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Problem Domain of Computational
Fracture Mechanics (CFM)
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Basic Fracture Mechanics Problems
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® What is the residual strength as a function of crack size?

® What is the critical crack size!?
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® How long does it take for a crack to grow from a certain

initial size to the critical size!?
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Energetic Fracture Criteria

Consider a linear elastic bar of stiffness k, length L, area A, subjected to a force F

the work is
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This work will be completely stored in the structure
in the form of strain energy. Therefore, the external work and strain

energy are equal to one another
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“Linear” vs Fractal Fracture Mechanics
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[Alves L.M., de Lacerda L.A., 2012]
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Multi-* CFM Problems

Multicriteria

Involving comparative analysis of different crack propagation criteria basing
on different conceptual and physical models of fracture

Multiscale

requiring coherent modeling of crack initiation and impact across all scales
of the product

Multiphysical

examining wrecking effects jointly caused by mechanical forces, gravitation,
heat, electromagnetic fields, and chemical reactions

Multimaterial

being applied to products made from composite materials or highly
heterogeneous structures produced by additive 3D-printing technologies
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Finite-Element Method (FEM) to Solve
CFM Problems

(1) double nodes
® Developed in 1976 (Barsou\njb

® double nodes: crack edge

® singular elements: crack tip \ b5
® remeshing as crack grows
e v ey (2) singular
(3) remeshing [[ACH] ] R “Qloments
behavior
[Phu N.V,, 2012]

Hard inclusion

» Issues associated with FEM
making a mesh with edges conforming to the crack geometry is time-consuming
different physical forces are best computed over different incompatible meshes

meshes usually don’t compose over an assembly structure, esp. if constructed by

welding or the likes
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Alternatives to FEM

Strong Discontinuity Method
Extended Finite Element Method

R-adaptive methods, such as those based on Configurational Forces
or Universal Meshes

Meshfree methods, such as Scan&Solve™

Methods based on Peridynamics

Phase-field models in brittle fracture

Discontinuous Galerkin and Polytopal Finite Element Methods
Methods for Cohesive Fracture Models

Methods based on Functional-Voxel geometrical models
Movable Cellular Automatons Method
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Extended FEM (XFEM)

Belytschko et al 1999 set of enriched nodes
u”(x) :[Z Ny (x)uf] 4—[ Z Ny (x)q)(x)aJ]
les JES*®

enrichment part

CENAERO, M. Duflot [Phu N.VV, 2012]
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Meshfree Methods

Geometric
Representation
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Functional-Voxel Approach

T ‘FICOS(X
T AS(1+gd?) B

4

Divergence of normal
fromx1 axis

Divergence of normal

from x2 axis

Divergence of normal
from x3 axis

Divergence of normal
from x4 axis

Cosine function

N

11

Voxel decomposition of local geometric characteristics of a body surface a ‘
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Peridynamics
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Phase-field Models

2
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The Euler-Lagrange equations of the problem can be used to arrive at the following
strong form of the equations of motion

Do +b = pi
G= —M(ceTCs —G. (26Ac + - C))

2€

with
o= (c®+n)Ce

M is a mobility parameter and is assumed in this work to be constant and positive. As a
result, the adopted phase-field evolution model represents the classical Ginzburg-Landau
model. [Santos H., Silberschmidt V., 2014]
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Movable Cellular Automatons Method
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[Psakhie S.G. et al, 1995-2005]
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Thank you for your attention
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