
How Mathematical Concepts Get Their Bodies: The Example of Forcing''

A precise outlook at the Kantian distinction between mathematical concepts and 
corresponding intuitions ("intuitus vel conceptus") reveals some details, which Kant 
himself mostly left unnoticed. Along with classical cases where the two basic aspects of 
mathematical thinking perfectly fit together there are also multiple examples when they 
don't. The first group of such examples comprises clear mathematical intutions, which 
remain only poorly conceptualised; the second group comprises well-formed mathematical 
concepts, which are poorly intuited. Abusing Kant's original meaning of the term one can 
describe certain examples of the second kind as ideal elements of mathematical thinking. 

The historical development of mathematics shows a permanent trade going on between 
concepts and intuitions. It involves both the progressive conceptualisation of earlier 
acquired intuitions and the progressive intuiting of earlier acquired concepts. The latter 
process can be called desidealisation because it results into the situation when ideal 
elements of mathematical thinking acquire stronger intuitions and so loose their ideal 
character. Metaphorically speaking, desidealisation allows mathematical concepts to "get 
their bodies". 

The aim of this paper is to justify the above broad picture through a number of historical 
examples. More specifically I shall describe the example of forcing, which seems me 
important not only for understanding the recent past of mathematics but also for 
conceiving of its possible near future. 

A progressive conceptualisation of earlier developed intuitions can be observed in the 
history of geometry from its early days to mid-19th century. Greek geometry as we know 
it after Euclid, strictly speaking, allows only for objects constructible by ruler and 
compass. At the same time the Euclidean setting  immediately makes one think of 
geometrical objects, which (as we know today) cannot be produced in this way. Although 
such objects in many cases can be provided with precise definitions, their 
conceptualisation in the given setting remain essentially incomplete. Descartes  in his 
"Geometry" greatly enlarged the domain of well-conceptualised geometrical objects by 
suggesting a very different way of their conceptualisation. The Cartesian geometrical 
domain includes, in particular, all algebraic curves. But once again it leaves out  a large 
class of objects which are immediately intuited but only poorly conceptualised in the given 
context. Any non-algebraic curve is an example.  It was not earlier than in 19th century 
when the progress in geometrical conceptualisation reversed the situation and brought 
about certain geometrical concepts like that of projective space or Lobachevskian space 
which didn't fit earlier developed intuitions.  
  
An obvious example of desidealisation concerns the very notion of ideal in its technical 
algebraic sense. The modern mathematical notion of ideal stems via Dedekind from 
Kummer's notion of ideal number. Kummer introduced this latter notion in a purely 
predicative way by studying rings of cyclotomic integers: he merely stipulated objects 
having certain desired properties without trying to build them out of available materials 
and without questioning their existence. Dedekind in his turn identified Kummer's ideal 
numbers with certain infinite classes (sets) of cyclotomic integers. Today's notion of 
algebraic ideal mimics Dedekind's but refers to an abstract ring rather than a ring based 



on complex numbers. As far as new generations of mathematicians habituated themselves 
to thinking about infinite sets as intuitively conceivable entities (by the analogy with finite 
sets) the notion of algebraic ideal compleately lost its ideal character. 

The latter example has in fact a general significance.  For Set theory can be seen as an 
universal semantic tool available to produce a model (i.e. a "body") for any sound 
mathematical concept on likes. Morover according to an often-repeated argument the 
existing mathematics doesn't use in this way but a very small amount of available sets. So 
one might suggest that in a Set-theoretic framework ideal elements are no longer 
possible. Nevertheless at least one such example is found in the Set theory itself, namely 
the construction made by Paul Cohen in 1963 with a new method he called forcing.
Cohen's task was to produce a model of ZFC violating Continuum Hypothesis (CH), which 
says that the power-set PN  of set N of all finite ordinals has the cardinality equal to the 
second infinite cardinal ALEF1. The idea of the desired construction is the following. In 
some model M of ZF one takes N, cardinal ALEF2 bigger than ALEF1, and considers some 
function F: N x ALEF2--> {0, 1}. This F can be seen as a set of functions N-->{0,1}, which 
has cardinality ALEF2; since every function  N-->{0,1} detrmines a particular subset of N 
the existence of F guarantees that (in M) PN is strictly bigger than ALEF1, and so CH is  
violated. However it turns out that the desired F cannot be fully described by 
"constructive" axioms of ZF like the union or powerset axiom. For "constructible universe" 
L comprising only sets, which can be fully described in this explicit way, is a model of ZF 
where CH holds. Cohen's forcing amounts to adjunction to a given model M a new generic 
set A (not from a larger model which would confuse cardinalities but) as a merely formal 
symbol; then one writes down (by means of ZF) a set of formulae called forcing 
conditions, which express desired properties of A (albeit don't determine it completely). 
As Cohen himself repeatedly pointed out this construction is analogous to that of 
extension of a given field by new elements absent from this initial field but nevertheless 
described in its terms (think again of cyclotomic numbers): in both cases formal 
expressions with new "ideal" elements are made into elements of a new extended 
structure. Notice that the sense of "ideal" in Cohen's case is in fact stronger than in 
Kummer's case since no single formula of ZF describes A completely. For a suggestive 
analogy think about real numbers in terms of their rational approximations. The method of 
forcing allowed Cohen to get the desired model of ZFC violating CH. 

Category theory, which nowadays progressively replaces the membership-based Set 
theory in its role of universal mathematical language, allows for a desidealisation of 
Cohen's construction by providing it with a clear geometrical sense. Forcing conditions 
form a small category F (in Cohen's case this is a partial order, i.e. a category having no 
more than one morphism for any pair of objects). The category (Fop, S) of all 
contravariant functors (pre-sheaves) from F to the category of sets S is a topos, i.e. it 
has properties similar (but not identical) to those of S. This implies that in (Fop, S)   
forcing conditions "get completed" and play the role of truth-values; one can interpret 
them in this setting as "stages of knowledge" about the hypothetical set A. The next step 
amounts to singling out a Boolean topos B of sheaves from the obtained topos of 
presheaves. This time one thinks of elements of F as open sets; the desired sheaves are 
presheaves, which respect the given topology. The obtained Boolean topos is ("almost") a 
model of ZF, which comprise sets determined through forcing conditions. The topology of 
this topos provides an intuitive sense for the whole construction and allows one to explain 



its features, which in the original exposition look miraculous.   

My concluding remark is the following. Set-theoretic mathematics devoloped a radically 
new type of mathematical intuition related to the notion of infinite set and discqualified 
more traditional types of mathematical intuition related to our thinking of space and time 
(as described in particular by Kant). Among some other negative consequences this 
abrupt change of the earlier established practice significantly weakened links between 
foundations of mathematics and foundations of physics. The above example of forcing 
shows that category-theoretic foundations of mathematics may allow for providing 
today's and future mathematics with a stronger intuitive support related to our thinking 
of space, time, change and motion. I certainly don't mean here to revive Kantian 
philosophy of mathematics in full but its part concerning the role of intuition in 
mathematical thinking seems me still viable.          

               


