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Introduction

”Quantum gravity has become the holy grail of theoretical
physics.”
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Physical Systems

A Physical Systems is represented by a family of mathematical
objects
(is that a definition, or a characterization of the system ?)
(ontological question: ; see Federico Zalamea)
Example : A [classical, non-relativistic] dynamical system:,
a symplectic manifold (phase space) with a function on it
(Hamiltonian)
Example : A given quantum [non-relativistic] system is defined
by a an algebra of operators, including the Hamiltonian, and
acting on an Hilbert space.

Quantization: going from one description to the other
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Physical Systems

A physical system is characterized (defined ?) (at least) by
- a set of states in which it can be
- and a set of observables, which characterize the specific
measurements that can be performed on the system.
(Observables may depend on the observer !)
A state may be defined as the collection of all the possible
outcomes of all possible measurements.
→ To express a theory (classical or quantum, relativistic to
not):
- identify the states and observables.
- recognize the physical (= real) state among the possible
states (equations).
- find evolution.
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Evolution

Two (very) different views
1) Non relativistic : evolution w.r.t. time.
At each instant of time, the system is in a given (non
relativistic) state.
Evolution = a sequence of transformations parametrized by
time: s(t0)→ s(t):
a one parameter group of transformations on the states:
s(t) = u(t) s(t0):
a (temporal) flow (unitary in quantum physics)
2) relativistic: there is no time to monitor evolution.
(a possible solution: chose an arbitrary parameter (time
function) which allow to treat the system like NR).
or covariant view: a relativistic state is the complete evolution
of the system; see examples
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Evolution: Examples

Example: the particle:
NR view : a position in space; which evolves with time
relativistic view: a trajectory in space-time= relativistic state
Example: the scalar field:
NR view : a function of space at each value of time
relativistic view: a function on space-time= relativistic state
Example: gravitation:
NR view = geometrodynamics : a metric h(t) on each spatial
section, evolving w.r.t. a time function;
relativistic view: a metric g on space-time= relativistic state
conflict ?
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Quantum Physics: States and
Observables

Observable acts on state: to give
- the possible outcomes (real numbers)
- a probability distribution for each outcomes → an
expectation value
Linear superposition of states, evolution, measure, reduction ,
collapse...
Hilbert space view and algebraic view are dual.

Other approaches: information (state = maximal info about a
system), topos (Isham), QFT as a functor (Atiyah):
geometrical category → algebraic category
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Hilbert space view

To a quantum system is associated an Hilbert space
pure state = ray = projector P
general state = convex lin combinations of pure states: density
matrix ρ =

∑
a a Pa

observable = Hermitian (self-adjoint) operators on H
spectrum = set of eigenvalues (=possible outcomes) ;
spectral decomposition A =

∑
a a Pa

( Pa = orthogonal projector onto eigenspace associated to a).
Unitary evolution and collapse (= reduction = measurement)
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Algebraic view

To a quantum system is associated an an unital
C?-algebra.
Observables are viewed as abstract self-adjoint objects.
The (algebraic) states appear as a derived concept: linear
forms acting on A.
The algebraic version of a pure Hilbert state ψ = linear form

ωψ : A→ 〈Aψ | ψ〉

acting on an operator A as expectation value.
alg. version of a density operator ρ (= general Hilbert state):

ωρ : A 7→ ωρ(A) = Tr(Aρ).

Gelfand Naimark Segal (GNS) construction of Hilbert space.
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Remark on States

Classical States: (in classical Hamiltonian mechanics)
pure state= point of the phase space Γ;
general state = pdf on the phase space Γ; (pure: distribution)
Observable = element of the commutative
C?-algebra A = C (Γ) of smooth complex functions.
Gelfand-Neimark: the state space is the G–spectrum of C (Γ)
Category equivalence : commutative C?-algebras – compact
spaces
generalizion to nc case → non-commutative geometry.
quantum physics = non-commutative phase space
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Evolution

Classical (non relativistic) Evolution:
hamiltonian (symplectic) flow in Γ = one param. group of
automorphism (symplectomorphisms) in A.
relativistic state = orbit of the flow.

Quantum (non relat.) Evolution
Unitary flow in state space.
relat. state = orbit, or constant state in Heisenberg picture.
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Classical gravity : gr

Algebra → Geometry
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Riemanian Geometry

Independent structures in a differentiable manifold
(= topological manifold with differential structure)
- metrics : symmetric tensors of type 2,0 (10 dofs);

→ [pseudo–]Riemanian manifold (M,g)
- connections = holonomy = cov. derivative =... (64 dofs)

each characterized by torsion, curvature, (40 symmetric)

Non-metricity ∇g . A metric manifold admits 24 metric
connections. Only one symmetric = Levi-Civita connection.
used in general relativity (parallel transport)
To g is associated a unique Levi-Civita connection ∇
Curvature of ∇ = Rieman tensor → Ricci, Einstein, scalar,...
These properties of ∇ are associated to g via ∇.
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Tetrads and cotetrads

An other way to express the metric!
Given a metric g , tetrad (= ON frame )
is a set of 4 vectors e = (eI ) verifying g(eI , eJ) = ηIJ .
A cotetrad (= ON coframe) is a set of 4 one-forms θ = (θI )
verifying g(θI , θJ) = ηIJ .
( the reciprocal: 〈θI , eJ〉 = δIJ).
Conversely, a cotetrad θ defines the metric g = ηIJ θ

I ⊗ θJ .
Cotetrads related by LLTs define the same metric.
one metric ≡ one family of cotetrads related by (local) Lorentz
transforms.
one metric ≡ a cotetrad modulo (local) Lorentz group.
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gr as classical field theory

find the metric g on a given differentiable manifold M
(given limiting conditions, given source of gravity)
source = matter-energy energy-momentum tensor T Einstein
equation: Einst = ct

Four options (at least) for dynamical variables of GR :
- g alone (Einstein–Hilbert);
- g and connection (assumed torsionless) (Palatini)
- cotetrad θ (modulo Lorentz) (Dirac)
- cotetrad θ (modulo Lorentz) and connection (assumed metric)

Also Covariant or canonical treatment.
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Problems for quantum gravity

• Diffeomorphism invariance

• problem of time; no Hamiltonian or symplectic structure

• No metric, no causlity

• No measure, no Hilbert space

• Observer ?

• One Universe : probabilistic interpretation ?
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Loop Quantum Gravity (LQG)

Three preliminary steps
- 3+1 formalism: → Geometrodynamics
split space-time as space evolving w.r.t. time [function] T;
Evolution of a Riemanian structure h on a fixed 3 manifold Σ.
- use metric g and connection ∇ (rather than metric alone)
as variable: connecto–dynamics
- replace metric by cotetrad: g  θ (with Gauss constraint).

→ new variables :
- lapse and shift indicate the shape of Σ in M: unphysical, not
dynamical → two constraints
- cotriad e and connection form ω, on Σ, evolving with T .
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LQG: a canonical system

→ canonical formalism ! ( symplectic)
Hamiltonian = sum of constraints (relativistic systems)
canonical variables: E (”electric field”) and ω.

→ Analogy with gauge theories: ω is a G– connection form ;
G = SO(3) ' SU(2), or Lorentz ' SL(2,C)

Topological theory with constraints (Plebansky formalism,
Holst action)

Loose covariance
Difficult to quantize because of constraints
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New variables

Difficult to quantize because of constraints →
New variables (canonical transformation)
involving a Barbero–Immirizi parameter
Original case β = i ( Ashtekar) ; → problems, but ... (Noui)
β ∈ IR: → LQG theory.

(ω,E ) (Aβ,E )

Poisson brackets {A,E}P = δ.
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Quantization?

Usual quantization (quantum mechanics) :
SYMPLECTIC → UNITARY
commutative → non commutative
Configuration space = C = {q}.
Phase space Γ 3 (q, p).
quantization : Γ → Hilbert space
wave functions ψ(q) = function C → C
Hilbert space L2(C): square –integrable functions

(requires a measure on C ) !!!

LQG: wave functions ψ(A)?
(unconstrained) config. space = A= space of

connections–form on the differentiable manifold Σ.
wave function ψ(A) ? : A → C ; through holonomies
Hilbert space ?
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Holonomies

A G–connection is represented by a g-valued connection form A
Integration of one-form, A along a path c →

∫
c A ∈ g.

Since exp(g) = G ,

holc(A)
def
= exp(

∫
c

A ∈ g) ∈ G ,

the holonomy of A along the path c : a function A → G .

Compose with a function G → C to obtain a function A → C.
Use basic functions (e.g., spherical harmonics) indexed by a
spin index j
To each (c , j) corresponds a basic wave function A → C.
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Wave functions

To each (c , j) corresponds a basic wave function A → C. To
form an Hilbert space, combine indexed paths (c, j) to form
spin networks (Rovelli, Smolin).
A spin network is a directed graph colored with spins:
each edge e is labelled by a unitary irreducible representation of
a [gauge] group,
thus a half integer number for the group SO(3) or SU(2);
each vertex carries an intertwiner in the tensor product.
Spin networks have been first developed by Roger Penrose, and
then rediscovered as the result of canonical quantization of GR
in Ashtekar variables. (lqg)
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Spin networks

Spin networks are embedded in Σ.
Abstract spin networks (not embedded) are wave functions
which solve the diffeomorphism constraint (Rovelli, Smolin) !.
An Hilbert space ?
define a inner product (complicate see below):
Spin networks form an ON basis for that Hilbert space
(however non separable).
This requires to enlarge the configuration space A A
generalized connections.
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Groupoids

A groupoid is a category with all morphisms invertible.
Groupoids form the [cartesian closed] category Gpd .
Groupoid morphisms = functors in Gpd .

A group G = a groupoid Ĝ with one object.
Gpd contains the category of groups as a full subcategory.

The Path groupoid PM of a manifold M is the first and
simplest way of regarding it as a category:
the objects are the points of M; the arrows the oriented
[smooth holonomy classes of] paths between ??points.
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Connections as holonomy functors

A local connection form A on M is a groupoid morphism:
smooth functor in Gpd :
path groupoid PM → gauge group Ĝ (its groupoid)
PM → Ĝ : c → holA : c → holc(A) = holA(c) ∈ G ,
(= holonomy functor = holonomy map)

Space of connection forms A is a category
There is a categorical equivalence

A ∼ SmoothFunct(PM ,BG ) = SmoothMor(PM , Ĝ )

gauge transformation = natural isomorphism between functors.

(A is a subcat of A def
= Mor(PM , Ĝ ) (non smooth): a

distributional extension of A. An object is a generalized
connection (connection when smooth).
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Graphs
(graph mean oriented graph.)

• See a graph Γ as a [path] groupoid PΓ: objects are
vertices; arrows are edges. PΓ is an object in Gpd .

• Inclusion of graphs ⇒ inclusion of graph-groupoids :
groupoid morphism i : PΓ ⊂ P ′Γ

• embedded graph in M= graph Γ with an inclusion functor
(morphism in Gpd ): F : PΓ → P(M).

• Embedded graphs form the cat L: an inductive family in
the cat Gpd ; admits P(M) as colimit ( inductive limit)
when Γ describes all embedded graphs.

• A connection form A in M has a pull-back in a graph Γ:
the groupoid morphism

AΓ : PΓ → Ĝ .

(the restriction of A to Γ : a connection-form on Γ).
Their space AΓ = {AΓ} is the restriction of A to Γ.
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Lachièze-Rey

Intro

Physical Systems

Evolution

Quantum

Hilbert

Algebraic

States

gravity

Riemanian
Geometry

Cotetrads

GR theory

Problems

LQG

Quantization

Groupoids

Holonomy
functors

Graphs

Hilbert space

Conclusion

Graphs

• For each Γ, AΓ is isomorphic to
∏
Ae = GE(Γ).

• The compact Lie group G admits the Haar measure dµ ⇒
AΓ ' GE admits the product measure dµΓ = (dµ)E .

• The AΓ admit the projective limit A, the space of
generalized connections ( discontinuous, but they assign
an holonomy to each curve.). It acquires naturally the
inductive limit of Haar measures: the
Ashtekar-Lewandowski measure.

• A (the space of smooth connections) is densely embedded
in A (a completion of A)
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Functions and Hilbert space

• For each graph, C(AΓ)= {continuous functions of the AΓ};
• Haar measure → Hilbert space L2(AΓ,dµΓ) ' L2(G (Γ)).

• inductive limit of L2(AΓ): Hkin = L2(A).

• The AL measure defines a scalar product

〈ϕ,ψ〉 =

∫
dµAL (A) ϕ∗(A) ψ(A).

• kinematical Hilbert space Hkin ofLQG.
It is non-separable.
It admits a (ON) basis of spin network .

• Basic multiplication and derivation operators in Hkin=
quantized holonomy and flux operators hL and F S .
One can impose the constraints as operator constraints.
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