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Eugene Wigner closes his famous paper “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences”’ with the following assertion: “The miracle of the
appropriateness of the language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We should be grateful for it and hope
that it will remain valid in future research and that it will extend, for better or for worse, to our
pleasure, even though perhaps also to our bafflement, to wide branches of learning.”

| believe that Wigner’ bafflement vis-a-vis the usefulness and “miraculous” adequacy of
mathematics, its language and concepts, for the formulation of the concepts and laws of physics,
and, as Mark Steiner later emphasized, sometimes for the discovery of these laws as well,
betrays hidden presuppositions which, by remaining hidden, block the way to the adequate
understanding of what should be straightforward scientific methodology.

My goal here is to bring to light these presuppositions and offer alternative views,
particularly on the nature of mathematics and physics, which | believe go a long way into
dispelling the fog of mystery that surrounds the efficacy of mathematics as an instrument of
scientific inquiry. Either mathematics and physics are what Wigner thinks they are, and the
applicability of mathematics in science constitutes indeed a “miracle”, or miracles do not
happen, and Wigner’s views on the nature of mathematics and physics are incorrect.

At the heart of Wigner’s bafflement lies the presupposition that whereas mathematics
is essentially concerned with its own concepts, devised for the most part without any particular
regard for empirical reality, physics is concerned with a world, the physical world, conceived as
an independent realm of being existing in itself and completely determined once and for all.
Wigner carves an abyss between mathematics and physics and it would be surprising if he did
not fall into it. There is indeed absolutely no reason why man-created mathematics should have
any relevance for the description of man-independent empirical reality, to the point of being
essential for even the formulation of its laws.

It is unquestionable that mathematics is a creation of man. Although some mathematics
is invented for the purpose of coping with some aspects of human experience (Wigner mentions
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technologies, situated at a pre-theoretical level of involvement of men with geometrical and
arithmetical forms), or the conveniences of science, mathematical concepts in general are free
creations which answer, for the most part, to mathematical conveniences only.

Physics, on the other hand, is concerned with an external world, and if the applicability
of mathematics in physics is to cease to be a mystery physical reality cannot be what Wigner
thinks it is, an independent reality existing in itself but “miraculously” willing to open its secrets
to mathematical concepts, to the point of demanding mathematics for its laws to be expressed.
If mathematics is part of the very fabric of nature, but happens to agree with man-made
mathematics, which is seldom created by observing nature, then there must be a link of some
sort, causal or otherwise (for example, pre-established harmony), between human
mathematics, a cultural product, and the mathematics of nature.

Some people have advanced a naturalistic explanation for the “miraculous”
appropriateness of human mathematics for the description of nature thus: since man was
naturally selected to survive in this world it is not at all surprising that man was also naturally
selected to create instruments for understanding how this world functions. The problem with
this line of reasoning is that among the strategies selected for the survival of men until the age
of reproduction does not include the understanding of, say, the laws of quantum mechanics. On
the contrary, the concepts necessary for the adequate explanation of quantum phenomena
conflicts with those developed for surviving in the world (for instance, the concept of the
trajectory of a body and the determinacy and unicity of trajectories given the dynamical
situation).

My approach here is a different one. Unlike Wigner and others, who never question their
realist, empiricist presuppositions, | take a transcendental idealist perspective of the type
proposed by the phenomenologist Edmund Husserl, particularly in his The Crisis of European
Sciences and Transcendental Phenomenology (1954/1936), where the intentional genesis of the
concept of empirical nature proper to modern science as created by Galileo and others from the
XVI century on is scrutinized. | claim, in agreement with Husserl, that the concept of nature
prevalent in the modern mathematical science of nature is an intentional construct elaborated
for specific methodological purposes. The scientific concept of empirical nature of modern
science is an abstract and idealized representation of some aspects of our immediate perceptual
experience of nature specifically designed for mathematical intervention.

Unlike Wigner, | do not presuppose that science provides a direct, non-intermediate
description of nature — a view whose corollary, and with it the “mystery” of the unreasonable
effectiveness of mathematics in science, is that the mathematics that science finds essential for

the description of nature must ipso facto be an essential aspect of nature, something intrinsic
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to it. | see three layers of reality where Wigner apparently sees only one; there is, | believe.
Nature “out there”, somehow causally responsible for a second layer of reality, perceptual
nature, which is either directly grasped through the perceptual systems or somehow inferred
from perceptual data with the help of our theories of nature (the part of perceptual nature
which is not directly perceived is nonetheless supposed to be, in principle at least, accessible to
immediate experience), and, finally, the mathematical construct by which science represents
some aspects of perceptual nature. | will call these levels, respectively, Nature, perceptual nature
and physical nature, by which | understand the conception of nature of modern physics (from
the XVI century on). Perception cannot reach physical nature; reason only — and with it,
mathematics — has access to it. But we must refrain from committing the Platonist mistake of
reversing ontological priorities, by enthroning physical nature as the true nature, identifying it
with Nature herself, and perceptual nature as only an imperfect glimpse of a reality that is
forever out of adequate grasp. The primary object of physics is physical nature, and through it
perceptual nature, which is how Nature presents herself to us. Mathematics is the language of
physics, but the distance — the intentional distance, | may say — between physical nature and
Nature herself blocks the way to the migration of mathematics from theory to reality.

| emphasized before that physical nature is an abstract and idealized version of some
aspects of perceptual nature, and | will be more explicit about this below, but it is not difficult
to guess what these aspects are. Perceptual nature presents herself as a combination of content
and form; although, contrary to logical empiricist tenets, | (or Husserl) do not believe that
elementary sense impressions of the sort “this red patch here now” are the sole immediate
given of perceptual experience, | assume that the hyletic, material content of experience can be
ultimately reduced to them. Perceptual experience is always constituted by matter, ultimately
reduced to sense data, and form — and it is not clear to what extent the forms discernable in
perceptual experience are intrinsic to Nature or, contrarily, imposed on sense data by
intentional operations of perceptual systems — but only the forms perceived in experience can
expect to find a place in physical nature. In this sense, physical nature is a formal-abstract
reduction of perceptual nature. In its formal aspects, perceptual nature is already, to some
extent, mathematical or proto-mathematical, but by idealization, i.e. by an intentional process
of exactification, the forms perceived in experience become fully mathematical; these idealized
forms constitute the original community of denizens of physical nature, the material content of
which being either dismissed as essentially subjective or preserved by being given objective
mathematical, that is, formal representatives.

But, and this is very important, physical nature can be arbitrarily enriched by forms that

are not the idealized versions of forms immediately given in perception, introduced therein in
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order to more adequately handle mathematically those which are. These forms can correspond
to forms in principle perceivable in experience, being then idealized versions of those, or be only
purely mathematical accretions to physical nature required on grounds of theoretical reason.
Mathematically enriched enlargements of what we could call the primordial physical nature,
that is, the physical nature that corresponds to actual perceptual experiences, provide in general
more adequate contexts for higher-level mathematization. Mathematical manipulations in the
theory, referring either to primordial physical nature or its formal enlargements, may point out
to facts that are in principle perceivable, but only indirectly and exclusively with respect to their
form. Thus mathematics play a heuristic role in science. The particular material content of
mathematically predicted phenomena, however, may not be a priori determinable if involving
mathematical terms which do not have predetermined interpretations, or univocally
determinable even in cases where there is a semantic context available for interpreting all the
mathematical terms involved. Finding a context of interpretation in perceptual nature or a
particular interpretation in a pre-given semantic context which conveniently idealized makes a
determinate mathematical prediction true counts as an empirical verification of this prediction.
But, most importantly, this is not a task for mathematics and depends heavily on the scientist’s
ingenuity.’

The possibility of arbitrarily extending physical reality into more and more
mathematically sophisticated domains accounts for the extraordinary power of mathematics in
our theories of nature, both descriptively and heuristically. But we must keep constantly in mind
that it is not Nature herself, standing out there, or even perceptual nature that mathematized
physics is describing, but a surrogate of the latter that only indirectly, and only by retracing
backwards the steps of the intentional constitution of physical nature, refers to the former.

This introduction presents in a rough sketch the main points of the alternative view that
| want to offer in contraposition to Wigner’s “naive” approach which, | believe, is the sole reason
why the qualification “unreasonable” is connected with the effectiveness of mathematics in the
empirical science. | offer a more detailed analyses of these views below, clarifying, in opposition
to Wigner’s views, what | take mathematics and physics to be, and more importantly, why the
former can be so essential for the latter.

Mathematics: For Wigner, mathematics is a science of concepts, which are either
devised for “describing” entities of experience (as, for instance, in geometry) or freely invented,

in which case they obey only the rules that were freely created for operating with them. The
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latter are more common “in advanced areas of mathematics, which play such an important role
in physics”.? This characterization can, | believe, be accepted without much reservation. The role
concepts play in mathematics, however, deserves closer scrutiny.

Concepts are tools of the understanding for categorizing objects (intuitions, perceptual
data and similar individuals) in order for them to be thought. According to Kant, we think
through concepts (KrV A19/B33). So, concepts must be able to circumscribe well-determined
realms of objects (or whatever counts as given to understanding). Sometimes objects are given
independently of concepts, which are abstracted from them and characterized through common
notes. But sometimes objects are given through concepts, which are both means of donation of
and tools for thinking about objects. In mathematics both cases occur. Theorizing about a
determinate domain of objects requires a language in which objects and concepts are denoted
by, respectively, nominal and conceptual terms. Explicit characterization of concepts also
require convenient linguistic and conceptual apparatuses; a conceptual characterization is
adequate if it succeeds in singling out descriptively the domain (or extension) of the concept,
either the objects from which the concept is abstracted or those the concept purports to
characterize. The explicit characterization of a concept should, then, at least ideally, univocally
determine the domain of the concept.

The categories of mathematics are essentially those of object and relation;
mathematical descriptions are essentially descriptions of objects in relation, linguistically
expressed, respectively, by nominal and relational terms. Mathematical descriptions can only
hope to fix a domain of reference by establishing relations among objects of the domain and
relations defined therein (in particular by means of properties, a particular type of relations). A
typical characterization of a mathematical concept is that of finite cardinal number by the
second-order Dedekind-Peano system of axioms.

The problems is that no linguistic characterization of any concept whatsoever,
particularly in mathematics, is ever adequate. Domains of objects can only be uniquely
determined intuitively, that is, by the immediate presentation of their objects in person, so to
speak; for example, in perception or some form of intuition. Of course, the intuitive realm of
numbers is a model of the Dedekind-Peano system, but it is not the only one. Even though

second-order arithmetic is categorical, we can always artificially concoct domains of number-
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like entities isomorphic to the realm of numbers proper that also satisfy the axioms. In order to
circumscribe the axiomatic characterization of the concept of number to its intended
interpretation we must resort to the original donation of this domain, numerical intuition. By
purely descriptive means, i.e. in language only, we cannot ever adequately characterize
concepts.

This is relevant when considering concepts that are not abstracted from intuitively given
objects but freely invented. As we saw, in this case, the concept itself is the means of donation
of the objects that fall under it. Let’s consider Dedekind-Peano axiomatic system from this
perspective. Numbers are no longer simply described by the axioms, they are instead defined by
them. The numerical domain is now, by definition, the domain of entities that satisfy the axioms.
But as we’ve just seen, the axiomatic characterization is unable to single out a domain of well-
determined objects, the numbers, and not mere number-like entities. The conclusion is that
freely invented concepts cannot ever be donator of objects, if by objects we mean well-
determined individuals. They can, at best, single out object-forms or, to use Husserlian
terminology, formal objects, determined as to form but indeterminate as to material content.

But there is something that the Dedekind-Peano system succeeds in characterizing,
namely, the way in which the objects in any of its interpretations relate to each other. I will call
the properties of a structured domain of objects, that is, a system A = <A, R> formed by a
collection A of objects and relations R; defined therein, which only involve these objects with
respect to these relations structural properties of the domain. Structural properties are
expressible in any language that can be interpreted in the system A (and only in them); | will call
these descriptions structural descriptions. They can be classified with respect to the language in
which they are given, first-order, second-order, etc. Structural properties are formal in the sense
that different structured systems can have the same structural property. The axioms of
Dedekind-Peano express formal-structural properties that are shared by an entire family of
isomorphic structured systems, and these only. | will call such a system a structure. A structure
is, then, a class of isomorphism or, on a more philosophical perspective, an abstract entity, a
form, which is indifferently embodied in any member of the class (and which can be intuited
provided the necessary intuitive act is performed, abstraction in this case) or “emptily” meant
by a categorical system of axioms. The Dedekind-Peano axiomatic system, in particular,
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characterizes the “numerical” w-structure determined by the “successor” relation (which can be
embodied in objectual domains that have nothing to do with numbers or the successor relation
proper, hence the scare-quotes).

Conceptual descriptions in mathematics (but not only in mathematics) boil down to
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assisted by intuition, which fix intended domains ofapplication4; the fact, however, remains that
descriptions of concepts, no matter how accurately carried out, are only formal-structural
descriptions; they hold in the domains of the concepts envisaged but also in all domains
isomorphic to them. This alone accounts for the range of applicability of mathematical concepts,
which often extrapolate the context in which they were created.

In short, to the extent that mathematics involves language and linguistic
characterization of its concepts, it must be content with expressing only structural properties of
conceptually circumscribed domains of objects. It is then more appropriate to characterize
mathematics as the science of structures or families of structures which are either abstracted
from intuitively given structured domains or freely invented.

Physics: According to Wigner, “the physicist is interested in discovering the laws of
inanimate nature”. This pretty much characterizes physics for him; inanimate nature is
submitted to laws, the role of physics is to discover these laws. This simple, apparently
undisputable claim harbors presuppositions that are so ingrained in our way of thinking that are
not even noticed. It is my belief that only by uncovering the many layers of hidden
presuppositions beneath our conception of nature that we can hope to dispel the “mystery”
that surrounds the effectiveness of mathematics in physics. Here are some:

1. The realist presupposition that nature is a given, which perception and understanding
simply stumble upon.

2. The presupposition that nature is submitted to /aws.

It follows from (1) and (2) that the laws of nature are intrinsic to nature and have nothing
to do with our particular way of experiencing nature and categorizing our experience of nature.
Nature is uncritically taken as a closed domain of being, completely determined in itself and
submitted to laws, the task of the natural scientist being that of discovering the laws of nature.

Let’s consider the first presupposition. Nature is a given which we apprehend in
perception; we perceive Nature herself. According to this presupposition, perception has no part
in shaping nature as we perceive it. Evidences, however, indicate that the perceptual systems
play an active role in perception. Indeed, the first task of the senses is to filter; our eyes are
sensitive to only a small fraction of the electromagnetic spectrum; our ears can perceive only a
reduced range of frequencies, and so on. But, more importantly, the perceptual systems operate
in association with pre-categorical, built-in intentional systems whose task is to make sense of
sensorial impressions. Instead of an incoherent mass of data coming from the senses, we

perceive objects, objects in relation, patterns of objects, phenomena, processes, etc. Perception
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is an intentional act, and nature as perceived — that is, perceptual nature — seems to bear to a
considerable extent our imprint. If this is true, the immediate object of physics is not nature “out
there”, simply given to us — what | called earlier Nature herself —, but perceptual nature,
intentionally elaborated by us, or still something erected on the basis of perceptual nature.

In fact, as history shows, the true object of physics, at least from the XVI century on, is
not primarily perceptual nature, but a mathematical substitute of it which | call physical nature.’
Regardless of whether perceptual nature already bears the imprint of particularly human forms
of perceiving or else, whether perception simply mirrors nature, the fact is that we perceive
patterns, forms, or structures in nature. Whether some of these structures, at least, are
contributions of our perceptual system in the processing of the hyletic material coming from the
senses or whether the structures we perceive are all intrinsic to nature, the fact remains that
we perceive structures in nature. And who says structure says mathematics. Mathematics is the
science of structures, either freely conceived or intuitively presented to consciousness; the
creation of mathematics as an intellectual endeavor so early in human history testifies to the
ubiquity of structures in human experience, our capacity to consider them abstractly and our
willingness to invent more.

Some perceptual structures stand out so conspicuously that they invite mathematical
investigation; for example, the proto-geometrical and topological structures of perceptual
space. But, more often, the patterns that we perceive in nature can only become fully
mathematical by being idealized; perceptual space, for example, only admit a geometric
structure proper, including a metric structure, after being idealized into a manifold of
mathematical points.® Privileging structures of experience that admit, either directly or upon
idealization, a mathematical treatment was a novelty introduced in science at the beginning of
modern times (by Galileo, Descartes, and Newton, among others); this radically changed our
conception of nature, physical nature, a mathematical manifold accessible only to mathematical
reason replacing perceptual nature as the immediate object of concern. Two intentional acts
stand between perceptual nature and the conception of nature of modern physics, physical
nature, abstraction, which brings relations and correlations, that is, form instead of content, to

the focus of scientific interest, and idealization, which makes forms discernable in perception
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into mathematical forms properly (thus reducing forms which are actually perceived to rough
approximations of supposedly more real mathematical forms).

The matter of perception (stuff like sounds, colors, etc.), however, is not simply
dismissed but given objective representatives in an overall scheme of causations and
correlations reducible to mathematical determinations. Colors, for instance, among other
“secondary qualities”, are taken as mere subjective impressions “caused by” a determinate type
of radiation that shows up in the explanatory scheme of science as a mathematical “field” filling
empty space and characterized by a set of mathematical parameters.

Let’s now briefly consider the presupposition that nature is submitted to laws.
Obviously, no amount of evidence can count as either a proof or a disproof of this
presupposition; so, it cannot have the status of a scientific hypothesis. Particular laws can be
hypothetical but the presupposition that nature abides to the rule of law cannot. But if not a
hypothesis, what then? The answer is straightforward: the lawfulness of nature is also a
component of the intentional constitution of our scientific conception of nature, it is how we
conceive nature to be. The presupposition stands no matter how often we are disappointed in
submitting nature to laws simply because science depends on it. In physical nature the laws of
nature are, of course, mathematically expressed, and the concepts for adequately expressing
them often require mathematics in an essential manner (the examples are legion, instant
velocity, entropy, fields of different types, scalar, vector, tensor, observable in quantum
mechanics, etc., etc.).

By ignoring the intentional process involved in the modern conception of empirical
nature and by reinterpreting the historical development of this process as the unveiling of the
true nature of nature (Galileo appearing in the process not as the inventor of a method for
investigating perceptual nature, but as the discoverer of a truer nature behind the given of
perception only accessible through mathematics, the famous Galilean metaphor about the book
of nature) Wigner takes by a given what is only a product. The “mystery” of the applicability of
mathematics in physics derives from this identification. Obviously, mathematics must have a
major role in the investigation of the mathematical manifold that physical nature is conceived
as being, but insofar as one sees physical nature as a given and mathematics as a product of
human culture developed for the most part without paying particular attention to how nature
is, one is inevitably faced with a puzzle. In fact, the applicability of mathematics in physics is only

an aspect of a more general logical problem, interesting in itself, that of the applicability of



mathematics in mathematics, which boils down to the logical problem of how different
structures and their theories relate to each other.’

The applicability of mathematics in physics: Wigner recognizes the following
applications of mathematics in physics:

1) As a tool for drawing consequences within the mathematical theories of nature. This,
of course, requires that nature has already been mathematized so theories of nature are
mathematical theories. This, as Wigner says, is a straightforward use of mathematics in science
that poses no problem.

2) As an essential conceptual instrument for the formulation of the laws of nature. For
Wigner, this is how mathematics becomes master of the field. Wigner gives as example Dirac’s
formulation of the laws of quantum mechanics: there are two basic concepts, states and
observables, the former are vectors in a Hilbert space, the latter are self-adjoint operators, the
possible values of observations are proper values of these operators, and so on. The spaces of
guantum mechanics are complex spaces and, as Wigner observes, the theory of complex
numbers and analytic functions seem “destined to play a decisive role in the formulation of
quantum theory”. Wigner sees a “miracle” here, similar, he says, to the double “miracle” that
nature is submitted to laws and that that the human mind has the “capacity to divine them”.

Before proceeding, let’s consider the miraculous character of the existence of laws of
nature and our capacity to divine them. As we have seen above, the lawfulness of nature is an
intentional aspect of the constitution of the concept of nature, not something that we
discovered by observing nature (regularities that are effectively observed depend on a way of
looking and a selection of what to look at and cannot per se justify the presupposition that
nature’s behavior accords to laws). Moreover, our modern conception of physical nature was
devised so as to be accommodated within an essentially mathematical model of explanation,
which fits our resources of explanation. Wigner sees “miracles” where he should see intentional
action. The best explanation Wigner can offer of this “miracle” is to remember Einstein rather
suspicious claim that mathematics is driven by a notion of beauty and the theories of nature
that we are willing to accept are the beautiful ones. Of course, anyone who has so far attempted
a characterization of mathematical beauty or elegance has failed, and, moreover, there are

plenty of ugly, but nonetheless useful mathematics.

" Husserl reserved a whole chapter of formal logic for this task, formal ontology, of which formal
mathematics is a part (see in particular his Formal and Transcendental Logic)
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But Wigner has a stronger claim, namely, that the language of mathematics is the correct
language of nature. He gives two cases in which mathematics seems to offer the natural context
for a law of nature to be expressed:

a) Newton’s law of gravitation. After Galileo and others had established the law of
falling bodies, Newton extended it to a law of gravitation which is much more accurate than
Newton could have possibly expected given the experimental data of the time. Moreover,
Newton’s law depends essentially on non-intuitive higher mathematical concepts such as that
of a second derivative. Of course, by choosing to express the law of falling bodies as a
mathematical relation involving space and time (a quadratic function), Galileo chose a style of
explanation (in particular, by mathematizing the continua of space and time beyond the limits
of accuracy of the means for measuring time and distance of the time), and prepared the field
for analogous explanations. Now, a body in orbit is a limit case of a falling body, and within the
context of explanation inaugurated by Galileo it is to be expected that the trajectories of orbiting
bodies (ellipses or conic curves in general) should belong to the same class of curves of falling
bodies (parabolas). Newton genius revealed itself in offering a unifying dynamical principle to
movements both in earth as in heaven and in the development of its theory well beyond the
point where his predecessors (Boyle, Hooke, and others) had arrived.

Wigner calls our attention to the accuracy of the law of gravitation. By accuracy he
means that the law holds beyond the limits of its evidential basis. The law is confirmed by much
more refined evidence than that available at the time it was “discovered”. By being an ideal law,
involving, that is, idealizations concerning in particular the structure of space and time, Newton’s
law is, of course, like all laws of mathematical physics, accurate only up to certain limits of
approximation. As our means for measuring physical magnitudes improve, “errors” vis-a-vis the
law are more likely to appear. A law is more or less accurate depending on how soon “errors”
are detected. Any empirical law is accurate until it isn’t, and Newton’s law is no exception. Being
ideal laws empirical laws never perfectly match the perceptual data available and there usually
is a range within which data can vary and still accord to the law. It is like drawing a line on the
plane that crosses a number of pre-established regions; in general, the line that is chosen still
satisfies the condition even when the regions are narrowed within certain limits. The precession
of Mercury’s perihelion, however, to name one example, was from the beginning a reminder of

the limits of accuracy of Newton’s law.
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But mathematical accuracy cannot always be equated with correctness, as Wigner
himself recognizes.? Let’s consider an example. The Babylonians and other peoples had from the
earliest antiquity amassed an impressive quantity of numerical data related to the motion of
heavenly bodies. These data concerned movement and relative position. Many different
mathematical models, within different conceptual schemata, were offered throughout history
to make mathematical sense of them. Although differing in many aspects, different models,
Ptolemy’s (geocentric), Copernicus’ (heliocentric) or Tycho Brahe’s (mix of heliocentric and
geocentric) were sufficiently accurate to both make sense of the data and allow for good
previsions. Ptolemy’s model had to resort to things like epicycles, deferents, “excentric” points
and equant points to concoct a picture of reality that accounted for the “observable data”, but
did it with a sufficient degree of accuracy. From our perspective Ptolemy’s is a wrong picture of
reality, but it is nonetheless good enough to save the phenomena. In fact, any amount of
astronomical data concerning the movement of bodies in the solar system can be “saved” to
arbitrary degree of accuracy within Ptolemy’s system by using enough epicycles.

Norwood Russell Hanson says:’

There is no bilaterally-symmetrical, nor excentrically-periodic curve used in any branch
of astrophysics or observational astronomy today which could not be smoothly plotted
as the resultant motion of a point turning within a constellation of epicycles, finite in
numbers, revolving upon a fixed deferent

Hanson’s paper concludes with the following remark: “[...] Ptolemy’s mathematics was,
in principle, as powerful, at least for the special problems before him, as is our own in dealing
with the same problems”. So, the accuracy of mathematical theories vis-a-vis either the data
available at the moment of their elaboration or data which become available later, no matter to
which degree, cannot count as an indication of the ability of these theories to “miraculously”
describe empirical reality accurately.

Wigner is also puzzled by the fact that Newton’s law involves highly non-intuitive
mathematical concepts such as that of a second derivative. The fact, however, is that this notion
does not have anything to do with our intuitive, perceptual experience of nature, only with a
mathematical surrogate of it. Mathematical concepts do not apply to nature as perceived, only
to nature as intentionally conceived, that is, physical nature, an abstract, idealized, and often

mathematically enriched version of the former.

8 Wigner provides some examples in his paper, in particular the free-electron theory. He says, referring to
physical theories, that “their accuracy may not prove their truth and consistency”.
° “The Mathematical Power of Epicyclical Astronomy”, Isis 51(2): 150-158, 1960, p.154-5
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Another feature of physical laws that impresses Wigner is the happy association of
limited scope with accuracy. Mathematics, he believes, has the power to isolate particular
aspects of reality and then describe them with astonishing accuracy. | have already showed that
accuracy is not an indication of truth, in some sense of truth adequate for mathematical laws of
nature (which obviously involves more than mere adequacy to the data). Now, as shown above,
the constitution of physical nature involves selecting from perceptual nature precisely those
features that can be mathematically represented. Mathematical laws of nature, which express
mathematical relations among mathematical idealizations and mathematical representatives of
specific features of experience, have the scope we give them. The surprising fact is that these
laws can sometimes be extended to domains other than those in which they were established,
even if prima facie they do not even make sense in these new domains. Wigner provides
examples of this phenomenon. First, the quantum rules devised empirically by Heisenberg were
given a mathematical formulation in terms of matrices by Born and others. The mathematical
theory was then applied to problems other than those that originated the empirical calculus in
the first place (even to problems for which this calculus was meaningless), proving to be in fine
agreement with the empirical data. Second, the theory of the Lamb shift, a mathematical theory
with practically no empirical support, which, nonetheless, proves to be extremely accurate in
confront with experience. In both cases, according to Wigner, one gets out of the mathematical
theory more than one has put in, and this, he thinks, defies understanding and explanation. |
beg to differ.

The most relevant fact to be noticed is that mathematical laws can only express formal-
structural properties of their domains, which, remember, are mathematical domains where
certain features of experience can be represented, but only in idealized form. Mathematical laws
are formal laws. As Hermann Weyl put so candidly, mathematics can only express what is most
superficial in experience, its formal properties, which different domains of experience can share.
It is a trivial fact that even radically different contexts can have the same or similar formal
properties. So, there is no a priori reason why particular mathematical domains cannot (1)
represent other aspects of the same realm of experience for which they provides adequate
representation or, (2) be formally similar to other mathematical domains, representing different
realms of experience. The fact that laws of physical nature, adequate for particular realms of
experience, happen to be adequate for different realms of experience, which may not have
anything to do with the original ones, is a trivial consequence of the fact that the laws of physical
nature are formal-structural laws, which different domains can well share. Hence, the fact that
a particular law of physical nature can be extended to realms of experience other than those for

which it was designed should not be a source of surprise, for any such law can in principle,
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although not necessarily be so extended. To get more from mathematics than what was putinto
it is a happy, but explainable and understandable fact.

There is a third, and to some more puzzling aspect of the applicability of mathematics in
science, the heuristic uses it can be put to. Let’s consider a paradigmatic case, Maxwell’s
supposed “discovery” of displacement currents and electromagnetic waves, discussed by Marc
Steiner.'® Steiner is a philosopher who turned Wigner’s puzzlement concerning the effectiveness
of mathematics in science into a challenge to naturalism, the view, he explains, that man does
not have a privileged position in the natural scheme of things. For him, the effectiveness of
mathematics, especially as a heuristic instrument in science, defies a naturalist conception of
nature and man’s place in it. This is Steiner’s account of Maxwell’s discovery of the concept of
displacement current: ™ noticing that the original law of Ampere'* contradicted the equation of
continuity, which expresses the conservation of electric charge®®, Maxwell saw fit to add another
term to Ampere’s law, call it X'*. Now, the equation of continuity implies that the divergence of
X is equal to the time derivative of the volume density of electric charge™; it then follows from
Poisson’s equation®® that X is proportional to the time derivative of the electric field". So, if this

|II

term is allowed to join the density of “real” (i.e. conduction) electric flow in Ampere’s law,
electric charge is conserved. Ampere’s law now has two terms, one due to the conduction and
another to the displacement current™. The additional term, moreover, as Maxwell clearly saw,

implies the existence of electromagnetic waves (later shown by Hertz in fact to exist).

10 uThe Application of Mathematics to Natural Science”, The Journal of Philosophy, 86 (9): 449-480.

™ |n Steiner’s own words (op. cit. p, 458): “Maxwell’s procedure in writing down his immortal equations
provides another example of this strategy. Once the phenomenological laws of Faraday, Coulomb, and
Ampere had been given differential form, Maxwell noted that they contradict the conservation of
electrical charge, though the phenomenological laws were strictly in accord with the evidence then
available. Yet, by tinkering with Ampere’s law, adding to it the ‘displacement current’, Maxwell
succeeded in getting the laws actually to imply charge conservation. With no other empirical warrant
(Ampere’s law stood up well experimentally; on the other hand, there was ‘very little experimental
evidence’ for the physical existence of a ‘displacement current’ [these words are Maxwell’s own; he
however is not referring to the existence of a displacement current, but to the fact that, like “real”,
conduction currents, displacement currents can also produce magnetic effects JdS]), Maxwell changed
Ampere’s law to read that (the ‘curl’ of) the magnetic field is given by the sum of the ‘real’ current
and the ‘displacement current’. Ignoring the empirical basis for Ampere’s law (magnetism is caused by
an electric current), but by formal mathematical analogy, Maxwell now asserted the law even
for a zero ‘real’ current! Thus did Maxwell predict electromagnetic radiation, produced later by
Hertz”.

2 curlH = 4mt/ci, where i is the density of electric flow, i.e. the amount of electric charge crossing per unit
time a unit surface perpendicular to the flow, from which it follows that divi= 0.

B divi+ 0p/0t, p = volume charge density.

" The law now reads: curl H = 4r/c (i + X).

13 div X = dp/at

1 divE = 4mp, and so div OE/dt = 4ndp/adt.

X = 1/4n0E/dt.

18 curl H = 4m/ci + 1/c 9E/ot, 1/c(0E/0t) being the displacement current.
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This line of reasoning, Seiner claims, is purely formal; supposedly, there was no physical
or empirical reason for the introduction of the displacement current. Therefore, he concludes,
Maxwell’s heuristic methodology relied solely on second-order mathematical analogies.
However, even if this were a historically faithful account (which it isn’t) Steiner’s conclusions
would not be warranted, for if this were how Maxwell hit on the notion of displacement current
he would have had a physical motivation for it, namely, that electric charge must be conserved.
Mathematical manipulations would have been used only to find out the form — and only the
form — the flow of “missing” charge took.'® They would have shown him that the density of this
flow had to be formally equivalent to the time derivative of the electric field, which could then
be seen as formally equivalent to the density of an electric current, the displacement current,
even in the absence of conduction currents.

The above, however, is an unfaithful account of historical facts; the notion of
displacement current was in fact naturally required by Maxwell physical model of
electromagnetic phenomena; if anything, his discovery was based on formal analogies between
physically different domains of experience. Electromagnetic action has, of course, mechanical
effects. This naturally led Maxwell to conceive of a mechanism —in the literal sense of the term
— that would produce these same effects; that is, to the elaboration of a mechanical model of
electromagnetic phenomena (see Maxwell’s “On Physical Lines of Force”, 1861-2). The basic
requirement was, of course, that the model had to behave in a formally equivalent manner to
electromagnetic action with respect to its mechanical effects. In this model magnetic flux, in
both conductor and insulators (including the vacuum), is directed along rotating vortex tubes;
space (including empty space, it is important to emphasize, which was not seen as empty at all,
but filled with ether) was, Maxwell imagined, filled with these rotating tubes of magnetic flux,
between which he inserted “idle wheels” in order to eliminate friction. He identified the
movement of these wheels with electric current. In insulators, they wouldn’t be able to move
freely, but could oscillate around their position of equilibrium. Maxwell then used this model to
account also for the storage of electrical energy in insulators, which, of course, had to be done
in some mechanical form. He supposed that in dielectrics the electric particles, when placed
under the action of an electric field, would be forced to move from their equilibrium position —

they would be displaced — thus storing potential mechanical energy.

¥ Thisisa way mathematics can typically play a heuristic role in science, namely, by rendering explicit the
formal consequences of certain general principles, such as the conservation of electric charge, in this case,
or the principle of conservation of energy, as Michel Patty (La matiére dérobée. L’appropriation critique
de I'objet de la physique contemporaine, Paris: Editions des Archives Contemporaines, 1989, particularly
chapter IX, entitled “Modéles mathématiques et réalité physique, pp. 319-57) claims was the case in the
“discovery” of the neutrino by Pauli.
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Time-dependent electric fields would then give origin to small displacements appearing
as small electric currents that would propagate as an electric current through the medium.
Displacement current had been discovered. Since the displacement is proportional to the
electric field E, the displacement current, i.e. the time derivative of the displacement is
proportional to the time derivative of E. The density of displacement current can then be written
as a multiple of 0E/dt and allowed to join the density of conduction current in Ampere’s law. In
short, for Maxwell, a variable electric field would, even in the vacuum, even in the absence of
conduction currents, simply because his physical model of reality would so require, originate a
variable displacement current.

But the elaborate mechanical machinery Maxwell devised is a fiction; it does not
correspond materially to reality’®. What does the fact that reality can be modeled by
heuristically useful fictions tell us about the nature of physical theories and the applicability of
mathematics? Since reality and Maxwell’s model are only formally similar, formal similarities
must figure prominently in the answer.

According to Maxwell (Analogies in Nature, 1856), we can investigate a realm of
scientific interest by investigating another, materially different from, but formally identical to it,
because science is interested in relations among things rather than things themselves. If
phenomena we know well and phenomena we know less well (for example, mechanical behavior
of fluid vortex tubes vis-a-vis mechanical behavior of electromagnetic action) have at least some
formal properties in common it is reasonable to suppose they may have more formal properties
incommon. It is then a good idea to investigate the matter; it may pay off or it may not. If formal
identity extends further or deeper than what was at first apparent (as we are justified to expect)
it probably will*%.

But, since formal similarities are all that matters in the modeling of reality, physical
models of the type Maxwell used play only the role of physical supports of formal structure and
can be substituted, often with advantage, by mathematical models.?” So, purely mathematical

manipulations within mathematical models of some conveniently idealized aspects of

20 Maxwell is quite clear about the purely formal relevance of his mechanical model: “the conception of a
particle having its motion connected with that of a vortex by perfect rolling contact may appear somewhat
awkward. | do not bring it forward as a mode of connection existing in Nature [...]. It is however a mode
of connection which is mechanically conceivable and it serves to bring out the actual mechanical
connection between known electromagnetic phenomena.” (Scientific Papers, vol. 1: 486, apud M. Longair
Theoretical Concepts in Physics: An alternative view of theoretical reasoning in physics, Cambridge: CUP,
2003: 88-98, p. 97)

2! Maxwell’s model was admirably successful in accounting for all electromagnetic phenomena known at
the time.

2 Physical models (like Maxwell’s) are superior only with respect to visualization.
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experience can display unexpected heuristic virtues, not by directly pointing to hitherto
unknown possibilities of experience, but by revealing particularly interesting formal properties
of the models, whose material bases may consist in hitherto unknown possibilities of
experience. It must be emphasized, however, that the connection between formal properties of
mathematical models of reality and particular material properties of perceptual nature can only
be verified a posteriori, by inquiring nature directly in experience, never by simply playing with
the mathematical formalism, exclusively concerned as this is with properties for which there are
always different possibilities of material instantiation.

Itis interesting to see what Maxwell himself has to say about his methodology.

He says in the essay Analogies in Nature:*

Whenever [men] see a relation between two things they know well, and think they see
there must be a similar relation between things less known, they reason from one to the
other. This supposes that, although pairs of things may differ widely from each other, the
relation in the one pair may be the same as that in the other. Now, as in scientific point
of view the relation is the most important thing to know, a knowledge of the one thing
leads us a long way towards knowledge of the other.

Maxwell had, then, a perfectly simple explanation for the success of formal analogies in
scientific heuristics. Models, whether physical or mathematical, model because they are
indistinguishable from reality with respect to form (or underlying structure; Maxwell’s
“relations”), at least as far as the model "works". Now, if a model shares with perceptual reality,
conveniently idealized, a core of common formal properties, it is reasonable to explore the
model for hints of further formal properties of reality. The model can behave correctly beyond
the limits where it has already been proved formally correct. Maxwell’s successful mechanical
model of electromagnetic phenomena told him that variable electric fields generate
displacement currents; if these currents had the same magnetic effects of conduction currents,
electric charge would be conserved. Since electric charges must be conserved, the incorporation
of displacement current in Ampere’s law is physically justified (which does not mean that
further direct empirical evidence would no longer be required.

We can summarize Maxwell’s strategy thus: realms of scientific interest can be
investigated through others, materially different from but formally identical in whole or in part
with them because formal properties can be identical even when the things displaying these
properties are materially different, and if phenomena we know well display some formal
properties that are identical with formal properties of phenomena we know less well (for

example, mechanical behavior of fluid vortex tubes vis-a-vis mechanical behavior of

% published in 1856, apud M. Longair 2003, p.88.
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electromagnetic flux) it is a good idea to explore this formal identity for heuristic purposes. It
may pay off or it may not; if the identity extends further than already observed (as we are
justified to expect) it probably will.

It is now obvious how this strategy can be extended so as to allow mathematics to
play a relevant heuristic role in science. Since the utility of mechanical models is solely due to
formal similarities, material content being irrelevant, we can use instead mathematical models.
It is then possible, but only possible, that formal properties of perceptual nature reveal
themselves in the mathematical formalism devised for the investigation of physical nature
before they show up in perception. The formalism, however, particularly if it involves terms
that are not given a priori meaning, cannot by itself determine either whether formal
possibilities can be effectively materialized perceptually or, in case they are, in which

particular states-of-things.

| think that | can already conclude. My point is that the supposed mystery
involved in the applicability of mathematics in physics, in any shape or form it takes,
particularly as a heuristic instrument, which puzzled Wigner and Steiner, is in fact a
pseudo-problem rooted in philosophical partis-pris. These authors take a realist stand
with respect to the question that prejudges the issue. They confound physical nature, a
somewhat simplified and idealized representation of certain aspects of perceptual
nature, those precisely that can be given mathematical expression, devised for
methodological purposes, with Nature herself, taking for a given what is only an
intentional construct.

Perceptual nature has, of course, already, to some extent, a mathematical
structure, simply because we perceive Nature as a structured system and mathematics
deals with structures, be they materially instantiated in given systems or emptily
conceived in abstract. To suppose that the structures perceived in empirical experience
belong to Nature out there, existing independently of perception, is a philosophical
thesis we have no reason to accept uncritically. But even if they are indeed independent
of the action of perceptual systems, perceptual structures are usually mathematically
too poor to invite a more sophisticated mathematical approach; in general only by the
action of idealization they become fully mathematical.

By idealization perceptual nature is turned into physical nature, a mathematical

manifold, which obviously invites a mathematical approach, the raison-d’étre of the
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whole process. Mathematics is intrinsic to physical nature simply because physical
nature is tailor-made for mathematics. As any mathematical manifold, physical nature
can be further enriched mathematically, inviting ever more sophisticated mathematical
treatment. This alone accounts for the heuristic efficacy of mathematics in physics, in
no measure different from the efficacy of mathematics in mathematics itself. But if in
mathematics mathematical facts stand no matter what, in science they require being
interpreted as phenomena in perceptual nature and empirically verified. No
mathematical indication of hitherto unknown phenomena —which invariably occur at a
purely formal-structural level only — can count as an outright “discovery” of anything in
perceptual nature independently of, first, being given a material content, either in a
previously determined context or a new one, and being effectively perceived in the
context where its mathematical indicator is interpreted. Material content, as we saw, is
never predetermined theoretically, and so scientific discoveries can never be only a

matter of mathematical manipulations.
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