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1 Scope and Aim

We call knowledge constructive if it includes an explicit specification of such as-
sociated epistemic procedures as capturing, verification, presentation, transmission,
revision, and application of the given knowledge. Such a concept of constructive
knowledge does not assume the social or cognitive constructivism according to which
all knowledge is a social (resp. cognitive) construal independent of any real rela-
tion to its object. We study formal logical and epistemological aspects of various
epistemic procedures related to knowledge belonging to a wide spectrum of funda-
mental and applied disciplines. A special focus is made on recent and prospective
technologies of knowledge representation and knowledge management.

2 Serge P. Kovalyov (Institute of Control Prob-

lems RAS)

Machine Intelligence in Engineering of Axiomatic

Systems

Rigorous solutions to applied problems are relevant in many areas of technology.
Notorious examples include verification of embedded software, axiomatic design of
complex manufacturing products, virtual simulation of electronic equipment func-
tioning, etc. [1]. However, in most cases, employing such approaches in real-world
projects involves costs that significantly excess the visible useful results. One of the
major reasons for this is the poor predictability of activities related to the application
of the axiomatic method. It is unclear how to build practically useful axiomatic de-
scriptions of domains without exceeding specified deadlines and budgets. Employing
powerful computer tools is considered as a natural approach to solve this problem.
Data mining tools are developed to accumulate large amounts of domain data in
machine-readable form and process them on computers in order to extract the pat-
terns of interrelations of a general nature that permit extrapolation beyond known
data. With the help of domain experts, axioms and inference rules can be selected
among patterns to form a deductive domain model as an axiomatic system. To apply
axiomatic systems in practical problem solving, other computer tools are developed,
viz. provers that are able to verify validity of any statements about the domain by
automatic inference. As a result, the promising highly automated mode of applica-
tion of the axiomatic method emerges, which deserves to be identified as a special

3



branch of knowledge engineering, called engineering of axiomatic systems.

A variety of methods and tools of machine intelligence are used in engineering of
axiomatic systems. Known illustrative examples include:

• recovering axioms in the course of automated logical inference on the so-called
J-calculus [2];

• Inductive Logic Programming [3];

• domain ontology engineering [4];

• identifying the logical basis of the domain deduction by means of machine
learning [5];

• distilling features into concepts (Meta-Interpretive Learning) [6].

The last two of these examples are based on the technology of deep neural networks
that currently undergoes very intense development. There is even an opinion that
the classical means of knowledge representation, based on explicit symbolic expres-
sion of the facts and laws, are hopelessly outdated and will soon be replaced by
neural networks that manage implicit knowledge in a distributed form. However,
distributed knowledge is unreliable, hard to verify, and prone to misrepresentation.
Experiments are known when perfectly recognized images were practically imper-
ceptibly perturbed in a special way, which was calculated in accordance with the
“white spots” of the training sample, causing arbitrarily changes in the classifier’s
output [7]. So neural networks can greatly enhance, but not replace the axiomatic
knowledge management tools.

All of these approaches, both formal and neural network based, are intended for
use within a single domain. However, the current level of technological development
is characterized by a multidisciplinary nature of the manufactured products: the
products are complex systems that consist of components taken from several dif-
ferent domains. In order to build a coherent formal description of such a product,
mechanisms are needed to integrate domain-specific axiomatic systems into sound
holistic bodies of knowledge. Some time ago the ontology engineering “naively” rec-
ommended to rely on the public nature of knowledge that allegedly admit direct
unification as soon as powerful referential capabilities are provided. However, such
recommendation fails in practice due to the presence of antagonistic (ontological
in the philosophical sense) contradictions between the diverse participants of the
product life cycle.

Fortunately, holistic heterogeneous product descriptions useful for practitioners in
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systems engineering are typically restricted to certain specific viewpoint, or aspect,
that can be identified in each component. The body of axiomatic knowledge about
the aspect is sound; hence inter-component contradictions are easily detected, and
resolved or left beyond the description. For example, the international standard
IEC 81346-1:2009 “Industrial Systems, Installations and Equipment and Industrial
Products - Structuring Principles and Reference Designations” specifies such aspects
as function, material embodiment, location.

The processes of synthesizing the holistic product descriptions in an aspect are con-
venient to formally describe using the category-theoretic representation of axiomatic
systems which was developed by H. Graves and others [8]. Let C be a category that
represent the axiomatic system of the aspect, let I be the scheme (the shape) of the
diagram that represents the structure of the complex product, and let Di, i ∈ I be
the family of categories that represent axiomatic systems of product components.
For each component i, the functor Fi : Di → C is given that determines the rule to
extract the target aspect from descriptions of the component. A particular holistic
description of the product in the aspect C is obtained by choice of a family of objects
Ai ∈ Di, i ∈ I, and a diagram ∆ : I → C that satisfies the condition ∆(i) = Fi(Ai)
for each i ∈ I.

Procedures of systems engineering are formally described by transformations of such
descriptions. To specify and explore such transformations, we construct the category
with descriptions as objects. For morphisms of such a category, we naturally employ
natural transformations of descriptions’ diagrams induced by morphisms of the com-
ponents. Specifically, a morphism of a description ((Ai, i ∈ I),∆) to a description
((A′i, i ∈ I),∆′) is any family of morphisms fi : Ai → A′i, i ∈ I (where each morphism
fi belongs to the category Di) such that for every two points of the scheme i, j ∈ I
and every arrow s : i→ j the following naturality condition holds:

Fj(fj) ◦∆(s) = ∆′(s) ◦ Fi(fi)

.

It is easy to verify that such choice of morphisms indeed leads to a category. We
will denote it as ↓↓I F . It is noteworthy that this category can be obtained using
universal constructions in the “category of all categories” CAT:

Theorem 1 The category ↓↓I F is isomorphic to a vertex of the following pullback
in CAT.

One particular case of this construction is well known in category theory. It occurs
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when the schema 0 → 1, that consists of two points 0, 1, and one nontrivial arrow
from 0 to 1, is employed as I. In this case the family F is reduced to a pair of
functors

F0 : D0 → C ← D1 : F1.

The generated category ↓↓I F is known under the name “comma category” [9] and
denoted as F0 ↓ F1. Having this in mind, we call an arbitrary category of the
kind ↓↓I F a multicomma category. Theorem 1 allows us to derive a number of
properties of the multicomma category which are useful in formal analysis of systems
engineering procedures. For instance, if the schema I is discrete (i.e. doesn’t contain
any nontrivial arrows), then the multicomma category ↓↓I F is isomorphic to a
product of categories Πi∈IDi independently on the choice of functors Fi and the
aspect C. In other words, all descriptions of a multicomponent product that does
not impose any relationship between its components form a conventional Cartesian
product of representations of these components, even without having to choose any
common aspect. This matches the intuitively clear possibility to place any set of
noninteracting things into a common “bag” that is only nominally called the holistic
product.

Furthermore, if every functor Fi is an isomorphism (i.e. all components are fully
specified in the aspect C), then the multicomma category ↓↓I F is isomorphic to
a category CI that consists of all diagrams of the form I in the category C, i.e.
any graph is a valid description of the product. In addition, it is possible to show
that the multicomma category construction behaves naturally with regard to sums
and products of the schemes of the structure. One can prove a number of other
statements that characterize certain particular design decisions on the composition
of complex products.

In general, nowadays advances in engineering of applied axiomatic systems fall sig-
nificantly behind the expectations that arose in the past decades. We hope that
the intense employment of methods of machine intelligence and higher algebra will
reduce this gap, and ultimately turn the axiomatic method into a powerful tool to
solve real-world problems of systems engineering.
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3 Andrei Rodin (Institute of Philosophy RAS)

Models of Homotopy Type Theory and the Se-

mantic View of Theories

1. Categorical Model Theory

Today’s Categorical Model theory (CMT) stems from the functorial semantics of
algebraic theories proposed by Lawvere in his thesis back in 1963 [Lawvere:1963].
This theory uses a family of concepts of model none of which can be called today
fairly standard. This fact is evidenced by the continuing discussion in the Homotopy
Type theory (HoTT) [UFP:2013] where presently there is no full agreement among
the researchers in the field as to what counts as a model of this theory and what
does not.
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One approch relies on the concept of classifying category T freely generated from the
syntax of the given theory. Then a model M is a functor T → C into the category
of sets (C = Set) or another appropriate category. This functorial setting has an
important universal property: up to the categorical equivalence T can be identified
with the initial object in the functor category of T -models. This property allows
one to think of a theory in this setting as being a “generic model” (Lawvere). Using
this approach Awodey [Awodey:2015] defines for HoTT the concept of natural model
.

Voevodsky [Voevodsky:2015] pursues a different approach, which involves the con-
cept of contextual category (more recently - in a modified form of C-system) earlier
proposed by Cartmell [Cartmell:1986]. The idea behind the concept of contextual
category is that of a category, which fully encodes all relevant algebraic features of
the given syntax. According to this approach those and only those categories, which
fall under the corresponding definition of contextual category, qualify as models of
given theory T . In this case the initiality property of the syntactic category S(T ) is
not implied by any general theorem. The initiality conjecture for HoTT still stands
open.

Finally, there is yet another approac in CMT, which involves the concept of internal
language (aka internal logic) of a given category. It has been recently proposed
to think of internal languages and syntactic categories in terms of adjoint functors
between a category of theories and a category of categories as shown on the diagram
below:

Categories
Lang //

Theories
Synt
oo

In this setting a model of given theory T in a certain ground category C is a functor
(a morphism in the category of theories) of the form

M : T → Lang(C)

which expresses the idea of representation of a given theory in the language of some
other theory (such as a representation of some geometrical theory in the language of
arithmetic).

These and other technical advances of CMT so far have no generally accepted episte-
mological underpinning, which might help one to orientate among multiple develop-
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ments. It remains, generally, unclear whether or not the classical Tarskian notion of
model based on the T-schema and its standard epistemological understanding can be
helpful in CMT. In what follows I show that the classical Tarskian concept of model
is not adequate for accounting for the model theory of HoTT in its existing form
and propose a remedy. Then I argue that the proposed non-standard understanding
of concepts of theory and model can be used for supporting a new version of the
semantic of view of theories, which may help to bridge the persisting gap between
the notion of model as it is used in logic, on the one hand, and the colloquial notion
of model used elsewhere in science, on the other hand.

2. Modeling HoTT

I shall consider HoTT without the univalence axiom. In this case the syntax of
HoTT is that of (the intensional version of) Martin-Lof’s Constructive Type theory
(MLTT). HoTT also involves a semi-formal interpretation of its syntax in the Ho-
motopy theory: types are interpreted as spaces (more precisely, infinite-dimensional
fundamental groupoids of such spaces) and terms are interpreted as points of these
spaces. This interpretation helped to reveal a feature of MLTT’s syntax, which ear-
lier remained hidden. Namely, it has been observed that types in MLTT are stratified
into the so-called homotopy levels. It is important to stress that this stratification is
a robust mathematical fact but not just a matter of one’s favorite informal interpre-
tation of the given calculus. This stratification necessitates a revision of the informal
“propositions-as-types paradigm” , which is popular in the Computer Science. It
shows that only types of certain homotopic level (namely, of level (- 1) as defined
in [UFP:2013] can be identified with propositions while the higher types should be
interpreted differently. This revision implies, in particular, that HoTT cannot be
coherently interpreted as a system of propositions or sentences; correspondingly, the
Tarskian notion of model based on the T -schema and the satisfaction relation applies
only to propositional types (and the corresponding rules) of HoTT but not to this
theory as a whole.

MLTT is a system of formal rules without axioms. In the case of propositional
types these rules can be called logical rules in the usual sense. When these rules
are applied to the higher types they should be thought of as rules for construct-
ing non-propositional objects. A model of MLTT-HOTT is an implementation of
this system of rules in some background, where higher-order constructions play the
role of truth-makers for their associated propositions. (A proposition associated
with a given higher type T is obtained from T via its (-1)truncation). This basic
interpretation agrees with all existing models of HoTT disregarding the subtleties
mentioned above. An interesting epistemological question is this. Does the epistemic
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role of higher-order constructions in HoTT reduce to their role as truth-makers or
there is something more to it? Since the truncation of higher types to propositional
types, generally, involves a significant loss of structure, HoTT rather supports the
second answer (unless one assumes that a major part of this theory is epistemically
insignificant). In the following concluding section I provide an independent argu-
ment, which supports the same conclusion and explains the epistemic value of higher
non-propositional structures in HoTT.

3. Semantic View of Theories: a Constructive Perspective

P. Suppes [Suppes: 2002] argued that a typical scientific theory should be identified
not with any particular class of statements (formal or contentual) but rather with a
certain class of models . On this basis Suppes and his followers designed a Bourbaki-
style format of formal presentation where a scientific theory is presented through an
appropriate class of itsset-theoretic models.Albeit such a Bourbaki-style presentation
can be useful for purposes of logical and structural analysis, it appears to be useless
as a practical tool, which may help working scientists to formulate and develop their
theories in a formal setting [Halvorson:2015].

Such a limitation is hardly surprising given that the standard set-theoretic semantics
of theories provides no formal means for building and operating with models other
than by referring to the fact that a model in question satisfies such-and-such proposi-
tions. Differences in epistemological views on the roles of syntax and semantics affect
the style of formal presentation but not its architecture. This is why in practice the
usual non-statement aka semantic approach to the formalization of scientific theories
demonstrates the same limitations as its syntactically oriented rival.

HoTT and its model theory provides a novel notion of theory, which does not reduce
to a class of propositions but has a further higher-order non-propositional structure.
The axiomatic basis of such a theory consists of a system of rules, which apply both at
the propositional and non-propositional levels. I believe that such a broader concept
of theory and its model better fits the colloquial counterparts of these notions in
the scientific practice than the standard Tarskian notions. The main reason isthat a
typical scientific theory involves a lot of procedural content, which is used in modeling;
such procedures may comprise but typically do not reduce to the procedures of logical
inference (if by the logical inference one understands here a procedure which inputs
and outputs sentences).

Thus HoTT and CMT provide the semantic view of theories with new formal tech-
niques; the renewed semantic view, in its turn, provides an epistemological back-
ground for possible applications of these techniques in science and Knowledge Rep-
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resentation.
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4 Danya Rogozin (Moscow State University)

Curry-Howard Correspondence and Kolmogorov

Complexity

1. Preliminaries

1. Decompressor (description method) is a partial function from binary strings to
binary strings, D : Ξ → Ξ. If D(x) = y for some x, y ∈ Ξ, than we shall talk that
¡¡x is a description y by D¿¿.

2. By Kolmogorov complexity of binary string by some D we shall mean is the
shortest lenght of x, which D(x) = y:

KSD(y) = min{l(x) |D(x) = y} (1)
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Informally, Kolmogorov complexity is a minimal length of a program that generates
current string. If our description method is optimal (the best decompressor), then
we talk about Kolmogorov complexity of string itself.
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2. Kolmogorov Complexity and Intuitionistic Logic

Let A is a set of binary strings (cardinal number of this set is not important). A will
be a task, x ∈ A will be a solution of this task. Following by the Shen-Vereshchagin
method1 we can define logical operations on this sets of string (∧,∨,→):

A ∧B = {(a, b) | a ∈ A, b ∈ B} (2)

A ∨B = {(0, a) | a ∈ A} ∪ {(1, b) | b ∈ B} (3)

A→ B = {p | ∀x ∈ A [p](x) ∈ B} (4)

Given definitions are based on the next one interpretation of logical connectives.
This method goes back to Kolmogorov:

A ∧B — we can prove A and B.

A ∨B — prove either A or B

A ⊃ B — proof of B reduces to proof of A.

In the first case, conjunction of tasks has defined as cartesian product of their own
desicions. We are going to define Kolmogorov complexity of conjunction as Kol-
mogorov complexity of pair in general case (KS(x, y) ≤ KS(x) + 2logKS(x) +
KS(y) +O(1), x ∈ A, y ∈ B).

In the second case, disjunction of tasks has defined as union of their desicions. Let
KS(x, y) := min(KS(x), KS(y)) +O(1).

In the third case, implication of tasks we will define with a conditional complexity:
KS(x → y) := KS(y|x) + O(1), KS(y|x) is a complexity of transforming of x to
y.

Now we consider some cases:

1. A ≡ B := (A → B) ∧ (B → A). KS((x → y) ∧ (x → y)) = KS(x ≡ y) =
max(KS(y|x), KS(x|y)) +O(logKS(x, y)).

2. KS((x ∧ y) → z) = KS(z|x, y) + O(log(x, y)). By other hand, KS(x → (y →
z)) = KS(z|x, y) +O(log(x, y)).

3. KS((x→ z) ∧ (y → z)) = max(KS(z|x), KS(z|y)) +O(logKS(x, y, z)).

1Vereshchagin N. Alexander Shen. Logical operations and Kolmogorov Complexity. Theoretical
Computer Science. Vol. 271(1), 2002. Pp. 125-129
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3. Binary λ-Calculus

Lambda-calculus is a formal system (computational model) invited by A.Church in
the beginning of 1930-s. Lambda-calculus expresses computational processes by using
notions of application and abstraction. Let us define this system formally.

1. Variable x is a term;

2. If M and N are terms then (MN) is term (application rule);

3. If x is a variable and M is a term, then λx.M .

At the next step we must introduce De Bruijn notation recursievly by following
grammar:

e ::= n | λ.e | e e (5)

Examples (⇒means ¡¡this term has the next one notation in De Bruijn syntax¿¿):

λx.x⇒ λ0

λx.λy.x⇒ λλ1

λf.λg.λx.g(fx)⇒ λλλ1 (2 0)

λf.λg.λx.(fx)(gx)⇒ λλλ(2 0)(1 0)

λf.(λx.f(xx))(λx.f(xx))⇒ λ(λ1 (0 0))(λ1 (0 0))

Following by John Tromp2 we consider the way of binary coding of De Bruijn notated
lambda-terms.

1. n := 1n+10;

2. λ̂M := 00M̂ ;

3. M̂N := 01M̂N

Let us expand or previous example (=⇒ mean ¡¡this De Bruijn notated term has the
next one binary string¿¿):

λx.x⇒ λ0 =⇒ 0010

2Tromp J., Binary Lambda Calculus and Combinatory Logic, in Randomness And Complexity,
from Leibniz To Chaitin, ed. Cristian S. Calude, World Scientific Publishing Company, October
2008.
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λx.λy.x⇒ λλ1 =⇒ 0000110

λf.λg.λx.g(fx)⇒ λλλ1 (2 0) =⇒ 0000000111001111010

λf.λg.λx.(fx)(gx)⇒ λλλ(2 0)(1 0) =⇒ 00000001011110100111010

λf.(λx.f(xx))(λx.f(xx))⇒ λ(λ1(00))(λ1(00)) =⇒ 01000001110111011000011101110110

4. Simply Typed λ-Calculus

The most useful form of typed lambda calculus is a calculus with Curry-style typing
form. The next one rules are defined for abstaction and application:

Γ, x : φ `M : ψ

Γ ` (λx.M) : φ→ ψ
(→In)

Γ `M : φ→ ψ ∆ ` x : φ

Γ,∆ `Mx : ψ
(→El) (6)

Curry-Howard isomorphism3 is a two-side correlation between computer programs
(typed lambda-terms) and proofs in natural deduction style4, which can be for-
mulated by two principles: ¡¡proof-as-terms¿¿ and ¡¡propositions-as-types¿¿. The
first principle claims that lambda-term codes natural-deduction proof, the second
one claims that intuitionistically valid proposition corresponds to the inhabited
type.

For example, we can prove ` (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) in natural deduc-
tion.

1. A ⊃ B;

2. B ⊃ C;

3. A;

4. B — 1, 3, ⊃El;

5. C — 2, 4, ⊃El;

6. A ⊃ C — 3, 5, ⊃In;

7. (B ⊃ C) ⊃ (A ⊃ C) — 2, 6, ⊃In;

3Sorensen M.H., Urzyczyn P. Lectures on the Curry-Howard Isomorphism. — Amsterdam:
Elsevier, 2006. Pp. 69 - 102.

4Dummett M. Elements of Intuitionism. The Second Edition. — Oxford: Oxford University
Press, 2000. P. 88.
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8. (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) — 1, 7, ⊃In.

But we can lambda-term of the next type (α → β) → (β → γ) → α → γ by the
same way:

1. f : α→ β;

2. g : β → γ;

3. x : α;

4. fx : β;

5. g(fx) : γ;

6. λx.g(fx) : α→ γ;

7. λg.λx.g(fx) : (β → γ)→ α→ γ;

8. λf.λgλx.g(fx) : ((α→ β)→ (β → γ)→ α→ γ)

5. Further Research

The goal of a further research is a modifying of the Shen-Vereshchagin method.
At the first, it’s possible to use type-inference algorithm. Type-inference algorithm
returns by given lambda-term its type for polynomial time (this algorithm is applied
for type infering in functional languages, Haskell, OcaML, F], Idris, etc). That
result belongs to Hindley, Milner and Damas. At the second, well-formed (from a
type-theoretical point of view) lambda-term has type, which is in conformity with
appropriate intuitionistically valid proposition. From a logical point of view, this
fact means that we can get a proposition using the code of its own proof.

Without considering all the particulars and somewhat informally, we are going to try
to define such a method. At the first step, we represent an arbitrary lambda-term
to a binary string following Tromp’s rule. Next thing we have to do, we have to get
upper bound of Kolmogorov complexity for obtained string. After that, we apply
Hindley-Milner algorithm to the given lambda-term. If term is well-formed, then
obtained type is the single. Kolmogorov complexity of this type (or proposition,
or task) is a Kolmogorov complexity of binary lambda-term. It means that we
define complexity of formula (task) by its proof (decision). For example, we have
some term M : φ × ψ → τ , then we can define complexity of M as KS(M) =
(z|x, y) + O(log(x, y, z)), z : τ, x : φ, y : ψ (according to the Shen-Vereshchagin
definitions).
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BHK-semantics suggests to consider the intuitionistic logic as the calculus of prob-
lems (or tasks). Curry-Howard correspondence gives us a formalization of the notion
of solution of the task. The kernel of modifying of the Shen-Vereshchagin method is
a using binary lambda-terms as solutions of a given problem.

The long-run objective is construction of the general method for defining of com-
plexity of intuitionistic formulas using typed lambda-calculus and Curry-Howard
correspondence.

References:

[1]. Vereshchagin N. Alexander Shen. Logical operations and Kolmogorov Complex-
ity. Theoretical Computer Science. Vol. 271(1), 2002. Pp. 125-129

[2]. Tromp J., Binary Lambda Calculus and Combinatory Logic, in Randomness
And Complexity, from Leibniz To Chaitin, ed. Cristian S. Calude, World Scientific
Publishing Company, October 2008.

[3]. Sorensen M.H., Urzyczyn P. Lectures on the Curry-Howard Isomorphism. Else-
vier, 2006.

[4]. Dummett M. Elements of Intuitionism. The Second Edition. Oxford University
Press, 2000.

5 Konstantin Shishov (Moscow State University)

Reversible Logical Gates in Quantum Logic

1. Preliminaries

According to Moore’s thesis, growth of computing power is limited by fundamental
physical principles that underlie electronic computing circuits. One of these is the
principle of Landauer, according to which the logic circuits, which are not reversible
should produce heat in proportion to the number of erasure, in the process of com-
putation. Accordingly, the computer scientists are looking for ways to overcome
these limitations. One of these ways is introduction of the quantum principles into
computational process, which called quantum computing.

However, quantum computing is developing quantum logic - non-classical logic, which
involves the construction of logical systems describing quantum computing.
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This paper is in line with the quantum logic, and aims to focus on reversible nature
of logical operations. There exists a close connection between classical reversible
computation and quantum computation, since all unitary quantum operations are
necessarily reversible; therefore, reversible computing is a subset of quantum com-
puting.

1. Quantum Bits

Consider the two-dimensional Hilbert C2, where any vector |ϕ〉 is represented by
a pair of complex numbers. Let B = {|0〉, |1〉} be the orthonormal basis for C2 such
that

|0〉 = (0, 1); |1〉 = (1, 0)

Definition 1. Qubit

A qubit is a unit vector |ϕ〉 of the space C2 such that

|ϕ〉 = a0|0〉+ a1|1〉,

where a0, a1 ∈ C2 and |a0|2 + |a1|2 = 1.

Futher we will use x,y,z,... as a variable ranging over the set {0,1}. At the same
time |x〉, |y〉, |z〉, ... will ranging over the basis {|0〉, |1〉}. The set of all vectors having
the form |x1〉 ⊗ ... ⊗ |xn〉, where ”⊗” represents the tensor product, represents a
computational basis ⊗nC2, such as:

⊗nC2 =Df C2 ⊗ ...⊗C2

Now we define n-register.

Definition 2. n-register
A n-register is any unit vector |ψ〉 in the ⊗nC2.

Obviously, the computational basis ⊗nC2 can be represented by sequences of |0〉 and
|1〉 length n : |101...011〉. Such sequence represents a natural number j ∈ [0, 2n− 1]
in binary notation. We obtain that any unit vector of ⊗nC2, can be shortly expressed
as:

2n−1∑
j=0

aj|j〉

In accordance with this we will call any vector that is either qubit or an n-register,
a quregister.
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2. Logical Gates as Reversible Gates

The model of reversible computation has to fulfil these two conditions: the num-
ber of inputs and outputs of the function f has to be the same, and f the model
has to have a one-to-one Boolean function. Likewise, we can pose the problem of
universality as before, and ask for a set of universal reversible logic gates that can
simulate arbitrary reversible Boolean functions.

One of the most famous reversible logical gates is a Toffoli gate which is named after
its creator and is also known as CCNOT.

Definition 3. Toffoli gate T (1 ,1 ,1 )

The Toffoli gate T (1 ,1 ,1 ) is the linear operator T (1 ,1 ,1 ) : ⊗3C2 → ⊗3C2 that is defined
for any element |x〉 ⊗ |y〉 ⊗ |z〉 of the basis as follows:

T (1 ,1 ,1 )(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ |min(x, y)⊕ z〉,

where ”⊕” represents the sum modulo 2.

Obviously, logical gate T (1 ,1 ,1 ) can be interpreted as a simple truth-table that trans-
forms triples of bits (qubits) to triples of bits (qubits).

|0, 0, 0〉 −→ |0, 0, 0〉
|0, 0, 1〉 −→ |0, 0, 1〉
|0, 1, 0〉 −→ |0, 1, 0〉
|0, 1, 1〉 −→ |0, 1, 1〉
|1, 0, 0〉 −→ |1, 0, 0〉
|1, 0, 1〉 −→ |1, 0, 1〉
|1, 1, 0〉 −→ |1, 1, 1〉
|1, 1, 1〉 −→ |1, 1, 0〉

It is proved that this is an universal logic gate. That is, this can be used to replace
all other logical connectives. For example, conjunction:

AND(|ϕ〉, |ψ〉) =Df T (1 ,1 ,1 )(|ϕ〉 ⊗ |ψ〉 ⊗ |0〉)

...and it’s truth-table:

(|0〉, |0〉) −→ T (1 ,1 ,1 )(|0〉 ⊗ |0〉 ⊗ |0〉) = |0〉 ⊗ |0〉 ⊗ |0〉
(|0〉, |1〉) −→ T (1 ,1 ,1 )(|0〉 ⊗ |1〉 ⊗ |0〉) = |0〉 ⊗ |1〉 ⊗ |0〉
(|1〉, |0〉) −→ T (1 ,1 ,1 )(|1〉 ⊗ |0〉 ⊗ |0〉) = |1〉 ⊗ |0〉 ⊗ |0〉
(|1〉, |1〉) −→ T (1 ,1 ,1 )(|1〉 ⊗ |1〉 ⊗ |1〉) = |1〉 ⊗ |1〉 ⊗ |1〉
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Thus defined, the conjunction will be just as reversible as the Toffoli gate itself is
reversible.

All this happens in the simplest situation, when one is only dealing with elements
of the basis (in other words, with precise pieces of information). Let us examine the
case where the function AND is applied to arguments that are superpositions of the
basis-elements in the space C2. Consider the following qubit pair:

|ϕ〉 = a0|0〉+ a1|1〉 and |ψ〉 = b0|0〉+ b1|1〉,when:

AND(|ϕ〉, |ψ〉) = (a1b1|1, 1, 1〉+ a1b0|1, 0, 0〉+ a0b1|0, 1, 0〉+ a0b0|0, 0, 0〉)

Like in a classical logic the function AND corresponds to the values (1,1,1), (1,0,0),
(0,1,0), (0,0,0). But, unlike classical logic, each case is accompanied by a complex
number that represents a quantum amplitude - a characteristic reflecting the degree
of probability with which the triple can be realized. For example, recording |a1b1|2
determines the likelihood that both qubits are unity, and therefore, their conjunction
is equal to unity.

Now consider how quantum logic introduces negation. First, it is necessary to con-
sider the function NOT, which is a generalization of the classical negation that
negates the value of the last element in the base vector. In this vector notation
it looks as follows: if |x1, ..., xn〉 is a vector in the computational basis ⊗nC2, the
result of the application of NOT is |x1, ..., 1− xn〉

In case of denial to one qubit, the function NOT becomes a single function that
associates elements-arguments from the space C2 elements, the values of C2.

NOT(1) =Df (a1|0〉+ a0|1〉)

It may be noted that the thus defined function NOT is a generalization of the classical
negation.

In general, the function NOT is defined as follows:

NOT(n) : ⊗nC2 −→ ⊗nC2 and for all |ϕ〉 =
2n−1∑
j=0

aj|j〉 ∈ ⊗nC2

NOT(|ϕ〉) =
2n−1∑
j=0

aj|xj1 , ..., xjn−1 , 1− xn〉

3. Quantum Logical Gates as Reversible Gates

In quantum computing and specifically the quantum circuit model of computation,
a quantum logic gate is a basic quantum circuit operating on a small number of
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qubits. They are the building blocks of quantum circuits, like classical logic gates
are for conventional digital circuits. Unlike many classical logic gates, quantum logic
gates are reversible. However, it is possible to perform classical computing using only
reversible gates. For example, the reversible Toffoli gate can implement all Boolean
functions. This gate has a direct quantum equivalent, showing that quantum circuits
can perform all operations performed by classical circuits.

The logical gates we have considered so far are, in a sense, generalizations of the
classical logical connectives. A quantum logical behaviour only emerges in the case
where our gates are applied to superpositions. When restricted to classical registers,
our gates behave like classical truth-functions. We will now investigate genuine
quantum gates that may transform classical registers into quregisters that are in
superpositions.

Definition 4. Quantum logical gate

Quantum logical gate is an unitary operator, assuming arguments in a ⊗nC2 values
in ⊗nC2.

One of the most significant genuine quantum gates is the square root of the negation
(NOT), which will be indicated by

√
NOT. As suggested by the name, the charac-

teristic property of the gate
√

NOT is the following: for any quregister (|ψ〉)
√

NOT(
√

NOT(|ψ〉)) = NOT(|ψ〉)

A more general definition of
√

NOT is as follows:
√

NOT(1)
: C2 −→ C2 and for all |ψ〉 = a1|0〉+ a0|1〉√

NOT(1)
(|ψ〉) = 1

2
[(1 + i)a0 + (1− i)a1]|0〉+ 1

2
[(1− i)a0 + (1 + i)a1]|1〉,

where i is an imaginary unit.

So
√

NOT(1)
translate two basic-station of qubit |0〉 and |1〉 into the superposition

of this states.

Consider another ”purely” quantum gate:

Definition 5. Hadamard-gate (H-gate)

For all qubit n > 1 Hadamard-gate ⊗nC2 is a linear operator H(2n) such as |x1, ..., xn〉
computational basis B(2n):

H(2n)(|x1, ..., xn〉) = |x1, ..., xn−1〉 ⊗ 1
√

2((−1)xn|xn〉+ |1− xn)
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Thus it turns out that for n = 1 the use of the Hadamard-gate will have the form
H(2n)(|x〉) = H(|x〉) own case, while, as in the n > 1, we can see its connection with
other logical gate: n > 1 H(2n)(|x1, ..., xn〉) = In−1(|x1, ..., xn−1〉)⊗H(|xn〉)

Hadamard-gate mapping |0〉-basis into |0〉+|1〉√
2

, and |1〉-basis in |0〉−|1〉√
2

, that corre-
sponds to a rotation about the axis π. A double application Hadamard-gate will
correspond to identity gate, which maps its input to the output unchanged.

4. Further Research.

This investigation presents an overview of some aspects of the quantum and re-
versible computation. It serves as a better understanding of the specific characteris-
tics of quantum logic. In addition, in the process of studying the material we singled
out some unresolved issues that form the scientific foundation for the future research.
One of such problems is to compare unitary operations in quantum logic with modal
operators. Is it possible to convert the work of processes in quantum logic to work
with modal operators? Or, more broadly, is it possible to reduce quantum logic to
modal logic?
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Data Science and Scientific Explanation

1. Issue

For the last years amount of available data of any kind for research grew up signif-
icantly, especially in domain of social sciences [Sagiroglu & Sinanc: 2013]. One can
easily buy any amount of public data collected by such companies like GNIP or par-
ticipate in data grant programs. Today we overcame lack of data about surrounding
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world - probably every human action is somehow digitalized and saved, every nature
event is carefully documented. Key problem now is to decide what to do with all
this data - incompetent research may lead us to absurd results [Bennett et al.: 2010]
at best case. It may seem that such problem statement is speculative, but in this
work we will try to show how data may affect the study.

2. Data and Phenomena

Woodward and Bogen argue about relations between data, phenomena and theory
[Bogen & Woodward: 1988]. Main idea of the work is that phenomena is something
that exists but is unobservable while data plays a role of evidence of the existence
of such phenomena. In other words, Bogen and Woodward indue phenomena with
ontological status.

Point here is that such phenomena is strictly unobservable as example authors
demonstrate that regardless of technology we use it is impossible to know true value
of melting point of lead. In case of the melting point we always end the research
with some database of temperatures and we need to make decision about final value.
From the Woodward and Bogen point of view this decision in a way is irrelevant
because phenomena is in laws of nature” domain and some true value is actually in
the data.

In a critique on Woodward and Bogen paper, MacAllister [McAllister: 1997] pays
closer attention on this decion making. He claims that this decision is scientist per-
sonal choice so phenomena doesn’t actually have ontological status. In this case
deducing phenomena from a data become psychological issue - way of scientist ob-
serve data become essential for phenomena detection.

Longo and Calude [Calude & Longo: 2015] present formal restrictions in phenomena
detection. They build argument upon “spurious correlations” which is based on
Ramsey theory. Here we will briefly describe their argument.

Ramsey theory suggest that for every predefined structure there is big enough set
where it can be guaranteedly found. For example. A special case is given by the
following theorem due to van der Waerden: For any positive integers k and c there is a
positive integer γ such that every string, made out of c digits or colors, of length more
than γ contains an arithmetic progression with k occurrences of the same digit or
color, i.e. a monochromatic arithmetic progression of length k [Shkredov:2006].

In case of big enough database we can find there arbitrary long progression of cor-
relations in order to consider them relevant? Here contradiction emerge - reliability
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of correlation may be caused only by size of database - we devoted to found any
correlations in big enough databases.

Longo and Calude define spurious correlations as a “correlation is spurious if it
appears in a ’random’ generated database”. Despite strictness of this definition it
allows us to estimate number of such correlation using Kolmogorov theory. In the
paper authors bring out calculations for correlations spuriousness” for 2048 symbols
long string and get in result that overwhelming majority of possible correlations
could be considered as spurious.

An interesting fact is that Kolmogorov theory and Ramsey theory in case of this ar-
gument have a intriguing contradiction: if we will take a long enough and completely
random string (in Kolmogorov sense) it would have some predefined pattern accord-
ing to Van der Waerden theorem. Can we consider such string truly random?

While this paper stops just on this statement there is one more step to be done:
what to do with spurious correlations? This particular paper is not focused on
such question and poof above may allow us only to argue about of impossibility of
replacement science with data analysis.

3. Embracing Descriptive Science

Another view on data-intensive science lies beyond the problem of phenomena de-
tection. If we agree that all patterns in data are some phenomenas we would run
into another epistemological problem.

In his recent paper Pietsch suggest to distinguish vertical and horizontal type of
science. First one is classical view on science where researches have some structure
of concepts - from the most universal laws to practical and especial cases. These
concepts are consistent and can be deduced from each other. Good example of
vertical science structure is physics but it is the exception rather than the rule -
the most of the knowledge areas doesn’t fit in such standards, so there is horizontal
science.

Horizontal model describe disciplines like social sciences or economics in which verti-
cal model has failed. While vertical model rely on reduction and theoretical strictness
horizontal model based on efficient analysis of big amount of data. Pietsch outline
four main properties of horizontal model:

• Predictions are made from the data directly without casual structure of phe-
nomena

24



• There is no need in high-abrstrat concepts because probably every aspect of
the phenomena is already in data

• Lack of explanatory power in models

• Rare use of idealisations and simplifications

Pietsch [Pietsch:2015] suggests that large enough database contain every state of phe-
nomena which change probabilistic inference into unambiguous one. Such procedure
we can consider as a case of eliminative induction and transition from descriptive
statistics to causal inference. So complete horizontal model will provide casual pre-
dictions like vertical does but with serious lack of explanatory power.

Napoleani and Panza [Napoleani & Panza:2011] provide similar view on future of
special sciences (in Woodward sense). Like Pietsch they argue that deductive model
have failed in this type of disciplines and suggest to concentrate scientific attention
specifically on data analysis. They propose term of “agnostic science” which imply
the idea of “turn over” relation of mathematical methods and empirical research.
In classical science mathematical apparatus was usually developed specifically for
every phenomena, but in “agnostic” science Napoleatani and Panza argue that re-
search would seek already developed mathematical model for data which describes
phenomena:

“Mathematics becomes perhaps the only domain in which to develop structural un-
derstanding, since such pretense is lost in the study of phenomena. Ideas are then
forced upon the phenomenon in problem solving, only temporary, and with little
expectations that go further than the solution of the problem. Scientific methods
may become weak, but the mathematical language in which they are phrased will
be increasingly complex, as we attempt to mould our desires, coarsely, upon real-
ity.”

Good example for such idea is hurricane prediction by neural networks. Despite
the fact that we have physical model for this, predictions made by neural network
with base only on data are much more precise. But the price of such efficiency
is explanatory power. Despite of examples in the paper this approach begs the
questions of possibility of further progress of the phenomenon research after applying
independent developed structure.

4. Conclusion

We have considered two interrelated problems. The first problem appears in phe-
nomena discovery in data - in large enough databases we could find any pre-defined
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pattern because only of the size of database. It make unreliable some of recent
scientific findings - for example, false-positive results of fMRI - analysis [Eklund &
Nichols & Knutsson : 2016]. The second problem appears in case of complex data
analysis. There is a wide variety of methods which rely on model generation of data
like neural networks or boosting algorithms. Even if one obtains fascinating results
one looses an explanation of the studied phenomena.

In case of the first problem further work would be concentrated around Longo and
Caulde argument - primary task is to check some known datasets for spurious correla-
tion probability. In addition there are some ways to strengthen the argue, for example
with use of more powerful theorems, like Semeredy theorem [Shkredov:2009].

The second problem raises the question of explanation power loss which could be very
perspective from the philosophy of science point of view. Development of the new
methodologies which could help to conduct explanatory research in data intensive
science is essential for the science.
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