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Abstract. In a series of lectures given in 2003 soon after receiving the Fields Medal

for his results in the Algebraic Geometry Vladimir Voevodsky (1966-2017) identifies two

strategic goals for mathematics, which he plans to pursue in his further research. The first

goal is to develop a “computerised library of mathematical knowledge”, which supports

an automated proof-verification. The second goal is to “bridge pure and applied math-

ematics”. Voevodsky’s research towards the first goal brought about the new Univalent

foundations of mathematics. In view of the second goal Voevodsky in 2004 started to

develop a mathematical theory of Population Dynamics, which involved the Categorical

Probability theory. This latter project did not bring published results and was abandoned

by Voevodsky in 2009 when he decided to focus his efforts on the Univalent foundations

and closely related topics. In the present paper, which is based on Voevodsky’s archival

sources, I present Voevodsky’s views of mathematics and its relationships with natural

sciences, critically discuss these views, and suggest how Voevodsky’s ideas and approaches

in the applied mathematics can be further developed and pursued. A special attention

is given to Voevodsky’s original strategy to bridge the persisting gap between the pure

and applied mathematics where computers and the computer-assisted mathematics have

a major role.

Acknowledgement: I thank Marta Bunge for very valuable suggestions.

1. Introduction

Vladimir Voevodsky (1966-2017) made important contributions into two areas of math-

ematics, which until recently were thought of as barely related. One is the Algebraic

Geometry, more specifically Motive theory. Voevodsky’s contribution to this field in 2002
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won him the Fields Medal. The other is Type theory and Foundations of Mathematics. In

mid-2000s Voevodsky started a project of building new “univalent” foundations of mathe-

matics, which support an automated proof-checking [20]. This project boosted an ongoing

research in Homotopy Type theory (discovered around 2006 independently by Voevodsky

and Awodey&Warren [42, Introduction]), and put the automated proof-checking into a new

theoretical perspective. Along with these great professional successes in the mid-2000s Vo-

evodsky also experienced what he later described as “the greatest scientific failure” in his

life (see Presentation 3 below). This unachieved project aimed at a mathematical theory of

Population Dynamics that could allow one, in particular, to reconstruct a history of human

population on the basis of its present genetic constitution. Voevodsky actively worked on

this project during at least 5 years, from 2004 to 2009. In 2009 Voevodsky abandoned

this applied project and until the end of his life and career focused all his efforts on the

Univalent Foundations and related topics.

Unpublished materials related to Voevodsky’s project in the Population Dynamics along

with some other Voevodsky’s unpublished materials are now publicly available via Vladimir’s

memorial page http://www.math.ias.edu/Voevodsky/ maintained by Daniel Grayson in

the Princeton Institute of Advanced Studies. References to these and some other related

materials are given in this paper in the form [Sn] where n is the number of entry described

below in the “Sources” section; these entries contain permalinks to slides, audios, videos

and unpublished notes. Materials directly relevant to Voevodsky’s work in the Population

Dynamics are [S 6, 7, 15, 8]; for a related research in the Categorical Probability theory

see [S 4, 5, 13, 14, 16]. For early stages of Voevodsky’s research in the Foundations of

Mathematics, which are contemporary with his research in the Population Dynamics and

Categorical Probability (before 2010), see [S 9, 10, 11, 12, 17]. The Univalent Foundation

project in its stable mature form is presented in [S 18, 19, 20, 21, 23]. Voevodsky’s re-

flexions on his own work including his abandoned project in the Mathematical Biology are

found in his interview given to his friend Roman Mikhailov in 2012 [S22]. Fragments of this

http://www.math.ias.edu/Voevodsky/
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interview are reproduced below in English translation as Presentation 3 and Presentation

4.

In the remaining part of this paper I do two things. First, I present Voevodsky’s general

views of mathematics and Voevodsky’s strategy of strengthening links between the pure

mathematics and the natural sciences. This part is fully based on the available Voevodsky’s

record, and involves no attempt on my part to develop or criticise his views and ideas.

This material is relevant because the research project in the Population Dynamics just like

the Univalent Foundations project has been strongly motivated by Voevodsky’s general

reflexions about mathematics and his vision of its desired future. Second, I provide a

critical analysis of these views and ideas and suggest some ways in which they can be

further developed. Mathematical details of Voevodsky’s drafts related to his project in

the Population Dynamics (including his work in the Categorical Probability) are not taken

into account in the present paper.

2. Place and role of mathematics according to Vladimir Voevodsky

This Section consists of four Presentations based on Voevodsky’s recorded materials. Pre-

sentation 1 is based on transparencies of his lecture given at the AMS-India meeting in

Bangalore, Dec. 17-20, 2003, see [S3] (no audio- or video-recording of this lecture is avail-

able). Presentation 2 is based on transparencies and a written note related to two lectures

given earlier in the same year in Wuhan University, China, see [S1, 2]). These two Pre-

sentations consist of my rendering or paraphrasing of Voevodsky’s thoughts presented on

the transparencies and in the written note; they include a number of Voevodsky’s original

wordings. I take a liberty not to use quotations marks in such cases in order to make the

text better readable. The diagrams used in these Presentations are made with Latex after

Voevodsky’s hand-written diagrams found in the transparencies.

Presentations 3 and 4 are fragments of interview given by Vladimir Voevodsky to his friend

Roman Mikhailov in July 2012 [S22] translated into English by myself. In the Presentation
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3 Voevodsky overviews his intellectual development and explains origins and motivations

of his project in Population Dynamics and of the Univalent Foundations project. Presenta-

tion 4 includes some further Voevodsky’s ideas concerning the pure mathematics, applied

mathematics, and the natural sciences.

2.1. Presentation 1: Mathematics and the Outside World [S3]. Mathematics is an

integral — albeit very special — part of general problem-solving activity, which in its turn

is a basic pre-scientific human condition. Various practical problems, which are concep-

tualised and approached with the common aka conventional thinking are more effectively

solved via the mathematical modelling aka applied mathematics; the applied mathemat-

ics gives rise to the so-called pure mathematics. The pure mathematics develops via (i)

solving such external problems, which come via the mathematical modelling, and also (ii)

via formulating and solving its own internal problems, that is, via proving and disproving

various mathematical conjectures. The interaction between conventional thinking, mathe-

matical modelling and the pure mathematics, i.e., the flow of problems and their solutions,

proceeds as shown at Fig. 1.:

Conventional Thinking

��
Math Modelling

1
��

OO

Pure Math

conjectures

WW

2

OO

Figure 1. Flow of Problems and Solutions

Society supports mathematics, mainly, because of its capacity to solve problems arising in

the applied mathematics using methods of pure mathematics (arrow 2 at the diagram) and
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also, eventually, for solving internal problems in the pure mathematics and for teaching

old solutions to new generations.

Over the last few decades the situation [as described above] was getting more and more

out of balance. Arrows 1 and 2 shown at the diagram, which connect the pure and applied

mathematics, were weakening. A weak incoming flow of external problems restrains the

internal development of pure mathematics. A weak outgoing flow of useful solution re-

strains the support of mathematics provided by the Society. Breakdown of arrow 2 means

eventually no salary for mathematicians. Breakdown of arrow 1 means eventually no new

ideas in mathematics.

How did we come to this poor situation? What can be done in order to improve it? What

we need to do is to change the current pattern of using computers in science.

Presently computers enter into the above scheme of problem-solving as shown at Fig.

2:

Conventional Thinking

��
Computer Modelling

��

OO

Math Modelling (MM)

��

OO

Pure Math (PM)

conjectures

SS

OO

Figure 2. The existing Flow Chart

Here the flow of problems down to the “mathematical modelling” level is filtered through

the “computer modelling” level. As a result the “mathematical modelling” level, and as
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a consequence also the “pure mathematics” level, receive less problems than they used to

receive before the rise of modern computer technologies. This particularly affects today’s

abstract mathematics. Problems, which pass through the filter, are formulated in the old-

style language of variables and analytic functions, while the language of today’s abstract

mathematics is the Set theory. Thus at least a part of problems received at the “pure

mathematics” level pass through a double-translation, which further weakens the incoming

flow of external problems into the pure mathematics (Fig. 3).

Computer Model

�� ((
Analytic language of MM // Set-theoretic language of PM

Figure 3. Double Translation of Problems

The downstream flow of mathematical problems can be increased via a rearrangement of

relationships between the computer modelling, on the one hand, and the pure mathematics,

on the other hand, as shown at Fig. 4.:

Computer Model

��
Set-theoretic Model

sometimes
��

Analytic Model

Figure 4. New Scheme of Relationships between the Computer Modelling

and the Pure Mathematics
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In order to implement this new scheme we need to reformulate fundamental and applied

scientific theories in the language of today’s abstract mathematics, viz., in the set-theoretic

language. For this end we need to specify for each theory a notion of basic unit and then

consider sets of such units. Some examples are given in the Table 1.

Science Unit

Population Biology and Demography Individuals (individual organisms)

Financial Mathematics Companies

Political Science Voters

Particles Physics Particles

Population Genetics Genes

Future Theoretical Chemistry, which will be able

to account for individual molecules Molecules

Table 1. Scientific Disciplines and Their Ontological Units

The proposed rearrangement establishes a close connection between Science, Abstract

Mathematics and Computing. It requires an essential reform in mathematical educa-

tion.

The most important task for mathematicians is to produce examples that demonstrate the

effectiveness of this approach.

2.2. Presentation 2: What is most important for mathematics in the near fu-

ture? Four Levels of Today’s Mathematics. [S1, 2]. There are two most urgent

needs in today’s mathematics:

(1) To build a computerised library of mathematical knowledge, i.e., a computerised

version of Bourbaki’s Elements of Mathematics;
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(2) To bridge Pure and Applied Mathematics.

[About (1).] We should gradually move from a hyperlinked mathematical text to a math-

ematical text verifiable with computer.

[About (2).] Greatest advances of mathematics in the 20th century are in algebra, number

theory and topology: they involve a combination of the visual intuition with the application

of algebraic and symbolic methods. We discovered very fundamental classes of new objects

including categories, sheaves, cohomology, simplicial sets. They may turn out to be as

important in science as algebraic groups. But presently we don’t use them for solving

problems outside the pure mathematics.

One reason can be sociological. Only few people have a profound knowledge both of modern

mathematics and of some other research field where an application of modern mathematics

can be possible.

Another reason concerns the current scientific policies. In order to apply an abstract

mathematical theory to a concrete practical problem one needs, first of all, to generalise

this problem and abstract away the intuition associated with this problem. But the current

funding policies favour rather fast solutions of concrete practical problems such as, for

example, designing “the billion dollar drug”.

In order to apply mathematics to a given problem outside mathematics one should begin

with the opposite move. Instead of trying to concentrate one’s efforts on future applications

of a mathematical theory to the real life, one should abstract oneself from the real life and

look at the given problem as a formal game or puzzle. This is a reason why new mathematics

too often strikes one, wrongly, as detached from the real-world problems.

So the only reasonable policy in mathematical research and in science in general is to

support one’s curiosity and one’s sense of beauty in science.

[About historical layers of today’s mathematics.] Today’s mathematics comprises four

different levels:
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(1) Elementary Mathematics: Pythagoras theorem, Quadratic Equations, etc.; it emerged

more than 1000 years ago;

(2) “Higher” Mathematics : Integral and Differential Calculus, Differential Equations,

Probability theory; it emerged in the 17th and 18th centuries;

(3) Modern Mathematics: Modern Algebra (Galois theory, Group theory), Basic Topol-

ogy, Logic (including Gödel Incompleteness theorems) and Set theory; it emerged

during the first half of the 20th century;

(4) Synthetic Mathematics: Representation theory, Algebraic Geometry, Homotopy

theory (in particular the Motivic Homotopy theory), Differential Topology; it

emerged during the second half of the 20th century.

People who are not professional mathematicians usually know only levels (1) and (2),

sometimes they have heard something about level (3). The main reason is that

• Elementary Mathematics is integrated into the everyday life;

• “Higher” Mathematics is integrated into most sciences;

• Modern Mathematics is integrated into some sciences;

• Synthetic Mathematics is very poorly integrated (if at all).

One of the most important challenges in mathematics today is to learn how to apply

mathematics of higher levels in science and in the everyday life.

2.3. Presentation 3: Origins and motivations of research in the Population Dy-

namics and in the Univalent Foundations [S22, part 1]. Since Fall 1997 I realised

that my main contribution into the Motive theory and Motive Cohomology was already ac-

complished. Since then I was very consciously and actively looking for [. . . ] a theme to work
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on after I accomplish my obligations related to Bloch-Kato conjecture1. [. . . ] [C]onsidering

tendencies of development of mathematics as a science I realised that we approach times

when proving one more conjecture cannot change anything. [I realised] [t]hat mathematics

is at the edge of crisis, more precisely, two crises. The first crisis concerns the gap between

the “pure” and applied mathematics. It is clear that sooner or later there will arise the

question of why the society should pay money to people, who occupy themselves with

things having no practical application. The second crisis, which is less evident, concerns

the fact that mathematics becomes very complex. As a consequence, once again, sooner

or later mathematical papers will become too difficult for a detailed checking, and there

will begin the process of accumulation of errors. Since mathematics is a very deep science

in the sense that results of one particular paper usually depend on results of great many

earlier papers, such an accumulation of errors is very dangerous for mathematics.

I decided to do something in order to prevent these crises. In the first case that meant

to find an applied task, which would require for its solution methods of pure mathematics

developed during the last years or at least during the last decades.

Since my childhood I was interested in natural sciences (physics, chemistry, biology) as

well as in the theory of programming languages. Since 1997 I read a lot on these topics

and took some university courses. In this way I significantly upgraded and deepened what

I knew earlier. [. . . ] [I] was looking for interesting open problems where I could apply

today’s mathematics.

Finally, I chose — as I now understand wrongly — the problem of reconstruction of history

of populations [of living organisms] on the basis of their present genetic constitution. I

worked on this problem for about two years2 and finally realised in 2009 that everything

1Earlier in the same interview Vladimir explains that during the last 5 years of his work in the Algebraic

Geometry, which stopped in 2010, he did not feel a real interest and continued his research only under the

pressure of his self-imposed obligations.
2Drafts [S6, 7, 4] are dated by 2004 (as the starting date of writing); in 2004 Voevodsky also gave a talk

on the Categorical Probability theory motivated by his biological interests [S5]. These archival evidences



VOEVODSKY’S UNACHIEVED PROJECT 11

that I invented was useless. This was the greatest scientific failure in my life. I great

amount of work was invested into a project that failed completely. Some profit was gained

anyway: I learned a lot about the Probability theory, which I didn’t know well earlier, as

well as about Demography and Demographic History.

During the same time I was looking for an approach to the problem of accumulation of

errors in works of pure mathematics. It was clear [to me] that the only solution was to

create a language, with the help of which people can write mathematical proofs checkable

with computer. Until 2005 this latter task seemed to me more difficult than the task in

the historical genetics, on which I was was working. . . . [However i]n 2005 I managed to

formulate several ideas, which unexpectedly opened a possibility of new approach to one

of the most important problems in the foundations of today’s mathematics.

2.4. Presentation 4: On the pure and applied mathematics; on the relevance of

UF in the applied mathematics; on the data-driven science [S22, part 2]. Con-

cerning the pure and applied mathematics, I have the following picture. Pure mathematics

is working with models of high abstraction and low complexity (mathematicians like to

call this low complexity elegance). Applied mathematics is working with more concrete

models but on the higher complexity level (many equations, unknowns, etc). Interesting

application of the modern pure mathematics are most likely in the area of high abstraction

and high complexity. This area is practically inaccessible today, mostly due to the limita-

tions of the human brain [. . . ]. When we will learn how to use computers for working with

abstract mathematical objects this problem will be no longer important and interesting

applications of ideas of today’s abstract mathematics will be found.

show that in 2004 Voevodsky was already working on his project in the Population Dynamics, so this work

continued at least 5 years in total.
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That’s why I think that my present work on computer languages3 that allow one to work

with such objects, will be also helpful for application of ideas of today’s pure mathematics

in applied problems.

[Then Voevodsky discusses difficulties of his project in the Population Dynamics related

to insufficient empirical data and other non-mathematical matters.]

From a mathematical point of view the situation was also far from being ideal because

nobody seriously studied such complex and temporally heterogeneous processes earlier.

Finally, I came up with a new formalisation of Markov processes based on the notion

of systems of paths. The paper turned out to be long and technical, and it still remains

unfinished4 . I plan to return to this paper and finish it already with a convenient computer-

based proof-assistant.

[. . . ]

Science should collect and comprehend a new knowledge. The collection part is very

important. There is a view according to which all important observations are already

done, the general world image is clear, so it remains only to arrange this knowledge and

pack it into a compact and elegant theory. This view is wrong. It is not only wrong but

also supports a very negative tendency to ignore everything that doesn’t fit a ready-made

theory or hypothesis. This is one of the most important problems of today’s science.

3Voevodsky refers here to his research in the Univalent Foundations and its implementation on computer.

4By all evidence, Voevodsky refers here to [S4].
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3. Discussion

3.1. General issues. We can see from the Presentation 1 that Voevodsky’s view on math-

ematics is broadly Aristotelian: he thinks of mathematics as an abstract form of reasoning,

which is rooted in what he calls the conventional thinking, i.e., a practice-oriented think-

ing that deals with multiple practical tasks5. Mathematical modelling mediates between

the conventional thinking and the pure mathematics (Fig. 1 above). Mathematically-

laden sciences are not distinguished in this scheme but the context makes it clear that the

mathematical modelling also serves as an interface between science and pure mathemat-

ics. Voevodsky grants for the pure mathematics a capacity to formulate and solve certain

internal problems (the circular arrow at Fig. 1 ) but he claims that mathematics cannot

successfully and sustainably develop without solving external problems coming from the

“outside world”. He provides two independent reasons for this claim.

One reason is sociological: mathematical research is supported by society primarily for its

contribution to solving important practical problems. As Voevodsky makes it clear in the

Presentation 2 his understanding of the social role of mathematics does not imply that all

mathematical research should aim at solving concrete practical problems. In his view, a

mathematical research can be more practically useful and effective when it is driven by

one’s curiosity and a sense of beauty rather than by practical interests.

The second reason is epistemological: without a stable incoming flow of practical problems

the pure mathematics soon runs out of new ideas. Thus we have here the following broad

picture. Mathematics solves or help to solve practical problems by internalising them and

abstracting them away from their local contexts. This triggers an internal dynamics in pure

mathematics where certain problems are formulated and solved without further external

motivations. However in a long term this internal mechanism is not sufficient for keeping

a mathematical research going. So the incoming flow of external problem is just as vital

5For a modern version of Aristotelian philosophy of mathematics see [17].
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for mathematics as the outgoing flow of practical solutions, which help mathematicians to

secure a social status and necessary fundings for their research.

It is worth mentioning that Soviet philosophy of mathematics, which until 1990s remained

relatively isolated from the Western mainstream along with the rest of Soviet philosophy,

drew on the official Marxist doctrine of dialectical materialism rather than the Analytic

philosophical tradition that stressed logical and ontological foundations of mathematics.

As a result it gave more significance to applied and practical aspects of mathematics than

to its logical and foundational aspects, see [39], [40] by G.I. Ruzavin for standard exam-

ples. I don’t know whether Vladimir Voevodsky ever read a philosophical literature on

mathematics produced by Soviet philosophers but his overall picture of mathematics pre-

sented in [S3, 1, 2] (Presentations 1, 2 above) is very similar to Ruzavin’s: both authors

describe mathematics in terms of its historical genesis from pre-scientific practical forms

of problem-solving toward an internalised theoretical form of problem-solving. Even if Vo-

evodsky’s conviction that applications play a major role in the development of mathematics

was not universally shared by all his Russian colleagues, his view on this matter agree with

an established local academic tradition represented by such prominent names as Andrey

Kolmogorov, Vladimir Arnold and Israel Gelfand who consistently combined theoretical

and applied mathematical research during all their professional careers.

A systematic philosophical critique of Voevodsky’s general view of mathematics is out of

the scope of the present paper. In what follows I focus on specific details of this view, which

concern functioning of channels between the pure mathematics and its applications. Recall

that in Voevodsky’s opinion during the last decades these channels have been seriously

damaged and now need an urgent repair.

3.2. Pure and Applied Mathematics. The (in)effectiveness of con mathematics

in the natural sciences. Unlike Eugene Wigner in 1960 [43] Vladimir Voevodsky doesn’t

see the effectiveness of mathematics in the natural sciences as a miracle, and believes that

mathematics can and should be applied in sciences more effectively than it is presently
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applied. He finds it abnormal that the most recent mathematical achievements are very

poorly integrated in the current science and technology, to leave alone the everyday prac-

tical life.

Even if such a view on today’s mathematics is not unique6 it is also very far from being

common. According to an influential historical narrative the detachment of today’s pure

mathematics from science and technology is a consequence of a significant and positive

conceptual change in mathematics and its foundations that occurred at the turn of the

20th century. Commenting in 1960 on Hilbert’s 1899 Foundations of Geometry [25], [24]

Hans Freudental remarks that with this Hilbert’s achievement the “bond with reality is cut.

Geometry has become pure mathematics” [18, p. 618]. The context makes it clear that

by “reality” Freudental means here the reality of physical space and objects in this space

but not a putative Platonic reality of self-standing mathematical objects [3]. Freudental

strongly praises this development and describes it retrospectively as a mainstream. In

this context he quotes Albert Einstein who says in his 1921 public lecture Geometry and

Experience (see [12]) that “the progress entailed by [the Hilbert-style — A.R.]axiomatics

consists of the sharp separation of the logical form and the realistic and intuitive content”

7 and that this modern conception of geometry plays a role in the Relativity Theory.

Remarkably, Freudental does not mention that along with the axiomatic geometry Einstein

discusses in the same lecture the “practical” geometry, which in Einstein’s view is at least

as much important for science as the abstract axiomatic geometry.

The idea according to which the pure mathematics is self-sustained and should be sharply

separated from the applied mathematics and mathematically-laden sciences also motivated

Bourbaki’s long-term project of building new set-theoretic foundations of mathematics as

well as many related developments including the educational reform of school mathematics

6Israel Gelfand famously remarked that “There is only one thing which is more unreasonable than

the unreasonable effectiveness of mathematics in physics, and this is the unreasonable ineffectiveness of

mathematics in biology” [2].
7Quoted after [18]; in the published version of this lecture [12] the wording in this phrase is slightly

different but its meaning is the same.
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in the Bourbaki vein known in the US under the name of New Maths. This educational

reform started in the US in late 1950s (as a reaction on the launch of Soviet Sputnik),

replicated in other countries, but by the early 1980s was already almost universally aban-

doned [35]. Marshall Stone, a prominent mathematician who was a leading figure of the

New Math movement, expressed his understanding of the contemporary mathematics in

his programmatic 1961 paper entitled The Revolution in Mathematics with the following

strong claim:

“While several important changes have taken place since 1900 in our con-

ception of mathematics or in our points of view concerning it, the one which

truly involves a revolution in ideas is the discovery that mathematics is en-

tirely independent of the physical world.” [41, p.716].

In eyes of those people who share this view on the relationships between sciences and

mathematics the fact that a large body of mathematical knowledge acquired after 1950

remains unapplied gives no reason for worries. It is readily explained and justified in

terms of the “new” understanding of mathematics, which stresses its independence from

the natural sciences and leaves its effectiveness in these sciences wholly unexplained and

contingent. This provides a context in which one can wonder together with Eugene Wigner

[43] how mathematics can be possibly effective in physics and other natural sciences. A

partial answer to (or at least a clarification of) this question is given by pointing to the

historical fact that mathematical theories, which are effective in physics, have been built

quite independently of their set-theoretic foundations and in many cases ab initio involved

physical motivations and intuitions.

The idea of sharp separation between the logical form and the “realistic content” of scientific

theories stressed by Freudental after Einstein back in 1960 was a cornerstone of the (very

diverse and ramified) philosophical movement known as Logical Empiricism, which was

very influential during the period of 1920-1950s but by the late 1960 was already seen by

many important players as definitely dead [10]. This historical reference is sufficient for

seeing that philosophical ideas and trends, however important and influential at certain
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point of history, should not be confused with scientific and mathematical achievements

such as proofs of long-standing mathematical conjectures. The “revolution in mathematics”

referred to by Stone in the above quote was indeed a revolution in ideas about mathematics

rather than a revolution in the mathematics itself. Unlike properly scientific revolutions

such philosophical revolutions are not irreversible and not truly universal. The relationships

between the pure mathematics and the natural sciences remains today, as ever, a matter

of philosophical controversy, which involves many conflicting views and ideas.

3.3. Set-theoretic foundations of mathematics and natural sciences. All mathe-

matics presently used in physics and other sciences can be recast in the Bourbaki-style

set-theoretic language and logically grounded on the set-theoretic foundations. Such a re-

casting is shown at Voevodsky’s double translation scheme (see Fig. 2 and Fig. 3 in the

Presentation 1 above), where the set-based pure mathematics connects to computational

models and raw empirical data not directly but via the mathematical models built with the

standard toolkit of mathematical physics such as systems of partial differential equations

and other analytic means (that usually date back to 19-18th century). These mathematical

models function as an effective interface between the pure and applied mathematics and,

at a larger scale, between mathematics and the “outside world”. Theories of pure math-

ematics, which lay outside this interface, i.e., a large body of “modern” and more recent

“synthetic” mathematics remain mostly unapplied. While in eyes of those mathematicians

who share Hans Freudental’s and Marshall Stone’s view such a situation is normal and

even progressive and desirable, in eyes of Vladimir Voevodsky and other mathematicians

who think of mathematics as an integral part of science, this is a harmful consequence of a

strategic mistake that needs to be corrected. Among views of people of this second group

Voevodsky’s view on mathematics is distinguished by the fact the he, unlike the majority

others [2], [16], considers logical foundations of mathematics very seriously. In his 2003

Bangalore lecture (Presentation 1) Voevodsky identifies foundations of mathematics with

the set-theoretic foundations. Voevodsky changed this view after 2006 when he put forward

the idea of alternative Univalent Foundations of mathematics [S 10, 18, 19, 20].
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Voevodsky’s strategy to solve the double translation problem (as in 2003) is to built a

shortcut from the set-based pure mathematics to applied mathematics that would bypass

the traditional “analytic” interface between the pure and applied mathematics. This pro-

posal has an important computational aspect, which is discussed in 3.5 below. Here I focus

on the ontological part of this proposal, which concerns a possibility to interpret abstract

mathematical sets in naturalistic terms, see Table 1 in the concluding part of Presentation

1.

I historical digression is here in order. The inventor of Set theory Georg Cantor back in

1884 conceived of possible applications of this theory in biology [15]. The founder of mod-

ern axiomatic method David Hilbert conceived of possible applications of this method in

natural sciences and included the problem of axiomatising physics into his famous list of

23 open mathematical problems that he announced in 1900 [23]. However the mainstream

axiomatic Set theory since its very emergence in Zermelo’s pioneering work [45] went in

a wholly different direction, which did not involve such naturalistic considerations. This

feature of abstract axiomatic Set theory was inherited by Bourbaki’s set-theoretic founda-

tions of mathematics. This is why Cantor’s ideas concerning a possible role of Set theory

in biology are commonly perceived today as a mere historical curiosity.

Cantor’s naturalistic speculations can be contrasted to Bernhard Riemann’s speculations

about a possible physical relevance of his notion of manifold that bears today Riemann’s

name expressed in his 1854 Habilitation lecture [36] and some other writings. Since the

Riemannian geometry serves a mathematical foundation of the physical theory of General

Relativity, which is nowadays universally accepted by the scientific community, it is jus-

tified to consider Riemann’s geometrical studies and Einstein’s work on GR as different

stages of the same project and claim that Riemann’s physical ideas pointed to the right

direction. Given today’s axiomatic Set theory, this is not the case of Cantor’s naturalistic

speculations8.

8The two cases are not independent: Cantor was influenced by Riemann’s work and borrowed from him

the term “manifold” (die Mannigfaltigkeit) that Cantor used for his set concept in his early works [14].
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The exceedingly abstract character of the standard mathematical set concept associated

with ZF and akin axiomatic theories has been stressed and sharply criticised by William

Lawvere in his seminal 1970 paper in the following words:

“[A] ’set theory’ . . . should apply not only to abstract sets divorced from

time, space, ring of definition, etc., but also to more general sets, which do

in fact develop along such parameters.” [27, p.329]

Talking about “general sets” in the above quote Lawvere refers to the Topos theory but not

to the Set theory in its standard axiomatic form. Attempts to re-establish the connection

between the foundations of mathematics and the natural sciences, which in view of Hans

Freudental, Marshall Stone and many other 20th century mathematicians has been lost

irreversibly for a good reason, using Topos theory and Category theory will be briefly

reviewed below in 3.4

Voevodsky’s idea exposed in his Bangalore lecture [S3] (Table 1 in the Presentation 1 above)

is not very original and it doesn’t involve an attempt to revise the standard axiomatic foun-

dations of Set theory. It amounts to a straightforward identification of mathematical sets

with collections of material objects — sets of living organisms, sets of enterprises, sets

of voters, sets of physical particles, sets of genes, and sets of molecules — and then us-

ing appropriate set-based mathematical structures in the corresponding scientific theories:

general biology, economics, sociology, particle physics, genetics, chemistry and what not.

It is hardly possible to support the claim that this approach cannot work in principle but

there are clear evidences that so far it has not been successful in spite of many attempts

to apply it in the scientific practice.

The idea to use Bourbaki-style set-based formal representations of scientific theories was

first proposed by Patrick Suppes and his collaborators back in the 1950s under the name

of the “semantic view of theories”. The “semantic view” was proposed as a replacement

for the “syntactic view”, which these people ascribed to earlier enthusiasts of using new

logical methods in science [22]. The earlier attempts to use logical methods in science
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included, on the one hand, some logically-based accounts of science offered by philosophers

[31] and, on the other hand, attempts to build workable scientific theories according logical

recipes such as Joseph Henry Woodger’s axiomatic theory of biology [44]. Proponents of

the new “semantic” approach argued that a scientific theory cannot be identified with any

particular axiomatic system but should be identified instead with a class of models, which

may, generally, satisfy different systems of axioms. In retrospect it is clear that Suppes and

his followers continued earlier efforts to introduce logical methods into science but applied

some more advanced logical techniques than their predecessors, which now included the

Model theory and Formal Semantics. This formal approach had a significant impact in

the Philosophy of Science of the last century [30]. However already at an earlier stage

of this project it became obvious that even if the Bourbaki-style formal representation of

scientific theories can be useful for certain philosophical and logical purposes (in particular,

it may help to analyse logical relationships between different scientific theories and different

branches of science), this way to represent theories is not appropriate for more common

scientific purposes such as presentation of new theoretical results and teaching of university

courses. While the impact of Bourbaki’s axiomatic style on the current mathematical

practice remains significant albeit controversial, the impact of this axiomatic style in science

is non-existent or negligible.

In Computer Science (CS) the idea to represent collections of material objects with abstract

sets plays a role in formal ontologies, which provide a theoretical basis for computer-

based Knowledge Representation technologies (KR) [4]. However KR in its existing forms

does not reflect the theoretical structure of today mathematically-laden science such as

theoretical physics and is not designed for this purpose. This is why it can hardly serve as

an interface between science and set-based mathematics.

As I have already said, important fragments of set-based Bourbaki-style mathematics such

as Group theory are successfully applied in physics and other sciences. However such

mathematical theories are applied in sciences in different forms quite independently from

their set-theoretic representation and set-theoretic grounding. It is often said the modern
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axiomatic set concept is “too abstract” to be useful in science. I think that this claims

needs qualifications, moreover that it is not clear how the degree of mathematical abstrac-

tion can be measured. Such mathematical concepts as that of natural and real number,

of geometrical point, etc., are also abstract but nevertheless very useful and effectively ap-

plied in natural sciences. The identification of certain material objects, e.g., planets, with

Euclidean geometrical points that “have not part” is a basic operation of the Classical

Newtonian mechanics. By the same pattern one can consider a set of molecules constitut-

ing a given living organism, and then assume that this set is a subject to the axioms of

Zermelo-Fraenkel Set theory (ZF). However this way of thinking about a living organism

or any other physical or biological system turns out to be scientifically sterile; it doesn’t

make ZF relevant in science in anything like the same way in which Euclidean geometry

is relevant in the Classical Mechanics, the Riemannian geometry is relevant in the General

Relativity or operator algebras are relevant in the Quantum theory.

A plausible explanation of this situation in terms of historical epistemology can be given

by pointing to the fact that unlike the Euclidean and Riemannian geometry, the axiomatic

Set theory has not been developed in view of possible applications in natural sciences. The

axioms of ZF are motivated by ideas that are metaphysical rather than physical (leaving

now aside more specific mathematical and logical motivations). This concerns even such

apparently unproblematic axioms as the axiom of pairing. Informally, this axiom says that

any given two things (objects, sets) x, y can be always seen as one thing (pair) {x, y}.

The intuitive appeal of this axiom is deceptive because our experience of collecting objects

(or analysing a given complex object into its components) is always bound with certain

spatial and temporal conditions, which the axiom of pairing wholly ignores. Motivations

and alleged justifications of this mathematical axiom belong to the domain of specula-

tive thought, which deliberately and systematically leaves aside all naturalistic, cognitive
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and empirical considerations Whether or not this strategy is justified from an epistemo-

logical point of view, it obviously widens the gap between the pure mathematics and its

applications9.

3.4. Category theory as a mathematical foundation for natural sciences. The

above argument applies to the “modern” set-based Bourbaki-style mathematics but not to

the more recent “synthetic” mathematics. In his Wuhan 2003 lectures [S1, 2] Voevodsky

does not make it quite clear what he means by the synthetic mathematics and how it

differs from the “modern” mathematics (except providing some examples) but my guess

is that he borrows term “synthetic” from William Lawvere and other people who use

this for referring to category-theoretic axiomatic theories such as Synthetic Differential

Geometry [26] and Synthetic Differential Topology [5]. Lawvere and his followers reserve

the term “synthetic” for their axiomatic category-theoretic approach in geometry, which

they contrast to the more standard “analytic” approaches. One needs to bear in mind that

in this specific context the term “synthetic” refers, by default, to theories that use Category

theory as a foundation rather than to more more familiar Hilbert-style axiomatic theories

that admit a set-theoretic semantics. When Voevodsky in his 2003 lectures [S1, 2] calls the

contemporary Algebraic Geometry and Homotopy “synthetic” he, in my understanding,

refers to this specific category-theoretic axiomatic approach applied in these mathematical

disciplines10.

9It worths mentioning that even when ZF is used a foundation of mathematics the axiom of pairing

and other axioms of ZF are not applied in their “official” unrestricted form. The Bourbaki-style set-based

mathematics involves an informal understanding based on implicit restrictions of type-theoretic character

that certain sets and set-based structures are sound while some other, even if they are well-formed by the

ZF standard, are not. As an example of such an unsound object think of set, elements of which are points

of a given geometrical space and number π.
10In his Paul Bernays Lectures delivered in Zurich in Fall 2014 [S24] Vladimir Voevodsky provides a

more systematic and more detailed account of historical development of mathematics and its foundations.

This more detailed historical account agrees in its main features with that given in 2002 in the Wuhan

lectures
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Lawvere project of building new category-theoretic foundations of mathematics was strongly

motivated by his wish to make the contemporary mathematics and its foundations more apt

to applications in natural sciences. First attempts to use CT as a mathematical language

for physical theories were made by Lawvere and a group of his followers in the early 1980s

[28]; today there exists a significant number of accomplished works and ongoing research

projects that apply Category theory and Higher Category theory in various branches of

mathematical physics [8], [21], [34]11. In the theoretical biology similar attempts begin with

Robert Rosen’s pioneering 1958 paper [38] and continue today in various forms (??, this

volume??)

In these approaches the abstract mathematical concepts of category and functor are used

for representing certain fundamental physical or biological concepts such as that of physical

process and biological system. The resulting mathematically-laden scientific theories aim at

representing fundamental principles and fundamental structures in their respective fields

with new mathematical tools. Remarkably, Vladimir Voevodsky did not enter into this

vivid area of mathematical research but tried to bridge today’s mathematics with natural

sciences in a different way.

3.5. Applied Mathematics and Computers: Voevodsky’s strategy. As the above

Presentation 4 makes it clear Vladimir Voevodsky was interested primarily in application

of mathematics in an empirical data-driven scientific research, and opposed a tendency to

reduce applications of new mathematics in science to fancy mathematical reformulations

of earlier known theoretical results. This explains why Voevodsky did not invest his time

and energy into mathematical physics, theoretical biology and akin theoretical disciplines.

In his 2003 Bangalore lecture [S3] (Presentation 1) Voevodsky stresses the role of electronic

computers as an interface between between the pure mathematics, on the one hand, and

the “outside world”, on the other hand (see Fig. 2 above). This role is twofold. First,

11For an updated survey and further references see also https://ncatlab.org/nlab/show/higher+

category+theory+and+physics.

https://ncatlab.org/nlab/show/higher+category+theory+and+physics
https://ncatlab.org/nlab/show/higher+category+theory+and+physics
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the available computer memory allows for an extensive accumulation of empirical data12.

Second, modern computers make it possible to proceed such large volumes of data. Nev-

ertheless, as Voevodsky argues in the Bangalore lecture, the way in which computers are

commonly used today in the data-driven sciences blocks the possibility to use the potential

of contemporary mathematics in these sciences. This has a negative effect not only in these

sciences but also in the pure mathematics because its poor interaction with the outside

world deprives it from new ideas.

Let me illustrate Voevodsky’s argument with the example of Climate Research where elec-

tronic computers are systematically used both for storage and processing of empirical data

and for computational modelling of climatic phenomena. The existing computer models of

climate are typically based on mathematical models that involve mathematics of the pre-

computer era: continuous functions, partial differential equations ( e.g., the Navier-Stokes

equation) and akin analytic means. These computer models implement such traditional

mathematical models via various numerical (computational) methods; in many cases this

approach requires computational resources, which are at the limit of or exceed today’s

technological capacities [32].

Since the mathematical foundation (say, the Navier-Stokes equation) of a computer model

is fixed, the mathematical part of the task reduces to finding effective ways of solving the

Navier-Stokes equation numerically. This can hardly produce any impact on the main-

stream pure mathematics. Data and data structures that do not fit into this fixed mathe-

matical framework are simply ignored and cannot motivate new developments in the pure

mathematics. Reciprocally, building computer models on the top of traditional mathe-

matical analytic models leads to a waste of computational resources that cannot be fully

compensated by inventing new sophisticated algorithms for finding numerical solutions

without changing the theoretical foundation of these models. A revision of mathemat-

ical foundations of today’s data-laden scientific theories such as the current theories of

12Since 2008 this phenomenon is commonly called the “Big Data” [11]. An analysis of the impact of Big

Data on scientific, social and political practices is found in [29].
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climate can help to use the available computational resources more effectively. As Voevod-

sky readily admits, until the effectiveness of this fundamental approach is demonstrated

with concrete examples the above argument remains merely speculative. In order to pro-

vide such a working example Voevodsky focuses his efforts on a mathematical theory of

Population Dynamics.

The above difficulty Voevodsky calls the problem of double translation (see Fig. 3 above)

for the following reason. In the Bangalore lecture he takes it for granted that the pure

mathematics in its modern form resides on the set-theoretic foundations. When scientific

problems are translated into mathematical problems according the above pattern a mathe-

matician needs, first, translate a given scientific problem (and relevant data structures) into

an old-fashioned (analytic) mathematical language and, second, reformulate the problem

in the modern mathematical language of Set-theory. Only after making these two prepara-

tory steps one is in a position to consider prospective applications of modern mathematics

in the given area of scientific research. Voevodsky proposes to streamline this scheme by

establishing a shortcut (shown with a dotted arrow at Fig. 3) from computer models to

set-theoretics models.

It should be born in mind that in 2003 when Vladimir Voevodsky delivered his Bangalore

lecture he didn’t conceive of any other possible foundation of the contemporary mathemat-

ics except the Set theory. Recall that in the same lecture he speculates about a possible

role of Set theory as a mathematical foundation of natural sciences (see 3.3 above). In

2012 Voevodsky changes his ideas about foundations of mathematics and proposes alter-

native foundations, namely, the Univalent Foundations (UF) (Presentations 3,4). UF was

developed by Voevodsky in order to address the problem (“crisis”) of proof verification

rather than the problem of application of modern mathematics (see Presentations 2 and

3). However UF, unlike the Set theory in its standard axiomatic form, also provides for

the wanted shortcut from the computational mathematics to the foundations of today’s

mathematics. Talking in 2012 about his abandoned project in the Population Dynamics

Voevodsky mentions his plan to accomplish this project (or at least its most developed part
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that involves the categorical probability theory [S4) in the future using a proof-assistant

(Presentation 4). Since in 2012 Voevodsky’s research was fully focused on the UF, the

timing makes it clear that mentioning a proof-assistant he points to UF here.

3.6. Univalent Foundations and Applied Mathematics. Since UF provides the wanted

shortcut from computations to the contemporary “synthetic” mathematics (that includes

Algebraic Geometry and Homotopy theory) and since such a shortcut, according to Vo-

evodsky, helps to apply the contemporary mathematics in science and technology more

effectively, it makes sense to consider UF as a possible mathematical foundation of scien-

tific theories including biological theories. I can see at least two features of UF — one very

general and the other more specific — which, in my view, make this mathematical theory

an interesting candidate for this role.

1) In low dimensions UF is supported with a spatio-temporal intuition that can be called

homotopical intuition: the basic homotopical concepts of path and path homotopy are easily

pictured and readily imagined [1]. The significance of this feature does not reduce to its

heuristic role. The homotopical intuition in the UF empowers an effective interface between

the colloquial mathematical language used by working mathematicians, on the one hand,

and formal proofs, on the other hand, thus making an automated verification of “colloquial”

mathematical proofs possible. The same feature of UF may play a role in prospective

applications of UF-based mathematics in natural sciences. As Ernest Cassirer put it in

1907 as a part of his critical assessment of Russell’s mathematical logicism “The principle

according to which our concepts should be sourced in intuitions means that they should be

sourced in the mathematical physics and should prove effective in this field.” [6, p. 43] (my

translation from German). The homotopical intuition allows one to think of Homotopy

theory as a specific abstract form of human spatio-temporal experience, which doesn’t

reduce to more familiar and better explored mathematical forms of experience associated

with the standard arithmetical intuition, the traditional Euclidean geometrical intuition

or the more modern Riemanian geometrical intuition. A dummy example that shows how
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homotopical concepts used in UF and the corresponding type-theoretic operations can be

given a physical meaning is found in [37].

2) Unlike standard Hilbert-style axiomatic theories such as ZF, UF and UF-based mathe-

matical theories are rule-based and may involve no axiom. This feature of UF facilitates

its computational implementation13. Arguably, the same feature makes the UF-based con-

structive formal architecture more appropriate for scientific theories than the standard

Hilbert-style axiomatic architecture.

The homotopical semantics of type theories used in the UF distinguishes between proposi-

tional types (that represent logical propositions) and a hierarchy of higher non-propositional

types, which represent various mathematical constructions that witness (are evidences for)

their corresponding propositions. The presence of non-propositional types opens a pos-

sibility to interpret formal derivations in the UF-based formal theories as algorithms for

building models with certain desired properties, in other words, for performing thought-

experiments, which may justify and refute certain theoretical sentences. In the UF-based

mathematics such thought-experiments translate into computational experiments, which

may model certain physical processes. Thus the computable character of UF-based math-

ematical models suggests a possibility to use such models in the data-laden sciences such

as the Climate Science where computational experiments play a major role.

The possibility of such a direct application of today’s abstract mathematical concepts to

empirical data stored in a computer memory, which is suggested by the above analysis

of Voevodsky’s ideas, is independently explored in the Topological Data Analysis (TDA)

[33] and its applications in the Neuroscience [13], Biology [19], [7] and some other scien-

tific disciplines. This makes TDA an appropriate framework for a further development of

Voevodsky’s ideas presented in this paper. Among other contributions that these ideas

13The original version of UF uses rule-based Matin-Löf Type theory (with dependent types, MLTT), a

homotopical interpretation of MLTT called Homotopy Type theory (HoTT), and an additional Axiom of

Univalence (AU). However a more recent version of UF has a different formal carrier called Cubical Type

theory (CTT) which is wholly rule-based and proves AU constructively as a theorem [9]
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could bring to TDA in its existing form is a theoretical computational basis and the proof-

theoretic logical semantics (briefly outlined above) that UF inherits from MLTT.

4. Conclusion

The premature death in 2017 did not allow Vladimir Voevodsky to return to his project

in applied mathematics, so it remained unachieved. However his general vision of today’s

mathematics and its possible future, which emphasises the interaction between the pure

and applied mathematics, remains very inspiring and, as I hope, can motivate further

research and lead to important achievements. This concerns, in particular, Voevodsky’s

original strategy of bridging the growing gap between the pure and applied mathematics,

which is focused on the empirical data-driven science rather than the theoretical science

and aims at a fundamental renewal of the traditional apparatus of mathematical physics

and mathematical biology. In the previous sections of this paper I also tried to explain a

possible relevance of the Univalent Foundations of mathematics developed by Voevodsky

for a different purpose to his unachieved project in the applied mathematics. Vladimir

Voevodsky’s strategic vision of mathematics, including its past, its present and its projected

future [S24] is an important part of his intellectual heritage that needs a further study and

further development.
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