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The computer-assisted proof of Four Colour Map theorem (4CT) published by Kenneth Appel,
Wolfgang Haken and John Koch back in 1977 [1] prompted a continued philosophical discussion
on the epistemic value of computer-assisted mathematical proofs [10],[9],[3],[2],[7],[8]. We briefly
overview this discussion and then show how the Univalent Foundations of Mathematics (UF)
meets some earlier stressed epistemological concerns about computer-assisted proofs and thus
offers a new possibility to fill the gap between computer-assisted and traditional mathematical
proofs. We demonstrate the argument with a proof of basic theorem in Algebraic Topology
formalised in UF and implemented in AGDA [6].

1 Overview

In their proof of 4CT Appel and his co-authors used a low-level computer code written specifi-
cally for this purpose in order to check one by one 1482 different cases (configurations), which
was not feasible by hand. More recently a fully formalised version of Appel&Haken&Koch’s
proof has been implemented with Coq [4]. A philosophical discussion on this proof has been
started by Thomas Tymoczko [10] who argues that the computer-assisted proof of 4CT does
not qualify as mathematical proof in anything like the usual sense of of the word because
the computer part of this proof cannot be surveyed and verified in detail by human mathe-
matician or even a group of human mathematicians. On this ground Tymoczko suggests that
the computer-assisted proof of 4CT represents a wholly new kind of ezperimental mathemat-
ics akin to experimental natural sciences, where the computer plays the role of experimental
equipment.

Paul Teller in his response to Tymoczko [9] argues that Tymoczko misconceives of the concept
of mathematical proof by confusing the epistemic notion of verification that something is a
proof of a given statement with this proof itself, which under Teller’s general conception of
mathematical proof has no intrinsic epistemic content in it. Assuming that the published proof
of 4CT is indeed a proof, Teller argues that it is unusual only in how one gets an epistemic
access (if any) to it but that, contra Tymoczko, there is nothing unusual in the involved concept
of mathematical proof itself.

Commenting on Teller’s analysis in 2008 Dag Prawitz [7] approves on Teller’s distinction be-
tween a proof and its verification. However since Prawitz’s conception of proof unlike Teller’s
is essentially epistemic, Prawitz comes to a different conclusion. Contra Teller and in accor-
dance with Tymoczko Prawitz argues that if Appel&Haken&Koch’s alleged proof is indeed
a proof then it comprises a crucial empirical evidence provided by computer and thus is not
deductive.
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Mic Detlefsen and Mark Luker in their response to Tymoczko [3] quite convincingly show that
the difference between the computer-assisted proof of 4CT and traditional mathematical proofs
is less dramatic than Tymoczko says. For traditional mathematical proofs quite often, and
perhaps even typically, comprise some “blind” symbolic calculations like one that is needed in
order to compute the product 50 x 101 = 5050. How much a given symbolic calculation is
epistemically transparent or blind, is, according to Detlefsen&Luker, a matter of degree rather
than a matter of principle.

2 Local and Global Surveyability of Mathematical Proofs

O. Bradley Bassler [2] suggests to distinguish between local and global surveyability of math-
ematical proofs. By local surveyability of proof p Bassler understands the property of p that
makes it possible for a human to follow each elementary step of p. Bassler argues that local
serveyability of p does not, by itself, make p epistemically transparent or surveyable in the
usual intended sense because on the top of local surveyability it requires at least a minimal
global surveyability, which allows one to see that all steps of p taken together provide p with
a sufficient epistemic force that warrants its conclusion on the basis of its premises. In the
historical part of his paper Bassler shows that there is an unfortunate tendency to neglect the
global surveability in proofs by assuming that it reduces to the local one.

When one applies the distinction between local and global surveyability in the analysis of
Appel&Haken&Koch’s proof of 4CT the resulting picture is more complex than one suggested
by Tymoczko [10]. The computer part of the proof is fully locally surveyable in the sense
that each piece of the computer code can be checked and interpreted by human (since it is
written by human). Arguments explaining why the computation so encoded, if performed
correctly, completes the proof of the theorem, which Appel&Haken&Koch present in the form
of traditional mathematical prose, provide a global survey of this proof and of this computation
in particular. What this proof still lacks is rather an expected surveyability and traceability
at the intermediate scale between the general understanding of what the given computation
computes and the low-level computational steps expressed with the program code.

3 Univalent Foundations and Spatial Intuition

Homotopy Type theory (HoTT), which is the mathematical core of UF [5], allows one to think
of formal derivations in Martin-Lof Type theory (MLTT) as homotopical spatial constructions
. When this base calculus or its fragment is implemented in the form of programming code
then the same homotopical interpretation along with the associated spatial intuition applies
to the code. This spatial (homotopical) intuition makes formal symbolic derivations and the
corresponding programming code humanly surveyable in a new way: on the top of the local
surveyability that allows one to control elementary steps of the process, and in addition to the
high-scale global surveyability that provides one with a general understanding of the resulting
construction, the homotopical spatial intuition provides an epistemic access to the intermediate
mesoscopic level of this construction, which allows one to follow and control all significant steps
of formal reasoning ignoring its minute details. Such an intuitive reading of the formalism
bridges the usual gap between the rigour formal representation of mathematical reasoning with
logical calculi, on the one hand, and the conventional representations of mathematical reasoning,
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which typically heavily use various symbolic means of expression without strict syntactic rules,
on the other hand. Thus HoTT supports a representation of mathematical reasoning in general
and mathematical proof in particular, which is:

e fully formal in the sense that it uses a symbolic calculus with an explicit rigorous syntax;
e computer-checkable;

e supported by a spatial (homotopical) intuition that balances local and global aspects of
mathematical intuition in the usual way.

A simple (but not trivial) example of mathematical proof represented in this way is found in
[6]. Tt is a proof of basic theorem in Algebraic Topology according to which the fundamental
group 71 (S!) of (topological) circle is S (isomorphic to) the infinite cyclic group Z, which is
canonically represented as the additive group of integers.

Let base be a point of given circle S* (the base point). This judgement is formally reproduced
with the MLTT syntax as formula

b: St

Then loops associated with this base point are terms of form:

loop :b=g1b

The resulting formal proof and its implementation in a programming code are interpretable in
terms of such intuitive spatial (homotopical) constructions all the way through.

4 Conclusion

The UF-based approach in computer-assisted theorem proving allows the user to follow math-
ematical arguments at the crucial mesoscopic level of the proof structure, which is necessary
for human understanding of mathematical proofs in anything like the usual sense of the word.
In this case a computer-assisted proof does no longer appear as a “black box proof” where sig-
nificant parts of the argument remain epistemically opaque and are replaced by non-deductive
empirical evidences. This feature makes UF-based formal computer-assisted proofs quite like
traditional mathematical proofs in accordance with the general line of Detlefsen&Luker’s argu-
ment [3].
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