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Hilbert&Bernays 1934

The term axiomatic will be used partly in a broader and partly in a
narrower sense.We will call the development of a theory axiomatic
in the broadest sense if the basic notions and presuppositions are
stated first, and then the further content of the theory is logically
derived with the help of definitions and proofs. In this sense, Euclid
provided an axiomatic grounding for geometry, Newton for
mechanics, and Clausius for thermodynamics.
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Hilbert&Bernays 1934

[F]or axiomatics in the narrowest sense, the existential form comes
in as an additional factor. This marks the difference between the
axiomatic method and the constructive or genetic method of
grounding a theory. While the constructive method introduces the
objects of a theory [..], an axiomatic theory [in the narrow sense of
“axiomatic”] refers to a fixed system of things (or several such
systems) [i.e. to one or several models ].[..] This is an idealizing
assumption that properly augments the assumptions formulated in
the axioms.
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Hilbert&Bernays 1934

When we now approach the task of such an impossibility proof [=
proof of consistency], we have to be aware of the fact that we
cannot again execute this proof with the method of
axiomatic-existential inference. Rather, we may only apply modes of
inference that are free from idealizing existence assumptions.
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Hilbert&Bernays 1934

Yet, as a result of this deliberation, the following idea suggests
itself right away: If we can conduct the impossibility proof without
making any axiomatic-existential assumptions, should it then not be
possible to provide a grounding for the whole of arithmetic directly
in this way, whereby that impossibility proof would become entirely
superfluous?
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Hilbert’s answer is in negative because of his worries about infinity.
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Genetic aspects of FAM

Formulae-building, formal inferences. Genetic aspect is wholly
syntactic. Formulae are objects of a meta-theory, not of the
object-theory. A distinctive feature of FAM: limiting the
constructive aspect of the method to syntax (in order to save
infinities in semantics).
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Some reasons to be dissatisfied with FAM

(1) FAM does not apply straightforwardly in the mainstream 20th
c. maths. It serves for providing definitions rather than proofs.
Example: Group theory is a model theory of the axiomatic group
theory, i.e., the theory determined by the three group axioms.
Where models come from?
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Some reasons to be dissatisfied with FAM

(2) The impact of FAM on Set theory is unclear.
Example: The Independence of CH from ZF is well-established
mathematical fact; the proof of this theorem (Gödel-Cohen) is not
a formal axiomatic proof - notwithstanding the fact that this
theorem treats a formal theory, namely ZF as its object (its
subject-matter). This Independence result neither proves nor refutes
CH. It does not allow to rule out CH as ill-posed either (after the
example of Euclid’s 5th Postulate). The full-scale relativism about
mathematical statements is not consistent with the claim that the
Independence of CH from ZF is well-established.
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Some reasons to be dissatisfied with FAM

(3) The usual distinction between a theory and corresponding
meta-theory doesn’t make sense in the mathematical practice.
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Some reasons to be dissatisfied with FAM

(4) The 20th c. showed no significant progress in the
axiomatization of physics (Hilbert’s 6th Problem). During this
century FAM played no role at all in the mainstream research in
physics and other natural sciences.
This one, in my view, is the strongest reason (however in my book I
don’t focus on it).
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New-Old Genetic Axiomatic Method

Proof by (semantic) construction. Examples: (i) Euclid’s
geometrical proofs, (ii) Curry-Howard isomorphism and Categorical
logic.
Categorical logic and its geometrical interpretations bring us back
to Euclid, Newton and Clausius.
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New-Old Genetic Axiomatic Method

Genetic Axiomatic Method is Object-Oriented Axiomatics Method.
Compare the turn from Functional Programming to
Object-Oriented Programming. The latter comprises the former (?)
but is richer.
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Claim

Renewal of Genetic Method is an essential part of Categorical logic
in its historical development since late 1960ies. (See the case
studies below.)
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The idea of intrinsic geometry (Gauss-Riemann-Klein)
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Objects are maps

General situation:

TYPE
object // SPACE

Remarks:
Being a type and being a space are relational properties. Being an
object is non-relational property.
Each object is of particular type and lives in a particular space.
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Classical examples:

EPLANE
eplane // ESPACE

CIRCLE
circle1 //

circle2

��

EPLANE

eplanewwppppppppppp

ESPACE
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Non-classical examples (19th century):

HPLANE
pseudosphere// ESPACE

(Beltramy)

EPLANE
horisphere// HSPACE

(Lobachevsky)
Remark: Pseudosphere and horisphere are not types/spaces but
objects.
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Objects are maps

Objects of the same type look differently in different spaces:

HSPACE

EPLANE

horisphere
77ppppppppppp

eplane

''NNNNNNNNNNN

ESPACE

Objects of different types in the same space look always differently.
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Remarks

I (Historical) When it was understood that there is no unique
representation space for all objects a popular reaction was to
disregard the epistemic role of representation altogether and
reduce objects to abstract individuals (possibly belonging to
certain types). The true lesson of the 19th century geometry is
the relativity of representation but not its epistemic
insignificance.

I Different geometrical spaces are unified into a single whole
through mutual mappings, i.e., through their shared objects.
Objects link different spaces. This provides a geometrical
unification of the 19th century geometry (as distinguished
from its purely logical unification).
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Role of Categories

I Objects (as maps) typically form categories;
I Sufficiently rich categories allow for internal logic (which

reflects its object-building procedures);
I The internal logic of a given category is used for the axiomatic

building of this very category;
I Thus Category theory (including Categorical logic) serves as a

tool of renewed Genetic (object-oriented) Axiomatic Method.
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Analogy with geometry

Compare the conceptual shift from Gauss’ theory of curve surfaces
to Riemann’s general theory of (differentiable) manifolds: intrinsic
construction of manifolds; no fixed ambient space is needed.
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Analogy with geometry

Epistemically intrinsic and extrinsic properties of a given manifold
are to be treated on equal footing. In the language of arrows the
intrinsic properties are expressed by incoming morphisms while the
extrinsic properties are expressed by outgoing morphisms (in
particular, by embeddings into outer spaces). A given type/space is
characterized by morphisms of both sorts.
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Analogy with geometry

However there is a sense in which any given space can be fully
characterized intrinsically. In that sense the Euclidean Planimetry
fully describes EPLANE as a space. Extrinsic properties of EPLANE
reveal themselves when the EPLANE embeds into ESPACE,
HSPACE, etc.
Traditional essentialism requires to fix intrinsic properties first and
study extrinsic (relational) properties afterwards. I do not endorse
this view.
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Topos theory
Homotopy Type theory

Claim

Lawere’s axiomatization of Topos theory and Voevodsky’s
axiomatization of Higher Homotopy apply NAM rather than FAM.
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Topos theory
Homotopy Type theory

Lawvere and Lambek 1969

The structure behind the Curry-Howard isomorphism is precisely
captured by the notion of Cartesian closed category (CCC), which
is an (abstract) category with the terminal object, products and
exponentials.
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Topos theory
Homotopy Type theory

Historical remark

Foundational consideration played a crucial role throughout the
history of the subject (Schönfinkel, Curry, Church, Kolmogorov,
Lawvere, Lambek). The expression “Curry-Howard isomorphism”,
which suggests that we have here an unexplained/surprising formal
coincidence, is due to Howard 1969. The true history (and the true
meaning) still waits to be explored.
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Topos theory
Homotopy Type theory

Lawvere’s philosophical motivation

I objective invariant structures vs. its subjective syntactical
presentations

I objective logic vs. subjective logic (Hegel)
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Topos theory
Homotopy Type theory

Internalization of Logic via Axiomatization of Set theory

I 1964: Elementary Theory of Category of Sets (ETCS)
I 1969: Cartesian Closed Categories (CCC)
I 1969-70: Quantifiers as adjoints to substitution; hyperdoctrines
I 1970: Toposes
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Topos theory
Homotopy Type theory

Lawvere on logic and geometry

The unity of opposites in the title is essentially that between logic
and geometry, and there are compelling reasons for maintaining
that geometry is the leading aspect. At the same time, in the
present joint work with Myles Tierney there are important
influences in the other direction: a Grothendieck “topology” appears
most naturally as a modal operator, of the nature “it is locally the
case that”, the usual logical operators, such as ∀, ∃, ⇒ have
natural analogues which apply to families of geometrical objects
rather than to propositional functions, and an important technique
is to lift constructions first understood for “the” category S of
abstract sets to an arbitrary topos .
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Topos theory
Homotopy Type theory

Lawvere on logic and geometry (continued)

We first sum up the principle contradictions of the
Grothendieck-Giraud-Verdier theory of topos in terms of four or five
adjoint functors [..] enabling one to claim that in a sense logic is a
special case of geometry. (Lawvere 1970)
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Topos theory
Homotopy Type theory

Lawvere’s axioms for topos

(Elementary) topos is a category which

I has finite limits
I is CCC
I has a subobject classifier
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Topos theory
Homotopy Type theory

Claim:

Lawvere’s axiomatic theory of (elementary toposes) is not built by
FAM. Instead of rebuilding topos theory with a pre-established
logical framework Lawvere reveals the logical aspect of toposes.
This move brings about a (genetic) axiomatic theory!
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Topos theory
Homotopy Type theory

Pre-history:

For deductions over X , one may take provable entailments [..] or
one may take suitable “homotopy classes” of deductions in the
usual sense. One can write down an inductive definition of the
“homotopy” relation, but the author does not understand well what
results. (Lawvere: Equality in hyperdoctrines 1970)
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Topos theory
Homotopy Type theory

MLTT (Martin-Löf 1980): key features

I double interpretation of types: “sets” and propositions
I double interpretation of terms: elements of sets and proofs of

propositions
I higher orders: dependent types (sums and products of families

of sets)
I higher identity types (in non-extensional versions)
I MLTT is the internal language of LCCC (Seely 1983)
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Homotopy Type theory and Univalent Foundations

I Groupoid model of MLTT: basic types are groupoids, terms
are their elements, dependent types are fibrations of groupoids
(families of groupoids indexed by groupoids - rather than
families of sets indexed by sets). Extensionality one dimension
up. (Streicher 1993).

I Higher (homotopical) groupoids model higher identity types.
Intensionality all way up (Voevodsky circa 2008).
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Voevodsky on Univalent Foundations

The broad motivation behind univalent foundations is a desire to
have a system in which mathematics can be formalized in a manner
which is as natural as possible. Whilst it is possible to encode all of
mathematics into Zermelo-Fraenkel set theory, the manner in which
this is done is frequently ugly; worse, when one does so, there
remain many statements of ZF which are mathematically
meaningless.
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Voevodsky on Univalent Foundations (continued)

Univalent foundations seeks to improve on this situation by
providing a system, based on Martin-Löf’s dependent type theory
whose syntax is tightly wedded to the intended
semantical interpretation in the world of everyday mathematics. In
particular, it allows the direct formalization of the world of
homotopy types; indeed, these are the basic entities dealt with by
the system. (Voevodsky 2011)

Andrei Rodin All Objects are Arrows, All Arrows are Objects



Formal and Genetic Axiomatic Methods
Theory of Objects

Case studies
Conclusions

Topos theory
Homotopy Type theory

h-levels

I (i) Given space is called A contractible (aka space of h-level 0)
when there is point x : A connected by a path with each point
y : A in such a way that all these paths are homotopic.

I (ii) We say that A is a space of h-level n + 1 if for all its points
x , y path spaces pathsA(x , y) are of h-level n.
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Topos theory
Homotopy Type theory

h-universe

I Level 0: up to homotopy equivalence there is just one
contractible space that we call “point” and denote pt;

I Level 1: up to homotopy equivalence there are two spaces
here: the empty space ∅ and the point pt. (For ∅ condition (ii)
is satisfied vacuously; for pt (ii) is satisfied because in pt there
exists only one path, which consists of this very point.) We call
∅, pt truth values; we also refer to types of this level as
properties and propositions. Notice that h-level n corresponds
to the logical level n − 1: the propositional logic (i.e., the
propositional segment of our type theory) lives at h-level 1.
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h-universe

I Level 2: Types of this level are characterized by the following
property: their path spaces are either empty or contractible. So
such types are disjoint unions of contractible components
(points), or in other words sets of points. This will be our
working notion of set available in this framework.

I Level 3: Types of this level are characterized by the following
property: their path spaces are sets (up to homotopy
equivalence). These are obviously (ordinary flat) groupoids
(with path spaces hom-sets).

I Level 4: 2-groupoids
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h-universe

I ..
I Level n+2: n-groupoids
I ..
I ω-groupoids
I ω-groupoids (ω + 1 = ω)
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I The New Axiomatic Method is the Good Old Genetic
Axiomatic Method of Euclid, Newton and Clausius.

I However it constructs theoretical objects in a novel way.
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