
and we regard a diagram as a formula which
asserts that A is the (identity map of the)
domain of f and that B is the (identity map of
the) codomain of f." (Functorial Semantics)

2) the requirement of categoricity doesn't
make sense and is given up;

3) logic is taken from the "background"
(internal logic)

" In the case of logical theories of all sorts
the most basic structure they support is an
operation of substitution, which is most
effectively viewed as a form of composition.
Thus, if we construe theories as categories,
models are functors! <...> But only for the
simplest theories are all functors models,
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because something more than substitution
needs to be preserved; again, miraculously,
the additional features of background
categories which were often expressible in
terms of composition alone via universal
mapping properties, turned out to have
precise analogs: the operations of disjunction,
existential quantification, etc. on
a theory are all uniquely determined by the
behaviour of substitution. Roughly, any
collection K of universal properties of the
category of sets specifies a doctrine: the
theories in the doctrine are all the categories
having the properties K; the mutual
interpretations and models in the doctrine are
just all functors preserving the properties K."
(Commentary)

3) blurring of the Hilbertian distinction
between theories and their models; a given
theory "turnes into" one of its models,
namely into a "generic" one:
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" [ T]here was the choice, which I now view as
anachronistic, of considering that an algebraic
theory is a category with coproducts rather
than with products. The "coproduct"
convention, which involves defining algebras
themselves as contravariant functors from
the theory into the background, indeed did
permit viewing the theory itself as a
subcategory of the category of models.
However, for logics more general than the
equational one considered here, such a direct
inclusion of a theory into its category of
models cannot be expected. The “product”
convention permits the concrete definition of
models as covariant functors from the theory;
thus the theory appears itself as a generic
model."
(Commentary)

At least a part of these non-Hilbertian
features explicitly appears only in
Commentary of 2004.
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In Foundations and Applications Lawvere
argues for Foundations of Mathematics
understood

"... in a common-sense way rather than in the
speculative way of the Bolzano-Frege-Peano-
Russell tradition".

5) Sketch theory: Back to Euclid?

Generic figures and their gluings by
Reyes&Reyes (2004):

Ex: Generation of category of graphs:
  t

C: V   A ; GRAPHS = (C, SET)
           s

Hom (_, V) and Hom (_, A) - representables

Yoneda embedding C -->(C, SET)
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Generic figures for GRAPHS are points
(vertexes) and arrows.

Remind that GRAPHS has internal logic, so it is
a genuine theoretical framework.

Sketch theory

Ch. Ehresmann, Esquisses et types de
structures algebriques (1968)
R. Guitart, On the Geometry of Computations
(1986)
M. Barr and Ch. Wells, Category theory for
Computing Science (1990), ch. 7&9.

Observation:
Given a small category C functor category (C,
SET) is a topos, and hence has "logical
properties" (internal logic). This allows for
constructions similar to Functorial Semantics
without assuming logical properties in C.
"Distinguished limits" (=axioms written in
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categorical syntax) are replaced by
distinguished cones; the requirement of
preservation of the distinguished limits (cf.
Lawvere's doctrines) is replaced by the
requirement that the distinguished cones turn
into appropriate limits in (C, SET).

Pedagogical/CS definitions (Barr&Wells):
1a) A linear sketch S is a pair (G,D) where G is
a graph and D is a set of diagrams in G (a
diagram is a graph homomorphism I --> G)
1b) A model of a linear sketch S in a category
C is a graph homomorphism m : G -->C such
that whenever d : I --> G is a diagram in D,
then md is a commutative diagram in C.

2a) A finite discrete sketch (G, D, L, K) where
G is a finite graph, D a finite set of finite
diagrams, L a finite set of finite discrete
cones in G and K a finite discrete set of finite
discrete cocones
2b) A model of a finite discrete sketch in a
category C is a model m of linear sketch (G,
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D) with an additional property that for any
discrete cone l : i --> G in L the composite ml
is a product cone and for any discrete cocone
k : j --> G in K the composite mk is a sum
cocone.

3a) A sketch S =(G, D, L, K) consists of graph
G, a set D of diagrams in G, a set L of cones
and a set K of cocones in G.
3b) A model m of a sketch S =(G, D, L, K) in a
category C is a homomorphism from G to the
underlying graph of C that takes every
diagram in D to a commutative diagram,
every cone in L to a limit cone and every
cocone in K to a limit cocone.    

Remark: Sketches have models although they
are not theories!
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Definitions (Guitart 1986):
1) An (abstract) sketch is a data S=(S, P, Y)
where S is a category, P is a family of
distinguished cones on S and Y is a family of
distinguished co-cones on S. A realisation R of
S is continuous and co-continuous functor
R:S-->SET (which sends every distinguished
(co-)cone from P (Y) to a (co-)limit (co-)cone
in SET.
2) A concrete sketch is a data S=(S, P) where
S is a graph and P is a family of distinguished
cones on (S, SET). A realisation R of S is a
functor R :S-->SET such that for all
p = (p i :V-->C i)  from P
Lim Hom(Ci , R) <--> Hom(V , R)

3) A category is naturally sketchable iff if it is
equivalent to (S, SET) with S a sketch.

Theorem (Guitart&Lair) :
A category X is naturally sketchable iff it is
equivalent to a category (S, SET) with S a
concrete sketch.
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Theorem (Barr&Wells):
Let S be a finite discrete sketch. Then there
is a category Th(S) called theory of S and a
model u : S -->Th(S) called universal such
that for any any model m : S --> C there is a
functor f : Th(S) --> C that preserves finite
products and finite sums for which
( i) fu = m
(ii) if f’ is another such functor then f’ is
naturally isomorphic to f.

Theorem (Barr):
Any finite product sketch has a model i called
initial such that there is precisely one functor
from i to every other model in the given
category of models.
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Ex.: a sketch for natural numbers

•  nodes: 1, n
•  cones with vertex 1 and empty base (this

implies that in any model m(1) is terminal
object)

•  arrows: zero:1-->n , succ: n-->n

1  zero     n succ
•  no diagrams
Initial model in a (n abstract) category:
natural number object, i.e. this diagram:

N succ N
zero
1 !f !f

g
A succ A

such that for any A, g there exist unique f
making it commutative.
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“Specifications in mathematics and computer
science are most commonly expressed using
a formal language with rules spelling out the
semantics. However, there are other objects
in mathematics intended as specifications
that are not based on a formal language.
Many of these are tuple-based; for example
the signature of an algebraic structure or the
tuple specifying a finite state automaton.
A sketch is another kind of formal abstract
specification of a mathematical structure; it is
based on a graph rather than on a formal
language or tuple.” (Barr&Wells 1990)

What is “formal and abstract” in a sketch?
Tentative answer: NOTHING
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Historical remark: Before Hilbert Mathematics
usually was not seen as formal science on a
par with Logic. Logic in its turn did not reduce
to formal logic.  Confusion of mathematical
and logical rigor with formal rigor occurred
only in 20th century. These things must be
properly distinguished.

Question: Are Euclidean "generic figures"
(Circle and Straight Line), Lawvere’s “generic
models” and sketches generic in a similar
sense?

Tentative answer: YES

Some proposals:
•  think of categorical constructions in terms

of postulates rather than axioms.
Example: given morphisms A-->B and B -->C
to produce morphism A-->C.
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•  Logic and truth-values may come about out
of specific constructions rather then the
other way round. In applications they can be
empirically- and pragmatically-based.

•  Abandon logical a priori after geometrical a
priori.

Problem:
How strong the background category must
be? Is the very notion of background indeed
indispensable in any reasonable categorical
setting?
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Some conclusions:
•  Reasonable foundations of mathematics

involve constructive principles over and
above "first truths". Logical truth-
preserving inference plays a role in
mathematical theories but can hardly be the
only generic principle for such theories. The
very idea of genericity appears to be more
viable.

•  Formal approaches shouldn’t be identified
with rigorous mathematical approaches. The
simplistic scholastic metaphysics of form
and content (form and matter) shouldn’t be
taken for granted in thinking about
mathematical matters.

•  Categorical logic and Sketch theory provide
a new way of thinking about mathematical
matters where the notions of form and
structure don’t play a major role. Structures
are specific categories rather than the other
way round.

•  This new way of thinking shares with
Euclidean thinking the idea of genericity.



39


