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Abstract. Formal axiomatic method popularized by Hilbert and recently defended by

Hintikka (in its semantic version) is not fully adequate to the recent practice of axiom-

atizing mathematical theories. The axiomatic architecture of (elementary) Topos theory

and Homotopy type theory do not fit the pattern of formal axiomatic theory in the stan-

dard sense of the word. However these theories fall under a more traditional and more

general notion of axiomatic theory, which Hilbert calls constructive. A modern version of

constructive axiomatic method can be more suitable for building physical and some other

scientific theories than the standard formal axiomatic method.

1. Introduction

The modern notion of axiomatic method stems from works in foundations of mathematics

starting in the late 19th century, most prominently from Hilbert’s Foundations of Geometry

first published in 1899 [15], [17]. Recently this method has been systematically presented

(with some special features, which I discuss below) by Hintikka [22]. In this paper I argue

that this notion of axiomatic method is not fully adequate to the current mathematical

practice. As a remedy I describe a different and in a sense more general version of axiomatic

method that covers some important recent instances of axiomatic thinking as well as some

older instances such as Euclid’s Elements. Since I don’t want to consider my argument

as merely pragmatic I attempt to ground it also epistemologically through a critique of

Hintikka’s paper. In this context I provide some further arguments in favor of the view
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that this more general axiomatic method can be more useful in physics and other sciences

than the received version of this method.

The method that I have in mind has been already well known to Hilbert, who calls it

constructive or genetic interchangeably ([21], p. 1a), and discussed in a later literature [4],

[6], [44] 2 , [52]. My contribution consists in showing how the constructive method operates

in the axiomatic Topos theory [42] (in a somewhat implicit form) and the recent Homotopy

Type theory (HoTT) along with the closely related project of Univalent Foundations of

mathematics [7] - and providing on this basis some new epistemological arguments in favor

of this method.

The rest of the paper is organized as follows. After making a short exposition on the

constructive axiomatic method after Hilbert and Bernays [20], [21] in Section 2, I demon-

strate this notion using the example of Euclid’s Elements, Book 1 (Section 3). Although

the main purpose of this paper is not historical, this historical example is very useful be-

cause it helps me to disambiguate the overloaded term “constructive” and illustrate my

arguments with the familiar elementary geometry. In Sections 4 I recall some basic facts

concerning Hilbert’s formal axiomatic approach and in Section 5 I introduce the notion

of Curry-Howard correspondence, which I need in what follows. In Sections 6, 7 I treat

two modern examples of axiomatic theories: Topos theory (Section 5) and HoTT (Section

6). In the concluding Section 8 I provide an epistemological discussion, which includes a

critique of Hintkka’s view on axiomatic method [22].

2. Constructive method versus Formal method

In the Introduction to their [20], Eng. tr. [21] Hilbert and Bernays specify their intended

notion of axiomatic method as follows:

The term axiomatic will be used partly in a broader and partly in a nar-

rower sense. We will call the development of a theory axiomatic in the

2Piaget calls the genetic method operational.
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broadest sense if the basic notions and presuppositions are stated first, and

then the further content of the theory is logically derived with the help of

definitions and proofs. In this sense, Euclid provided an axiomatic ground-

ing for geometry, Newton for mechanics, and Clausius for thermodynamics.

[..] [F]or axiomatics in the narrowest sense, the existential form comes in

as an additional factor. This marks the difference between the axiomatic

method [in the narrow sense] and the constructive or genetic method of

grounding a theory. While the constructive method introduces the objects

of a theory only as a genus of things, an axiomatic theory refers to a fixed

system of things [..] There is the assumption that the domain of individuals

is given as a whole. Except for the trivial cases where the theory deals only

with a finite and fixed set of things, this is an idealizing assumption that

properly augments the assumptions formulated in the axioms. We will call

this sharpened form of axiomatics (where the subject matter is ignored and

the existential form comes in) “formal axiomatics” for short. ([21], p. 1a)

The reader may notice in the above quote a slight terminological confusion, which in my

view is not quite innocent but reflects a real conceptual problem. The authors first say

that the constructive axiomatic method is co-extensive with the axiomatic method in the

“broadest” sense of the word. When the authors call the existential form (which is a char-

acteristic property of the formal method) an “additional factor” this adds to the impression

that they consider the formal method as a special case of the constructive method. How-

ever further in the same passage they compare the constructive method with the axiomatic

method as if the extensions of these two concepts were disjoint. One may try to explain

this away by taking (in the latter case) “constructive” in the sense of “purely constructive”,

i.e.,“constructive non-formal” and “axiomatic” in the sense of “formal axiomatic” (assum-

ing that the authors simply drop these qualifications). 3. But this doesn’t solve the whole

3The distinction “genetic versus axiomatic” is also found in much earlier Hilbert’s paper [16], (Eng. tr.

[19]) and used in later discussions [4], [6], [44], [52]. At least in some cases this imprecise terminology leads

to conceptual confusions. For example, Demidov in [6] describes Euclid’s geometrical theory (along with
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problem because it remains unclear what (if any) is the constructive (in the broad sense

of “constructive”) content of formal axiomatics. In what follows I shall try to show that

this is an important conceptual question about axiomatic method but not just a question

about words. I shall justify the view according to which the constructive method is indeed

more general then the formal method and in Section 8 give an exact answer to the above

question.

Let me now make my own terminological precautions. Hereafter I use terms “constructive”

and “formal” in the same sense in which Hilbert and Bernays use them in the above quote.

Namely, I count as constructive any method which involves some systematic procedure

for “introducing the objects of a theory” (without trying to delimit the class of allowable

procedures of this sort), and I distinguish the formal method by Hilbert and Bernays’

notion of “existential form”, which I explain shortly. When the risk of ambiguity becomes

particularly high I remind the reader about these precautions.

3. Problems versus Theorems

Let me now illustrate how a constructive theory “introduces the objects” at the example of

a fragment of the geometrical theory presented in Euclid’s Elements, Book 1 [9], (Eng. tr.

[8]). The same example will help us to see where the “existential form” comes from. Euclid’s

theory is based on 5 Axioms (aka Common Notions), 5 Postulates and 23 Definitions. Even

if there important differences between what Euclid call Common Notions and Definitions

and what we usually call axioms and definitions today I shall not discuss them here and

focus on Postulates. The first three Postulates read (verbatim after [8]) as follows:

[P1:] to draw a straight-line from any point to any point.

[P2:] to produce a finite straight-line continuously in a straight-line.

Newton’s theory of fluxions) as axiomatic while Euclid’s arithmetical theory he describes as genetic. Thus

this author uses the term “axiomatic” in a sense that does not coincide either with Hilbert and Bernays’

“broader” sense nor with their “narrowest” sense of this term. The author leaves it to the reader to guess

the exact sense in which he uses word “axiomatic”.
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[P3:] to draw a circle with any center and radius.

As they stand the three Postulates are not propositions and admit no truth-values. Hence

they cannot be axioms in the usual modern sense of the word. In particular, the Postulates

cannot be used as premises in logical inferences - if by logical inference one understands

an operation that takes some propositions (premises) as its input and produces some other

proposition or propositions (conclusion) as its output 4.

In fact Postulates 1-3 are themselves elementary operations, which take certain geometrical

objects as input and produce some other geometrical objects as output. The table below

specifies inputs (operands) and outputs (results) for P1-3:

operation input output

P1 two (different) points straight segment

P2 straight segment (extended) straight segment

P3 straight segment and one of its endpoints circle

The three operations can be composed as follows: the output of P1 is used as input for P2

and P3; thus one gets complex operations, which can be denoted P1◦P2 and P1◦P3. The

resulting system of operations is the core of a larger system of operations “by ruler and

compass” assumed by Euclid in his Elements 5. Using this system of operations Euclid

“introduces objects” of his theory. Such an introduction is systematic in the sense that

it does not reduce to a simple act of stipulation: it is a procedure, which involves certain

elementary operations (including P1-P3) and complex operations obtained through the

composition of the elementary operation. As soon as the term deduction is understood

liberally as a theoretical procedure, which generates some fragments of a given theory

from the first principles of this theory, one can say that the object-building in Euclid’s is

4This fact has been stressed by A. Szabo, see [54], p. 230.
5In addition to P1-3 and other Postulates Euclid assumes implicitly certain other operations like the

construction of intersection point of lines in appropriate positions. But this incompleteness has no bearing

on my argument.
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deductive. As we shall now see in Euclid’s theory the “object-oriented” deduction described

above goes along with the more familiar propositional deduction.

Postulates and Axioms of are followed by so-called Propositions. This commonly used title

is not found in Euclid’s original text where things called by later editors “Propositions”

are simply numbered but not given any special title [8]. From Proclus’ Commentary [46],

(Eng. tr. [47]) written in the 5th century A.D. we learn about the tradition dating back

to Euclid’s own times (and in fact even to earlier times) of distinguishing between the

two sorts of “Propositions” called Theorems and Problems. Euclid’s Theorems by and

large are theorems in the modern sense of the word: propositions followed by proofs. But

Problems are something very different: they are complex operations (or, if one prefers,

complex constructions) built with elementary operations. Like Postulates Problems admit

no truth-values.

As an example of Problem consider the (initial fragment of) Proposition 1, Book 1:

To construct an equilateral triangle on a given finite straight-line.

which is followed (skipping irrelevant details) by

- construction (complex operation) C based on P1-3 and some tacit primitive operations;

- proof P that C is equilateral triangle.

What I have said earlier about Postulates and Problems, on the one hand, and Axioms and

Theorems, on the other hand, can make one imagine that Euclid’s theory splits into two

independent parts one of which consists of constructions from Postulates while the other

consists of proofs from Axioms. The above example shows that such a split does not occur.

Euclid needs proof P in this Problem because construction C does not automatically speak

for itself, i.e., does not produce a proposition saying that it has the wanted property 6.

6How in this case Euclid manages to get out of the mute construction any proposition at all? Since

the circle concept makes part of P3 and P3 makes part of C Euclid applies his definition of circle and so

gets propositions of the form “radii a, b of circle c are equal”. He uses these propositions as premises, then

applies the First Axiom and thus gets the wanted proof.
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More generally Problems and Theorems (resp. constructions and proofs) are related as

follows:

- (solutions of) non-trivial Problems require propositional proofs as in the above example;

- (proofs of) non-trivial Theorems require constructions (conventionally called in such con-

texts “auxiliary”).

This explains why the logical order of Theorems and the genetic order of Problems in

Euclid’s theory are closely intertwined and form a joint deductive order. For a more

detailed analysis of this structure see [48], ch.2. In Section 5 below I explain how the Curry-

Howard correspondence supports a similar structure, which combines a logical deduction

with a genetic construction.

All Euclid’s Postulates and initial fragments (i.e., bare formulations) of Problems can be

easily paraphrased into propositions. This can be done at least in two different ways which

I shall call modal paraphrasing and existential paraphrasing. The following paraphrases of

P1 are self-explanatory:

P1m (modal): Given two (different) points it is always possible to produce a straight

segment from one given point to the other given point.

P1e (existential): Given two (different) points there exists a straight segment having these

given points as its endpoint.

P1e instantiates what Hilbert and Bernays call the “existential form” used in the formal

axiomatic method. The key logical feature of this paraphrase (which it shares with P1m)

is the reduction of Euclid’s non-propositional Postulates and Problems to certain proposi-

tions (in case of P1e - to existential propositions). Such a reduction may look trivial and

even purely linguistic but in fact it is not because none of the two ways of paraphrasing

is sufficient for translating Euclid’s theory into a propositional form, i.e., into a theory

consisting of axioms and theorems derived from the axioms according to certain fixed rules

of logical inference. The problem is, of course, that the straightforward propositional para-

phrasing does not translate proofs and constructions coherently, so in order to provide a

reasonable reconstruction of Euclid’s theory in the above form one needs a lot of further
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efforts [23]. For further references I shall call a procedure, which aims at replacement of

all non-propositional content of a given theory by some suitable propositional content, the

propositional reduction of this theory.

Thanks to Proclus we know that the idea of translating all Problems into Theorems dates

back to Euclid’s own times and even to earlier times. From the same source we also

know about the competing idea of translating all Theorems into Problems; this latter idea

Proclus attributes to “the school of Menaechmus” 7.

Both proposals make equally strong echoes of some more recent approaches. In particu-

lar Menaechmus’ constructivism makes an echo of calculus of problems proposed by Kol-

mogorov in 1932 [26]. In the present discussion I want to consider this old controversy

critically and pay a special attention to constructive mathematical thinking. This is a

7Here is the relevant passage:

Some of the ancients, however, such as the followers of Speusippus and Amphinomus,

insisted on calling all propositions “theorems”, considering “theorems” to be a more

appropriate designation than “problems” for the objects of the theoretical sciences, es-

pecially since these sciences deal with eternal things. There is no coming to be among

eternals, and hence a problem has no place there, proposing as it does to bring into being

or to make something not previously existing - such as to construct an equilateral triangle

[..]. Thus it is better, according to them, to say that all these objects exist and that we

look on our construction of them not as making, but as understanding them [..] Others,

on the contrary, such as the mathematicians of the school of Menaechmus, thought it

correct to say that all inquiries are problems but that problems are twofold in character:

sometimes their aim is to provide something sought for, and at other times to see, with

respect to determinate object, what or of what sort it is, or what quality it has, or what

relations it bears to something else.” ([47], p. 63-64).

Speusippus [408 - 338/9 B.C.] is Plato’s nephew who inherited his Academy after Plato’s death. Amphi-

nomus is otherwise unknown (except few other references found in the same Commentary) Speusippus’

contemporary. Menaechmus [380 - 320 B.C.] is mathematician of Plato’s circle. The dates of these people

suggest that the these ideas had been already around for quite a while before Euclid completed his Elements

at some point between 300 and 265 B.C.
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sufficient reason for not taking the idea of propositional reduction (of mathematical and

other theories) for granted.

4. Hilbert’s Views on Axiomatic Method

Since presently there exists an extensive literature, which analyses Hilbert’s work on ax-

iomatic method in historical and theoretical perspectives, in this Section I shall not try

to say anything new about Hilbert but only recall some basic features of his axiomatic

approach, which I later use for contrasting against them some new features of more recent

axiomatic approaches. At the early stage of his life-long work on axiomatic foundation of

mathematics (1893-1894) Hilbert describes his notion of well-founded axiomatic theory as

follows:

Our theory furnishes only the schema of concepts connected to each other

through the unalterable laws of logic. It is left to human reason how it wants

to apply this schema to appearance, how it wants to fill it with material.

This can happen in manifold ways. But whenever the axioms are satisfied,

then the theorems must apply too. ([14], p. 104)

The two key features of this notion of theory (which are by and large realized in Hilbert’s

Foundations of 1899 [15]) are (i) its schematic character and (ii) its logical grounding. Let

me first focus on (ii). In the above quote Hilbert apparently refers to the “unalterable laws

of logic” as something definite and somehow known. A weaker assumption which we may

attribute to Hilbert and which still allows us to make sense of his words is that the laws

of logic are known better than mathematical (and perhaps some other) theories, which

can be construed in a schematic form and grounded with these logical laws. This latter

assumption was moreover plausible at the time when geometry had already ramified into

its traditional Euclidean and multiple non-Euclidean branches but a similar development

in logic, which began later in the 20th century, did not yet happen.
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The fixity of logic is important for understanding the schematic character of Hilbert’s

axiomatic theories (i). Axioms and theorems of non-interpreted formal theory are proposi-

tional schemes, which admit truth values and thus turn into propositions through an inter-

pretation. An interpretation amounts to assigning to certain terms like “point”, “straight

line”, etc. certain semantic values, which can be borrowed from another (usually informal)

mathematical theory or from some extra-theoretical sources like intuition and experience.

However this game of multiple interpretations does not concern all terms of a given the-

ory. Some terms, namely logical terms, have a fixed meaning, which (at least in the early

versions of Hilbert’s axiomatic approach) is supposed to be self-evident. The different treat-

ment of logical and non-logical terms reflects the epistemological assumption according to

which logical concepts (such as implication) are generally better known than geometrical

or any other non-logical concepts.

In the Foundations of 1899 and other Hilbert’s early axiomatic theories the “laws of logic”

are taken for granted but not specified explicitly and precisely. Hilbert addresses this

problem in 1917 saying that “it appears necessary to axiomatize logic itself” ([18] p. 1113).

Hintinkka quite rightly, in my view, stresses the fact that between axiomatizing geometry

(or another non-logical theory) and axiomatizing logic there is no continuity. Indeed, since

the axiomatization in the above sense involves an application of logic to the given subject-

matter (say, geometry), the axiomatization of logic requires an application of logic to itself

(at least if we are always talking about one and the same logic as certainly does Hilbert),

which is, generally, problematic ([22], p. 80). Hintikka further argues that a recursive

enumeration of logical truths, called by Hilbert an axiomatization of logic, is called so

improperly because such a procedure doesn’t allow for studying various models of logic in

anything like the same way in which one studies various models of any other formal theory.

As a remedy Hintikka uses his original system of IF-logic, which allows for self-application.

In what follows (Sections 6, 7) I describe a different solution, which blurs the distinction

between logical and non-logical terms by allowing logical terms to have further non-logical

interpretations.
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Hilbert’s mature axiomatic method reinforced by symbolic logic [20] has some important

features, which are wholly absent in Hilbert’s early conception of this method described

above. While in the early version a non-interpreted axiomatic theory is understood a

“scheme of concepts” devoid of any intuitive content the later symbolic version includes

an additional assumption according to which this abstract scheme comes with its proper

concrete representation, namely the symbolic representation. The symbolic representation

involves a special sort of intuition, which Hilbert calls the “logico-combinatorial intuition”

([13], p. 179). A mathematical study of symbolic calculi (which include logical calculi

proper and symbolic representations of formal theories based on these calculi) Hilbert iso-

lates into a special area of mathematics, which he calls metamathematics. Hilbert perfectly

realizes that treating the metamathematics with the same formal axiomatic method leads

to a hopeless infinite regress. So his foundational project at this point becomes different and

in certain respects more modest (albeit in some other respects more radical) than earlier:

now he aims at isolating a limited area of elementary (and as he really hoped - only fini-

tary) mathematics developed constructively and then treat the rest of mathematics on this

constructive basis using appropriate non-constructive “idealizing existence assumptions”
8. Thus in the advanced symbolic setting the formal axiomatic method is no longer seen

by Hilbert as self-sustained: it needs a support of constructive methods operating at the

metatheoretical level. This is perhaps a reason why Hintikka [22] elaborates rather on the

early version of Hilbert’s method. In Section 8 I argue that this does not solve the problem

because in this case the formal method requires a constructive support anyway.

8“When we now approach the task of such an impossibility proof [= proof of consistency], we have to be

aware of the fact that we cannot again execute this proof with the method of axiomatic-existential inference.

Rather, we may only apply modes of inference that are free from idealizing existence assumptions.” ([21],

p. 19)
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5. Curry-Howard Correspondence and Cartesian Closed Categories

The present Section is a preliminary to the following two Sections 6,7 where I treat modern

examples of axiomatic theories. In the nutshell the idea of Curry-Howard correspondence

is given in Kolmogorov’s 1932 paper [26] where the author establishes that his newly pro-

posed calculus of problems has exactly the same structure as the intuitionistic propositional

calculus published in 1930 by Heyting 9. It turns out that this correspondence is extendible

onto a large class of symbolic calculi including those, which have been developed indepen-

dently and apparently for very different purposes. So the were established a number of

correspondences (i.e., of more and less precise isomorphisms) between (proof-related) logi-

cal calculi (propositional, first-order or higher-order), on the one hand, and computational

calculi (the simply-typed lambda calculus, type systems with dependent types, polymor-

phic type systems), on the other hand. For a substantial introduction (which however does

not fully reflect the present state of the art) see [53]

Even if in the textbooks the Curry-Howard correspondence is often described as unexpected

and even “amazing” ([53], p. 5), it is not a unexplained mathematical phenomenon but

rather a case of genuine convergence of different approaches in foundations of mathematics.

This convergence leads to the so called “proofs-as-programs and propositions-as-types” par-

adigm in logic and Computer science, which can be called constructive in the broad sense

specified above. When Hilbert and Bernays distinguish between the constructive and the

formal versions of the axiomatic method (Section 2 above) they firmly assume that propo-

sitions and objects of some given (interpreted) theory belong to distinct domains of things.

They don’t treat this distinction formally but simply take it for granted. Within the

propositions-as-types paradigm this distinction is made formally and explicitly: proposi-

tions are represented (not as objects of sort but) types, namely types of proofs. Recall that

9I am not making any priority claim for Kolmogorov here but simply use his 1932 article as a convenient

reference, which states epistemological ideas behind this development more clearly than do many later more

technical studies. A relevant historical material can be found in [3] and [51] but a more focused historical

study on the idea of Curry-Howard correspondence still waits to be written.
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in the (advanced symbolic) Hilbertian setting propositions and proofs of formal theory T

(or, more precisely, their syntactic expressions), are objects of the corresponding metathe-

ory MT . The propositions-as-types paradigm puts proofs and other objects of given theory

T at the same theoretical level, so proofs here are objects of sort among other objects of

different sorts belonging to the same theory. Thus this paradigm fits the constructive no-

tion of axiomatic method according to which building proofs is a special case of building

objects in general.

In 1963 Lawvere observed that “cartesian closed categories serve as a common abstrac-

tion of type theory and propositional logic” ([36], p. 1), [34]; in other words Cartesian

closed categories (CCC) capture the structure behind the Curry-Howard correspondence.

In 1968-1972 this observation has been developed by Lambek in a series of papers [27],

[28], [29] into what is now known under the name of Categorical Logic; for a systematic

exposition of these results see [37]. The three way correspondence between (i) logical cal-

culi (propositions), (ii) computational calculi (types) and (iii) (objects of) CCC and some

other appropriate category) is sometimes called in the literature the Curry-Howard-Lambek

correspondence.

Let me now tell a bit more about a relevant part of Lawvere’s work that touches upon the

issue of axiomatic method directly. Lawvere discovered CCC during his work on alternative

axiomatization of Set theory 10. His idea was that the non-logical primitive of standard

axiomatic Set theories like ZF, namely the binary membership relation ∈, was wrongly

chosen. Lawvere suggested to use instead the notion of function and the binary operation

(i.e., ternary relation) of composition of functions. This choice has been motivated by

the idea to axiomatize Set theory in the form of a theory of category of sets Set. The

resulting axiomatic theory is known today under the acronym ETCS (Elementary Theory

of Category of Sets) [30], [35], [42]. This proposal may appear radical to one who has

habituated oneself to ZF and its likes but as it stands this proposal does not require any

modification of the standard formal axiomatic method; the suggested modification concerns

10Lawvere also had other important motivations for introducing CCC, see [31].
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only the choice of non-logical primitives. The unusual choice of primitives allowed Lawvere

to see that the condition of being CCC makes part of the wanted axiomatic description of

Set. In this context the further observation that CCC provides a structural description of

Curry-Howard correspondence looks like an unexpected bonus.

Let us see more precisely what happens here. The standard axiomatic approach requires

to fix logic first and then use it for sorting out intuitive ideas about sets, numbers, spaces

and whatnot. Trying to use the fixed logical rules for axiomatic reasoning about the chosen

subject-matter one may discover that these logical rules are not quite appropriate for the

task. Then one may fix these rules and try again. But unless one is axiomatizing logic (see

Section 4 above) one still always expects to get as the outcome of axiomatization some

non-logical theory, not a new axiomatic theory of logic. However in the case of ETCS

something similar happens: it turns out that Set is equipped with its proper internal

logically-related structure, namely CCC. This structure is not simply transported from the

background logic but emerges as a specific feature of Set among other categories. This fact

does not exclude the possibility of building ETCS as standard formal axiomatic theory [42]

but it nevertheless suggests a reconsidering of place and role of logic in this theory. In the

next Section we shall see how the notion of internal logic is made precise in Topos theory

and how it helps Lawvere to axiomatize this theory.

6. Topos theory

The concept of topos first appeared in Algebraic Geometry in the circle of Alexandre

Grothendieck around 1960 as a far-reaching generalization of the standard concept of

topological space and didn’t have any special relevance to logic. In his seminal paper

[33] Lawvere provided an axiomatic definition of topos called today the definition of el-

ementary topos 11. Lawvere’s axiomatization of Topos theory is a great success story of

11The title “elementary” reflects the fact that Lawvere’s definition (unlike Grothendieck’s original def-

inition) straightforwardly translates into the standard first-order formal language [42]. According to this

definition an (elementary) topos T is CCC equipped with a subobject classifier, which plays in a general
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the axiomatic method in the 20th century mathematics. It provides a very significant sim-

plification of Grothendiek’s ideas making them available for anyone who wants to study

the subject. LIke ETCS the axiomatic theory of elementary topos does not bring by itself

any new notion of axiomatic theory. However any systematic exposition of topos theory

contains a chapter on internal logic of topos. In standard textbooks [42], [38] this notion

is introduced as an extra feature after the basic topos construction is already done. The

construction of internal logic has a syntactic part (Mitchel-Bénabou language) and a formal

semantic part, which interprets the syntax of this language in terms of constructions avail-

able in the base topos (Kripke-Joyal semantics aka natural semantics). By semantics in

that case one should understand something else than the usual interpretation of non-logical

terms of the given formal system like in the case of models of ZFC. Kripke-Joyal seman-

tics assigns to symbols and syntactic expressions, which have an intuitive logical meaning

(logical connectives, quantifiers, truth-values, etc.), explicit semantic values, which other-

wise can be called geometrical (if the given topos is seen as a generalized space). This is

not something wholly unprecedented in the history of the 20th logic: think, for example,

of Tarski’s topological of (Classical and Intuitionistic) propositional logic [55]. However

when such an interpretation is considered in the context of Hilbert’s ideas about axiomatic

method it looks very strange. Giving logical symbols and expressions non-logical interpre-

tations blurs the distinction between logical and non-logical elements of syntax and thus

undermines the basic Hilbert’s idea of clarifying non-logical contents by means of logic.

However as long as internal logic LT of topos T is construed as an extra gadget associated

with T one doesn’t need to revise the axiomatic method by which one introduces T itself.

One may also use the standard axiomatic method for building with LT (namely, taking it

as a background logic) some further theories “internally” in T .

topos the role similar to that played in Set (which also qualifies as a topos in the sense of Lawvere’s defi-

nition) by the two-element set. The two-point set classifies subsets of a given set S in the sense that if one

asks whether a given element p ∈ S belongs to subset U ⊆ S there are just two possible answers: yes and

no. The concept of elementary topos is slightly more general than that of Grothendieck topos: there are

elementary toposes, which are not Grothendieck toposes.
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I shall not explore epistemological implications of the idea of “doing mathematics internally

in a given topos” because I believe that notion of internal logic also plays in Topos theory

a different and more fundamental role. In the beginning of his [33] (where the axioms for

elementary topos first appeared in the press) Lavwere writes:

[A] Grothendieck “topology” appears most naturally as a modal operator,

of the nature “it is locally the case that”, the usual logical operators, such

as ∀, ∃, ⇒ have natural analogues which apply to families of geometrical

objects rather than to propositional functions, and an important technique

is to lift constructions first understood for “the” category S of abstract sets

to an arbitrary topos. [..] [I]n a sense logic is a special case of geometry. (

[33], p. 329)

The observed analogy serves Lawvere not just for providing a given topos with an extra

construction called internal logic. It serves him first of all for formulating axioms of Topos

theory! Namely, Lawvere observes that the internal logic of general topos and the internal

logic of Set share the same CCC structure and thus the wanted axiomatic Topos theory is

obtained through a simple generalization of ETCS. I submit that this analysis that allowed

Lawvere to axiomatize Topos theory qualifies as genuine logical analysis - even if this sort

of anaylsis is very unlike Hilbert’s logical analysis used in his Foundations of Geometry

[15]. The internal logical structure of topos is the logical structure, which allows for a

logically transparent axiomatic presentation of topos concept 12.

One may argue that the feature of Lawvere’s approach to axiomatizing Topos theory, which

I try to highlight here, may matter when we are talking about the way and the context

in which this axiomatization has been first achieved but not when we are talking about

the final result. This depends on what counts as finial result. I can see that Lawvere’s

12As Lawvere makes it explicit in this and some other of his works he uses a Hegelian approach to logic

as his philosophical motivation. In this paper I attempt to explain what is going on here in my own words

without referring to Hegel. For an analysis of the impact of Hegel’s philosophy on Lawvere’s mathematical

work see [48], Section 5.8.
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theory of elementary topos can be presented as a standard axiomatic theory à la Hilbert

[42]. However I doubt that such a presentation reflects the relationships between logic

and geometry in this case properly. If the internal logic of a given topos is seen as its true

logical foundation (rather than an extra feature) then Lawvere’s theory qualifies as broadly

constructive because this logic regulates the construction of topos directly (namely, through

its natural geometrical semantics) rather than indirectly through certain further “idealizing

existence assumptions” à la Hilbert. Since CCC makes part of the topos structure, the

above remarks about the constructive character of Curry-Howard-Lambek correspondence

(Section 5) also apply to Topos theory 13. A constructive theory of topos remains a work

in progress. However in the next Section I describe a more recent theory that already uses

a constructive axiomatic architecture officially.

7. Homotopy Type theory and Univalent Foundations

Homotopy Type theory (HoTT) is a recently emerged field of mathematical research 14 ,

which has a special relevance to philosophy and logic because it serves as a basis for a new

tentative axiomatic foundations of mathematics called theUnivalent Foundations (UF).

The most comprehensive exposition available to the date is [7]. In this paper I do not

attempt to review UF systematically but only describe a special character of its axiomatic

architecture.

HoTT emerged through a synthesis of two lines of research, which earlier seemed to be

quite unrelated: geometrical Homotopy theory and logical Type theory. The key idea is

that of modeling types (including the type of propositions) and terms (including proofs) in

13For a discussion on constructive aspects of Category theory and Topos theory see [43].
14To the present date it’s official age is 8 years, see [7] p.4. However HoTT has a longer pre-history.

The earliest direct hint I know is in Lawvere’s 1970 paper [32] where the author writes: “For deductions

over X, one may take provable entailments or one may take suitable “homotopy classes” of deductions in

the usual sense. One can write down an inductive definition of the “homotopy” relation, but the author

does not understand well what results.” (pp. 34). Other milestones in this pre-history are [12] (on the

geometrical side) and [24], [25] (on the type-theoretic side).
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Type theory by spaces and their points in Homotopy Theory. Beware that along with basic

spaces Homotopy theory also considers path spaces where “points” are paths in the basic

spaces, spaces of “paths between paths” called homotopies, spaces of “paths between paths

between paths” and so one. All these higher-order spaces are also used for interpreting

types.

Like in the case of Topos theory in HoTT geometry and logic are glued together with

some category-theoretic concepts. The central categorical concept used in HoTT is that of

ω − groupoid. In the standard category theory a groupoid is defined as a category where

all morphisms between objects are reversible, i.e., are isomorphisms. ω-groupoid is a

higher-categorical generalization of this concept (called in this context 1-groupoid) where

usual morphisms are equipped by morphisms between morphisms (called 2-morphisms),

further morphisms between 2-morphisms (called 3-morphisms) and so on ad infinitum or

more precisely up to the first infinite ordinal ω). An analogy between spaces equipped with

paths between points, homotopies between those paths, etc. is straightforward. It allows for

mixing the geometrical and the categorical languages and talk interchangeably, e.g., about

“spaces of paths”, “groupoids of paths” and “groupoids” simpliciter. The “Homotopy

theory construed categorically” and the “theory of ω-groupoids construed homotopically”

turn to be one and the same thing (provided both concepts are adjusted appropriately

[12]).

The axiomatic HoTT uses resources of Type theory, namely the Constructive (aka Intu-

itionistic) Type theory with depended types due to Martin-Löf [41] (MLTT), for turning

the tables at this point. The notion of ω-groupoid aka space aka homotopy type is taken as

primitive while the notions of proposition, set, (one-dimensional) groupoid, category, etc.

are construed as derived notions with MLTT. For this end types (and, in particular, propo-

sitions) and terms (and, in particular, proofs) in MLTT are interpreted, correspondingly,

as ω-groupoids (aka spaces) and points of these spaces (which, as I have already explained,

can be paths and “higher paths” of other spaces). I skip further details. The obtained

interpretation of MLTT in the categorically construed Homotopy theory directly translates
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all constructions in MLTT into geometrical constructions. Then one may consider some

additional axioms on the top of MLTT such as the Axiom of Univalence (AU), which gives

its name to the Univalent Foundations. Although AU has been first motivated geometri-

cally, it also has a logical meaning being a generalized version of Church Extensionality

Axiom for propositions 15.

The fact that MLTT admits a geometrical interpretation and thus allows for a further

geometrically motivated development, is a great mathematical discovery, which I cannot,

of course, fully elucidate here. However the above short description of the idea of HoTT

is sufficient for making my point about the changing notion of axiomatic method. In

this paper I consider HoTT (with or without AU) only as an axiomatization of modern

Homotopy theory. The idea of UF according to which HoTT can be used as a basis for

developing the rest of mathematics has no bearing on my argument (but suggests that the

special character of axiomatic approach in HoTT may be of general significance for logic

and mathematics).

Let us now see how HoTT looks like against the standard notion of axiomatic theory

stemming from Hilbert (Section 4). When one says that (the appropriately construed)

Homotopy theory provides a model of MLTT, one uses the word “model” not in the same

sense in which one usually talks, say, about various models of Lobachevskian geometry

(like Poincaré model, Beltramy-Klein model, etc.). Interpreting a given formal theory of

Lobachevskian geometry (T ) amounts to giving all the non-logical terms and expressions

of this theory (such as “point”, “line, etc.”) some semantic values borrowed from another

mathematical theory or elsewhere. The logical terms and expressions of T don’t take part

in this semantic game. But in the case of HoTT (like in the case of Kripke-Joyal semantics

for topos logic) all symbols and well-formed syntactic expressions, and all rules of MLLT on

15Church Extensionality Axiom states that logically equivalent propositions are equal, in symbols ((φ→

ψ) ∧ (ψ → φ)→ (φ =p ψ) where the index p expresses the fact that the equality is typed and so =p is the

equality of propositions. See abstract and video of talk given by T. Coquand at Bourbaki Seminar in Paris,

June 21, 2014, available at www.bourbaki.ens.fr/seminaires/2014/Progjuin14.html
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the top of their intended logical and computational interpretation admit also a geometrical

interpretation - and this is precisely what is called “model” in this case. It is clear Hilbert’s

general understanding of relationships between geometry and logic in his Foundations of

1899 [15] in case of HoTT doesn’t apply. This means the standard notion of axiomatic

theory does not apply to HoTT either.

At the same time HoTT (provided with the ω-groupoid model) strikingly resembles Eu-

clid’s geometry as it is presented in the First Book of Elements: HoTT makes up its

geometrical universe starting with a point; then through an inductive definition further

basic types/spaces are introduced: the type of propositions (having two terms true and

false), sets, (1-)groupoids, 2-groupoids and so on. Each of these “levels” allows for further

constructions of growing complexity [57]. The analogy with Euclid is quite precise in the

following respect: in both cases the axiomatic procedure consists of a systematic intro-

duction of theoretical objects (which can be propositions but generally are not). Recall

that this is the precise sense in which Hilbert and Bernays call Euclid’s theory construc-

tive. Like Euclid and unlike Hilbert and his modern followers Voevodsky does not use the

propositional reduction as a means of axiomatic theory-building. 16. Saying that HoTT

is a constructive theory one must a particular care of disambiguating the term “construc-

tive” properly. MLTT is a constructive theory in a strong sense, which makes this theory

computable. It is not known to the date whether or not AU is constructive in the same

strong sense (prima facie it is not) 17. However HoTT with AU qualifies as constructive in

the broader sense of “constructive” specified above even if it is not computable.

16Voevodsky remarks that the inadequacy of the standard set-theoretic foundations of mathematics

becomes obvious in the context of HoTT and UF because these standard foundations for no good reason

reduce the whole world of homotopy types to just one such type, namely that of sets [56]. A similar

argument can be used against the idea of propositional reduction: even if in the axiomatic architecture

of mathematics propositions play a special role, there is no good reason to reduce all types of objects to

propositions using Hilbert’s device of “idealizing existence assumptions”.

17As to 2013 Voevodsky and collaborators describe this question as the “most pressing” ([7], p. 11).
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In addition to the homotopical ω-groupoid model discussed earlier in this Section HoTT

with AU has some other “natural” models [1]. Studying and comparing these models

from an unified viewpoint largely remains an open research problem. However Voevodsky

makes it clear that he considers the the ω-groupoid model as basic 18 Even if Voevodsky’s

reason for preferring this model is prima facie pragmatic, it has strong epistemological

consequences. The idea of reconstructing the world of everyday today’s mathematics using

homotopy types as building blocks represents what Marquis calls the “geometrical point

of view” in foundations of mathematics [39], [40]. However since the syntax of MLTT and

AU also have a logical semantics such a reconstruction also qualifies as logical. However

impressive is this new synthesis of logical and geometrical reasoning I cannot see that it

represents an entirely new point of view in logic and mathematics because in Euclid’s con-

structive axiomatic approach logic and geometry are intertwined similarly. By Friedman’s

word 19:

Euclidean geometry [..] is not to be compared with Hilbert’s axiomatization,

say, but rather with Frege’s Begriffsschrift. It is not a substantive doctrine,

but a form of rational representation: a form of rational argument and

inference. ([11], p. 94)

If we replace in the above quote Frege’s Begriffsschrift by Voevodsky’s Univalent Founda-

tions the analogy with Euclid becomes even more close.

18After expressing his misgivings about the standard set-theoretic foundations of mathematics Voevodsky

writes:

Univalent foundations seeks to improve on this situation by providing a system, based

on Martin-Löf’s dependent type theory whose syntax is tightly wedded to the intended

semantical interpretation in the world of everyday mathematics. In particular, it allows

the direct formalization of the world of homotopy types; indeed, these are the basic

entities dealt with by the system. ([56], p. 7, emphasis mine)

19Friedman attributes this view on Euclid to Kant without claiming that this view is his own.
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8. What is Constructive Axiomatic Method?

In the preceding Sections I considered some recent trends in the axiomatic method in a

historical perspective. I tried to show that in this perspective these recent trends appear

as a revival of an older form of axiomatic method, which Hilbert and Bernays call genetic

or constructive (Section 2). In the present final Section I would like to evaluate these

new developments from a more critical and more theoretical viewpoint. Are such develop-

ments justified logically and epistemologically? Do they change the standard Hilbert-style

axiomatic method in a right direction? What (if any) are logical and epistemological ad-

vantages of the new constructive axiomatic approach?

As my point of departure I take Hintikka’s recent paper [22] where the author defends

a modern version of Hilbert’s formal axiomatic method. I shall try to show that this

formal method is not self-sustained and needs to be supported by a constructive method.

I shall also defend a stronger claim according to which the constructive axiomatic method

is more fundamental and more basic than the formal method: while it is possible (but not

necessarily desirable) to do some axiomatic mathematics “purely constructively” without

using formal methods, it is strictly impossible to do any axiomatic mathematics “purely

formally”.

Hintikka:

What is crucial in the axiomatic method [..] is that an overview on the

axiomatized theory is to capture all and only the relevant structures as so

many models of the axioms. Once a complete axioms system for some par-

ticular science is established, it literally becomes possible to investigate the

phenomena that are the entire subject matter of that science in one’s study,

instead of laboratory or observatory with pencil and paper. Of course, in

our day and age pencil and paper are being replaced by a computer. But

even so, using a computer is easier and cheaper than building an accelerator.

([22], p. 72)
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Even if the above quote can be read as a proposal to replace real scientific experiments

by theoretical calculations and numerical experiments it also allows for a more charitable

reading: an axiomatically organized science allows for checkable theoretical predictions,

which are logically inferred from the first principles of this science put into the form of

axioms. This feature obviously has a great epistemic value and thus indeed provides a

strong argument for using the axiomatic method in science more widely. Asking then

where the axioms come from Hintikka says that they are obtained through an analysis of

their intended models. And where the models come from? Hintikka gives the following

answer, which could be equally heard from Hilbert (if one replaces Hintikka’s “class of

structures” by Hilbert’s “systems of things” [15]):

The class of structures that the axioms are calculated to capture can be

either given by intuition, freely chosen or else introduced by experience

(ib., p. 83)

One may wonder how a mathematical structure (or a structure of some different sort) can

be directly given by intuition, free choice, experience or whatnot without being construed

axiomatically (or otherwise) beforehand? Should we assume at this point a Platonistic hy-

pothesis according to which mathematical structures exist independently of our axiomatic

descriptions of these structures? An answer implied by Hintikka’s understanding of math-

ematical intuition is different. He explicitly rejects the notion of intuition as an intellectual

analogue of sense-perception and insists that the intuition (along with the free choice and

experience) plays rather an active role. Defending his semantic view on logical inference

(on which I comment below), Hintikka says

[N]ew logical principles are not dragged [..] by contemplating one’s mathe-

matical soul (or is it a navel?) but by active thought-experiment by envisag-

ing different kinds of structures and by seeing how they can be manipulated

in imagination. The relations that can be so revealed are model-theoretical

rather than proof-theoretical. Maybe such thought-experiment are exam-

ples of what is meant by appeals to intuition. But if so, mathematical
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intuition does not correspond on the scientific side to sense-perception, but

to experimentation. (ib., p. 78)

So what Hintikka wants to say is rather this. Building an axiomatic theory is a compli-

cated two-way process; it is a game with Nature (and perhaps also with Society) where

raw empirical and intuitive data effect one’s axiomatic construction in progress while this

construction in its turn effects back one’s choice of further data, which become in this way

less raw and more structured. Asking where the process starts exactly is the chicken or

the egg kind of question. Hintikka’s IF logic with its intended game-theoretic semantics

provides a precise mathematical model for games of this sort [45].

My concern is about the kind of games that we need to play with Nature for doing science

and mathematics. Although yes-no questioning games indeed play an important role in

science and perhaps also in mathematics I claim that this is only the top of an iceberg. The

main body of this iceberg is filled by mathematical and empirical constructive activities

such as designing new experiments. If we consider applications of mathematics outside the

pure science we may also point to the mathematical design of new technologies and new

industrial products. In order to design a bridge or a particle accelerator one usually helps

oneself with mathematical models of that thing, not with formal axioms.

Since such activities qualify as instances of Hintikka’s “active thought-experiment” I don’t

diverge from Hintikka up to this point. The divergence comes next. I don’t grant Hin-

tikka’s view according to which the mathematical thought experimentation is, generally, a

spontaneous ruleless activity, which should be studied by “empirical psychologists” rather

than logicians, mathematicians and epistemologists (ib. p. 83). I observe that construc-

tive axiomatic theories like Euclid’s geometry, Newton’s mechanics, Lawvere’s axiomatic

Topos theory and Voevodsky’s HoTT-UF greatly increase one’s capacities of mathematical

thought experimentation by providing basic elements (points and straight lines in Euclid)

and precise rules for it. I can see that the spontaneity and the rulelessness may play a

creative role in mathematics and science but I claim that typically a constructive axiomatic

organization of science and mathematics makes the thought experimentations in these fields
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richer and more powerful. Such an organized but not simply spontaneous mathematical

thought experimentation is typically used for making theoretical predictions in sciences,

designing bridges, accelerators etc.

The real question is not how liberally one can use the word “axiomatic” but how exactly

an axiomatic theory controls its contents. Formal theory T motivated by certain intended

model M controls (the content of) M through the truth-evaluation of its axioms and

theorems in M . For the sake of my argument I now understand (after Hintikka) the

relation of logical inference in T as the semantic consequence relation. Having granted this

I claim that this method of axiomatic control is not self-sustained because the concept of

semantic consequence relation is highly sensitive to one’s basic semantical setting. When

the semantic consequence relation is discussed with respect to intuitive structures coming

from the air (intuition, free choice, experience) it remains itself a very imprecise intuitive

notion. I agree with Hintikka that this fact does not mean that one gets here a choice

between appealing to irrational resources and giving up the semantical view on logical

consequence (ib., p. 77-78). In order to construe the relation of semantic consequence with

a mathematical precision one should fix some formal semantics, which allows for doing

the truth-evaluation properly (as this is done, for example, in the case of Kripke-Joyal

semantics for topos logic) 20. In other words one needs to build a basic mathematical

model (in the sense of “model” used in science rather than Model theory) of the intended

structure (or rather a sufficiently large class of such structures) suggested us by intuition,

experience and what not. The mere yes-no questioning games cannot solve this problem

because, recall, we are looking now for a mathematical framework allowing us to do the

truth-evaluation properly. Unless we have got such a framework we are not in a position

20In order to construe a notion of semantic consequence for given formal language L one needs to

- fix a formal semantics M for that language

- take a collections AT of well-formed formulas of L (which may express axioms of a given theory T

formalized with L)

- specify the class M(AT ) of models of WT by evaluating formulas from AT in M

Formula φ is called a semantic consequence of AT , in symbols AT |= φ, iff φ is a tautology in M(WT ).
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to give to yes-no questions definite answers. The wanted setting cannot come from the air

but can be built by constructive methods. 21.

Recall that Hilbert realized the need to support his formal axiomatic approach by con-

structive methods considering this issue from a very different perspective: he meant to

apply constructive methods for proving the (formal) consistency of axiomatic theories syn-

tactically. Now we can see that Hintikka’s semantic approach to axiomatization does not

allow one to avoid using constructive methods either.

The above analysis suggests a view on the truth-evaluation as an advanced rather than

basic feature of mathematical and other theories. Unlike Topos theory HoTT in its exist-

ing form has no resources for doing truth-evaluation internally. It is however conjectured

that such an internal truth-evaluation for HoTT can be construed within a higher-order

topos structure in which HoTT would play the role of internal language. 22. This example

demonstrates my thesis that the constructive axiomatic method is more general and more

basic than the formal version of this method, which requires the truth-evaluation. This

is hardly surprising since mathematics and science not only seek for truths and logical

relations between those truths (knowledge-that) but also for effective methods of doing this

and that knowledge-how [10]. From a historical viewpoint it is obvious that the knowledge-

how is a more primitive form of knowledge, which can exist outside any scientific context.

When science is brought into the picture there is an unfortunate tendency to isolate the

21In the last quote Hintikka hints that the relevant notion of logical (=semantic) consequence can

be made more precise by introducing some “new logical principles” suggested by the intuitive thought-

experimentation with mathematical structures. If the application of such new principles in its turn involves

the truth-evaluation then we get into a circle and make no progress. If these principles regulate the thought-

experimentation directly without using the truth-evaluation then these rules qualify as constructive in the

appropriate sense. If the second guess is correct then my view on the axiomatic method is not so different

from Hintikka’s after all. Still the following difference remains: I don’t think that constructive principles so

obtained are necessarily logical because they can be specific for a given theory (just as Euclid’s Postulates

are specific for his geometrical theory).
22In [7], p. 12, the authors state that there is a “general consensus” that this conjecture is correct albeit

the details remain to be worked out.
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relevant knowledge-how either in a special domain of applied science (and applied math-

ematics) or in social, psychological, educational, pragmatic and other contexts of doing

science, which do not include scientific (and mathematical) theories as such. In this paper

I have shown that this cannot work for axiomatic mathematical theories because in this

case the two types of knowledge are interlaced already at the atomic level of theoretical

reasoning.

The case of experimental natural sciences prima facie appears similar but obviously requires

a separate study. Leaving this subject for a future research I would like to conclude this

paper by a remark concerning applications of axiomatic method in empirical sciences. Such

prospective applications play a significant role in Hintikka’s conception of axiomatic method

[22]. The axiomatization of physics also always remained in the focus of Hilbert’s work

[5]. Nevertheless during the past century Hilbert’s project of axiomatizing physics didn’t

show any significant progress. In spite of efforts to axiomatize some ready-made physical

theories made mostly by logicians and philosophers, the axiomatic approaches in physics

today remain quite far from the mainstream developments in this discipline. Theoretical

predictions in physics and other sciences are commonly made without using formal logical

methods. I believe that this apparent failure of the formal axiomatic method in physics can

be explained by the fact that this method leaves the constructive mathematical thought-

experimentation (which matters in physics and other experimental sciences at the first place

as Hintikka also recognizes it) without a proper control and proper regulation. Earlier in

this Section I explained why the formal approach cannot provide the needed regulation by

itself. Since the constructive axiomatic method provides this wanted regulation, one may

expect that this version of axiomatic method can be more useful in today’s physics.

A historical observation that all earlier successful applications of the axiomatic method

in physics used constructive (rather than formal) version of this method (recall Hilbert’s

examples: Newton, Clausius) makes this expectation only more reasonable. An obvious

reason why the constructive axiomatic method has been never applied in the 20th century

physics is that during this period of time this method was known only in its technically
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outdated form. This is why in the beginning of the 20th century it seemed that the only

possible strict axiomatic treatment of then-recent theories such as Lobachevskian geometry

could be only a formal axiomatic treatment. However as I tried to show in this paper

later technical developments changed this perspective. This is why today the prospects of

(constructive) axiomatic method and other related logical methods in physics and other

experimental sciences are much better [2], [49], [50].
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[4] J. Cavaillès. Méthode axiomatique et formalisme - Essai sur le problème du fondement des
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[44] J. Piaget. Méthode axiomatique et méthode operationnelle. Synthese, 10(1):23–43, 1956.

[45] A.-V. Pietarinen and G. Sandu. If logic, game-theoretical semantics, and the philosophy of science. S.

Rahman, J. Symons, D. Gabbay and J.P. van Bendegem (eds.) Logic, Epistemology, and the Unity of

Science, Springer, 1:105–138, 2004.

[46] Proclus. Procli Diadochi in Primum Euclidis Elementorum Librum Commentarii ex recognitioni God-

ofredi Friedlein. Princeton Univ Press, 1873.



ON CONSTRUCTIVE AXIOMATIC METHOD 31

[47] Proclus. A commentary on the first book of Euclid’s elements. Translated by G. R. Morrow. Teubner,

Leipzig, 1970.

[48] A. Rodin. Axiomatic Method and Category Theory (Synthese Library vol. 364). Springer, 2014.

[49] U. Schreiber. Quantization via Linear homotopy types. arXiv: 1402.7041, 2014.

[50] U. Schreiber and M. Shulman. Quantum Gauge Field Theory in Cohesive Homotopy Type Theory.

arXiv:1408.0054, 2014.

[51] J.P. Seldin. The logic of church and curry. D.R. Gabbay and J. Woods (eds.) Handbook of the History

of Logic, 5:819–894, 2009.

[52] V.A. Smirnov. Genetic method for scientific theory construction. Philosophical Problems of Contem-

porary Formal Logic, Moscow, Nauka (in Russian), 1962.

[53] M.H. Sorensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, (Studies in Logic and

the Foundations of Mathematics vol. 149). Elsevier, 2006.

[54] A. Szabo. Beginnings of Greek Mathematics. Reidel Publishing Company, 1978.

[55] A. Tarski. Sentential calculus and topology. Logic, Semantics, Metamathematics: Papers from 1923 to

1938 translated by J.H. Woodger; Oxford at Clarendon Press, pages 421–454, 1956.

[56] V. Voevodsky. Univalent foundations. Mathematisches Forschungsinstitut Oberwolfach, Mini-

Workshop: The Homotopy Interpretation of Constructive Type Theory, Report N 11/2011, pages 7–10,

2011.

[57] V.Voevodsky. Introduction to the univalent foundations of mathematics (video recording

of lecture given at princeton institute of advanced studies december 10, 2010, 2010.

www.math.ias.edu/node/2778.


