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Categories without Structures†

Andrei Rodin∗

The popular view according to which category theory provides a support
for mathematical structuralism is erroneous. Category-theoretic foun-
dations of mathematics require a different philosophy of mathematics.
While structural mathematics studies ‘invariant form’ (Awodey) cate-
gorical mathematics studies covariant and contravariant transformations
which, generally, have no invariants. In this paper I develop a non-
structuralist interpretation of categorical mathematics.

1. Introduction

Some time ago there was a discussion in Philosophia Mathematica about
Hellman’s question ‘Does category theory provide a framework for math-
ematical structuralism?’ [Hellman, 2003]. Awodey [2004] answered ‘Yes,
obviously’; a version of categorical structuralism (i.e., mathematical struc-
turalism developed in a category-theoretic framework) was later described
by McLarty [2004]. Independently of this discussion a structuralist view
on category theory is argued for in [Makkai, 1998]; a similar view also
underlies the recent monograph [Marquis, 2009] (even if in this book
the author does not discuss mathematical structuralism explicitly). In this
paper I propose a different answer to Hellman’s question by arguing that
category theory leads to a new non-structuralist view of mathematics and
its foundations. Mathematical structuralism is usually opposed to various
forms of substantialism about mathematical objects. As the reader will see
the view on mathematics that I oppose to structuralism in this paper is not
of this latter sort.

In order to formulate my claims I need to make explicit some of
my general assumptions concerning the aim and the scope of philoso-
phy of mathematics. I hold a traditional view according to which the
principal aim of philosophy of mathematics is to provide mathematics
with appropriate foundations. In saying this I have in mind the notion of
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2 RODIN

foundation described by Lawvere as follows:

A foundation makes explicit the essential general features, ingredi-
ents, and operations of a science, as well as its origins and general
laws of development. The purpose of making these explicit is to pro-
vide a guide to the learning, use, and further development of the sci-
ence. A ‘pure’ foundation that forgets this purpose and pursues a
speculative ‘foundation’ for its own sake is clearly a nonfoundation.
[Lawvere, 2003]

Following Lawvere I shall not discuss in this paper what he calls ‘pure’ and
‘speculative’ foundations, i.e., foundations detached from current mathe-
matical practice.

Further, I assume that the foundations of mathematics are subject to
permanent dialectical revision and historical change; I believe that such a
continuing renewal of foundations is essential for progress in mathematics
(and likewise for progress in science in general). While progress in
most parts of mathematics amounts to building upon earlier acquired
knowledge, the renewal of its foundations works differently: it amounts
to refutation of older foundations and positing of new ones. This process
represents the dialectical development of basic ideas about mathematics,
which reflect, support, motivate, and lead contemporary mathematical
practice. My aim in this paper is to push this dialectical development
further forward.

Since a general discussion about the nature and the purpose of founda-
tions is out of place here I shall only say how the above assumptions con-
tribute to my further claims concerning structuralism and category theory.
I shall speak about structuralism as a way of building foundations of math-
ematics, not merely as a doctrine about the nature of mathematics. I shall
criticize structuralism without meaning that structuralism is wholly wrong.
My claim is that structuralism is not wrong but outdated. It has been suc-
cessful in twentieth-century mathematics but it is no longer appropriate as
a foundation for today’s and future mathematics. I present in this paper an
alternative foundational project related to category theory and explain its
advantages. I also explain how this categorical foundational project relates
to structuralism and why it does not qualify as a variety of structuralism.

The rest of this paper is organized as follows. First, I briefly discuss
mathematical structuralism, its historical origins, and its relation to set the-
ory and category theory. Here I explain reasons why Mac Lane, Awodey,
and some other people believe that category theory provides a support for
mathematical structuralism. Then I provide my critical arguments against
this latter view, arguing that the notion of category should be viewed as a
generalization of that of structure rather than as a specific kind of struc-
ture. Further I analyze Lawvere’s paper [1966] on categorical foundations
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CATEGORIES WITHOUT STRUCTURES 3

and show that the author begins this paper with a version of structuralist
foundations but then proceeds in a different direction. I conclude with an
attempt to outline the new categorical view of mathematics explicitly.

2. Mathematical Structuralism

Before discussing structuralism as a philosophical view about mathematics
I would like to point to an example of mathematical structure given by a
working mathematician for a philosophical reader:

All infinite cyclic groups are isomorphic, but this infinite group
appears over and over again — in number theory, in ornaments, in
crystallography, and in physics. Thus, the ‘existence’ of this group
is really a many-splendored matter. An ontological analysis of things
simply called ‘mathematical objects’ is likely to miss the real point
of mathematical existence. [Mac Lane, 1996]

The point stressed by Mac Lane with this example is this: things like (alge-
braic) groups should be thought of as structures (abstract or instantiated in
various ways) rather than individual objects. Let me now for the sake of
my further argument modify Mac Lane’s example as follows: I replace the
words ‘infinite cyclic group’ by the words ‘number three’ and the word
‘isomorphic’ by the word ‘equal’:
All threes are equal but this number appears over and over again — in
number theory, in ornaments . . . . Thus the ‘existence’ of this number is
really a many-splendored matter.

This modification reveals a traditional aspect of structuralism, which
often remains unnoticed when people stress the novelty of this approach.
Indeed the familiar number three is just as ubiquitous as the infinite cyclic
group — or perhaps even more so. The number three equally ‘appears’
(to use Mac Lane’s word) both inside and outside mathematics: in a trio
of apples, a trio of points, a trio of groups, a trio of numbers, or a trio of
anything else. As in Mac Lane’s original example, there is a systematic
ambiguity between the plural and the singular forms of nouns in our talk
about numbers. (Notice Mac Lane’s talk about ‘all infinite cyclic groups’
and ‘this infinite group’ in the same sentence; in my paraphrase I talk sim-
ilarly about a number.) This shows that the notion of ‘many-splendored
existence’ (i.e., of multiple instantiation) is not specific to the way of
mathematical thinking developed in the first half of the twentieth century
and usually described as ‘structural’. Thus in order to understand what
is specific to this thinking one should look elsewhere. Comparing Mac
Lane’s example with its modified version, one can see that in the former
the notion of isomorphism plays the same role that the notion of equal-
ity (as distinguished from identity) plays in traditional mathematics. The
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4 RODIN

idea that isomorphic objects can be treated as equal is, in my view, cru-
cial for structuralism — at least if we are talking about structuralism as
a historical trend in mathematics rather than a philosophical theory about
mathematics.1

This point has been made clear by Hilbert in his often-quoted letter to
Frege of December 29, 1899. Stressing the ‘many-splendored’ nature of
structural theories (as we would call them today) Hilbert says:

[E]ach and every theory can always be applied to the infinite number
of systems of basic elements. One merely has to apply a univocal and
reversible one-to-one transformation [to the elements of the given
system] and stipulate that the axiom for the transformed things be
correspondingly similar (quoted in [Frege, 1971], emphasis added)

Notice that the reversibility condition stressed here by Hilbert implies that
the given transformation is an isomorphism.

In current philosophy of mathematics, mathematical structuralism is
present in a number of different varieties [Hellman, 2001], which include
categorical structuralism [Hellman, 2006b; McLarty, 2004]. However a
general notion of mathematical structuralism neutral with respect to its
more specific varieties is also described in recent literature. For my present
purposes I shall refer only to this core of mathematical structuralism leav-
ing aside more specific issues concerning its multiple varieties. Hellman
[2006a] describes this core structuralism as follows:

Structuralism is a view about the subject matter of mathemat-
ics according to which what matters are structural relationships in
abstraction from the intrinsic nature of the related objects. Mathemat-
ics is seen as the free exploration of structural possibilities, primarily
through creative concept formation, postulation, and deduction. The
items making up any particular system exemplifying the structure in
question are of no importance; all that matters is that they satisfy
certain general conditions typically spelled out in axioms defining
the structure or structures of interest — characteristic of the branch
of mathematics in question.

Notably Hellman does not explicitly mention the notion of isomorphism
in this description. In my view this is a serious fault. To see this consider
the example of group structure. A group is any ‘system’ (to use Hellman’s
word) that consists of certain ‘items’ a, b, . . . and an associative binary
operation ⊕ associating with every ordered pair of such items (possibly
identical) a third item (possibly identical to one of those) from the same
system such that there is an identity for the operation and an inverse for

1 For a historical study of the structural trend in mathematics see [Corry, 2004].
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CATEGORIES WITHOUT STRUCTURES 5

every item in the group. Associativity and the existence of the identity
and inverses can be referred to as axioms. These axioms are satisfied by
many different groups. The infinite cyclic group mentioned above is just
one example, but there are many others. These other groups are not, gen-
erally, isomorphic to the infinite cyclic group, i.e., they are different in the
structural sense. This demonstrates the obvious fact that axioms determine
a class of structures of a particular type but not a particular structure. This
example explains why Hellman talks in the above quotation about ‘struc-
tures of interest’ in the plural.2

But in order to give a sense to the expression ‘type of structures’ one
needs to have the notion of structure at the first place. The group axioms or
any other system of axioms determining some type of structure cannot help
one grasp the notion of structure unless one is already aware of the funda-
mental role of isomorphism. For the idea of a general description satisfied
by different mathematical objects is obviously not unique to structuralism;
Euclid’s axioms do the same job with respect to numbers and magnitudes.
Stressing the higher importance of structures with respect to ‘systems’, the
irrelevance of ‘intrinsic nature’, and relevance of ‘structural relationships’
cannot clarify the notion of mathematical structure by itself.

3. Isomorphisms and ‘Invariant Forms’

A non-structuralist may observe that group axioms are satisfied by a num-
ber of ‘particular systems’ (not structures so far!) called groups. Now let
G be a class of such systems (i.e., groups), and consider the situation when
some of these, say G1 and G2, are isomorphic. This actually means two
things:

I1: elements of G1 are in one-to-one correspondence with elements of
G2; by ‘one-to-one correspondence’ between elements of two given
sets A, B, I understand here a set C of non-ordered pairs (a, b) such
that aε A, bεB and that every element of A is a member of exactly
one of these pairs and similarly every element of B is a member of
exactly one of these pairs;

I2: for all elements a1, b1, c1, from G1 such that a1 ⊕ b1 = c1 the cor-
responding elements a2, b2, c2, from G2 satisfy a2 ⊗ b2 = c2 where
⊕ is the group operation in G1 and ⊗ is the group operation in G2.

2 In particular, an infinite cyclic group is a group with an infinite number of elements and
such that all of its elements are generated by some distinguished element g and its inverse
g−1. A group is said to be generated by a set of its distinguished elements called generators
when every element of this group is a product of the generators. A canonical example of
an infinite cyclic group is the additive group of whole numbers, which is generated by
numbers 1 and −1. For an example of a group non-isomorphic to the infinite cyclic groups
consider any finite group.
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6 RODIN

A one-to-one correspondence between elements of two given groups
that satisfies I2 is called a (group) isomorphism. Groups are isomorphic
if and only if there exists an isomorphism between them. Notice that,
given two isomorphic groups, there are, generally, many different isomor-
phisms between them. One should not confuse isomorphism as a particular
correspondence between elements of two groups and isomorphism as an
equivalence relation defined on some class of groups. Isomorphism in the
latter sense holds between two given groups if and only if there exists
an isomorphism in the former sense between these groups. As we can
see, this terminology is slightly confusing but it is too common to try to
change it.

Since isomorphism is an equivalence relation, it divides class G into
sub-classes containing only isomorphic groups. One may ignore differ-
ences between isomorphic groups and get, through this act of abstraction,
various notions of groups-qua-structures (not to be confused with the gen-
eral notion of group as a type of structure!), in particular, the notion of
infinite cyclic group. To facilitate the language and provide this reasoning
with some intuitive support one may talk and think about any particular
structure as a thing ‘shared’ by all members of the corresponding isomor-
phism class. On this basis one may claim that ‘the items making up any
particular system exemplifying the structure in question are of no impor-
tance’ (as does Hellman in the above quotation). This claim describes the
aforementioned abstraction, which can be called structural abstraction.
However, one cannot forget about these exemplifying systems completely
because this would destroy the whole reasoning bringing about the notion
of mathematical structure. Noticeably Hellman needs the auxiliary notion
of system in order to describe what a mathematical structure is. One might
think that this additional notion (no matter what one calls it) plays a role in
philosophical talk about structural mathematics but plays no role in struc-
tural mathematics itself. In the next section I shall argue that this is not
the case.

There is yet a different way of thinking about isomorphism (this will be
already the third meaning of the term by our account!), which is common
in current mathematical practice and particularly pertinent for categorical
mathematics, as we shall later see. One may think about a one-to-one cor-
respondence between elements of groups G1 and G2, which satisfies con-
dition I2, as a map or transformation i: G1 → G2 of one group into another
group. Since a one-to-one correspondence is a symmetric construction
the choice of G1 as the source and G2 as the target of this transforma-
tion is in fact arbitrary. In other words one and the same isomorphism-
qua-correspondence gives rise to two isomorphisms-qua-transformations
i: G1 → G2 and j: G2 → G1, which run in opposite directions and cancel
each other on both sides. This latter property means precisely the follow-
ing: the composition transformation i ◦ j resulting from the application of
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CATEGORIES WITHOUT STRUCTURES 7

transformation j after transformation i sends every element of G1 into itself
and composition transformation j ◦ i sends every element of G2 into itself
(beware that neither of the two conjuncts implies the other). Given these
conditions each of transformations i and j is called the inverse of the other.
Hence this definition: a transformation is called an isomorphism when it
has an inverse. See Footnote 9 for a more precise categorical version of
this definition.3

Thinking about isomorphism as a reversible transformation allows one
to think of a structure shared by given transformed systems as an ‘invari-
ant form’, i.e., a form invariant under the given transformation. Then the
structural abstraction can be described in these alternative terms: only the
invariant form matters; transformed systems do not. As we shall see in
what follows, the notion of isomorphism-qua-transformation, which may
seem redundant in the context introduced so far, becomes indispensible in
categorical mathematics. Noticeably Hilbert in the quotation in Section 2
talks about isomorphism as transformation, not as a symmetric one-to-one
correspondence.

4. Structures versus Abstract Objects; Collections versus
Transformations

Given an equivalence relation defined for a class of mathematical objects,
Frege [1884] considered the possibility of replacing each obtained equiv-
alence class by a single object through an act of abstraction.4

Frege calls the result of this procedure an abstract object, not a struc-
ture, and indeed he does not think about this outcome as a structure. So
we need a further effort of distinguishing structural abstraction from other
types of mathematical abstraction. To this end, let us first consider this
question: What are the elements of a group-qua-structure? For the reason
that I have already explained we do not want these elements to have any-
thing like an ‘intrinsic nature’. So they should be just ‘items’ or ‘abstract
elements’; the predicate ‘abstract’ refers here to the act of abstraction
through which the notion of group-qua-structure is obtained. However,
we still need to make some assumptions about these things. We want them
to be many and to form (or belong to) well-distinguishable collections.

3 Notice that the order in which transformations are composed matters. I use here the so-
called geometrical notation where the composition is written in the ‘direct’ order. Accord-
ing to another notation called algebraic the composition is written in the reverse order.

4 Frege’s example is the concept of direction built as follows. One considers the class
of all straight lines on a Euclidean plane and the equivalence relation ‘is parallel’. Then
one associates a single abstract concept called direction with each isomorphism class of
parallel lines.
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8 RODIN

Since we want to use the same notion of collection for different purposes
we do not want the collected elements to be related in a specific way. This
will give us the freedom to stipulate any relation between elements by fiat
using the same notion of collection.

This is an important point where structuralism meets set theory. Having
a notion of set at our disposal we are in a position to give the standard
structural definition of group as a ‘structured set’, namely a set provided
with a binary operation satisfying the group axioms given above. There is
a standard way to account for algebraic operations as relations that I shall
not explain here.

As we have seen, the notion of isomorphism plays a crucial role
in structural abstraction, which brings about new mathematical objects
(namely, new mathematical structures). Importantly isomorphisms do not
disappear when a given act of structural abstraction is accomplished and
a new mathematical structure is well-defined. Mathematicians think about
abstract groups and other abstract structures as given in an indefinite
number of isomorphic copies, not as unique objects. As I have already
stressed, people think similarly about numbers in traditional arithmetic
(see Section 2). This, in my view, is the principal point where Frege’s
notion of abstraction fails to account for structural abstraction as this
latter notion has been developed in twentieth-century mathematics.
Reasoning ‘up to isomorphism’ does not amount to the strict identification
of isomorphic structures; it rather amounts to replacement of traditional
equality by isomorphism in appropriate contexts. From a mathematical
(as distinct from a logical and philosophical) viewpoint the question
whether or not two isomorphic structures are identical is just as pointless
as the question whether or not two equal numbers are identical. A sound
mathematical question about two given numbers is whether or not they
are equal. A sound mathematical question about two given structures is
whether or not they are isomorphic.5

Set theory makes talk of isomorphism as transformation redundant
because the notion of one-to-one correspondence may be analyzed set-
theoretically in terms of pairs of elements. But in many important math-
ematical contexts the notion of transformation is widely used anyway:
groups of (reversible) transformations are abundant in geometry and also
in physics. As far as foundations of mathematics are concerned we have
an important choice here: either (i) to consider the notion of collec-
tion as more fundamental than that of transformation and reduce the
latter to the former, or (ii) to consider the notion of transformation as
more fundamental and reconstruct the notion of collection on this basis.

5 I elaborate on this issue in [Rodin, 2007]. In particular, I discuss in that paper the idea
of ‘weakening’ equalities by replacing them with appropriate equivalences in n-categories.
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CATEGORIES WITHOUT STRUCTURES 9

The former option brings (some version of) set-theoretic foundations of
mathematics. The idea of categorical (i.e., category-theoretic) founda-
tions amounts to taking the latter option. However the project turns out
to be non-viable unless one takes into account transformations other than
isomorphisms.

5. Homomorphisms

Given a type of structure it is always possible to define a general notion
of map between structures of the given type. I shall discuss first the case
of general maps between groups; such maps are called homomorphisms or
more precisely group homomorphisms. Then I shall say a few words about
general maps between structures of different types. The term ‘homomor-
phism’ is traditionally reserved for groups (apparently because this case
was studied first), although, as its etymology suggests, it could also be
used for structures of different types, like the term ‘isomorphism’. So in
what follows I shall use the term ‘homomorphism’ in the sense of a general
map between structures of some given type.

The notion of group homomorphism generalizes that of group iso-
morphism in the following way: instead of one-to-one correspondence
between elements of groups G1, G2, one considers a more general kind of
correspondence that is allowed to be many-to-one (but not one-to-many).
In other words, one considers a function (in the set-theoretic sense of
the term) f : S1 → S2 from the set S1 of elements of G1 to the set S2 of
elements of G2. Condition I2 from Section 3 remains the same; notice
that it can be satisfied when elements a1, b1, are different but elements a2,
b2, are the same.

Group homomorphism and similar general maps between structures of
other types are colloquially called ‘structure-preserving’. This is somewhat
misleading because if such maps preserve anything at all it is a type of
structure but not a particular structure. Think about this trivial example: for
all groups G1, G2, there exists a homomorphism h: G1 → G2 which sends
every element of G1 to the unit of G2. This homomorphism ‘destroys all
information’ about G1, reducing its image to a single element; it provides
no information about G2 either.

Actually the example of group homomorphism does not generalize
straightforwardly to maps between structures of different types. For given
a type of structure there are, generally, different ways to define maps
between structures of the given type (some of which may be reasonable
and some others not). Such maps can be of different kinds. The usual
maps between topological spaces, i.e., general continuous transformations,
do not preserve topological structure (in the same sense in which group
homomorphisms are said to preserve group structure) but reflect it: the

 at W
ashington U

niversity in St. L
ouis on July 1, 2014

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


10 RODIN

inverse image of any open set under a given continuous transformation is
always open, while the direct image of an open set can be closed. In the
case of isomorphism the difference between reflection and preservation
of structural properties disappears. This fact shows that thinking about
homomorphisms as ‘imperfect isomorphisms’ can be misleading; at the
very least one should not forget that a given structural isomorphism may
‘lose its perfection’ in two different ways.

I shall now argue that homomorphisms, generally, do not allow for
invariants in anything like the same sense in which isomorphisms do. Let
us try to replace isomorphisms by homomorphisms in the process of struc-
tural abstraction described in Section 4 and see what happens. One might
expect to get in this way a generalized notion of structure but this does not
work. Recall the first step: given the class G of groups we divided it into
equivalence subclasses of isomorphic groups. Two groups are isomorphic
if and only if there exists an isomorphism (i.e., a reversible transformation)
between them; clearly this is an equivalence relation. Let me (for the sake
of argument) call two groups homomorphic if and only if there is a homo-
morphism between them. Although this latter relation is also an equiva-
lence, one can see the difference: since all groups are homomorphic (see
the above example of group homomorphism) one cannot use this equiv-
alence for dividing G into equivalence subclasses! Saying that two given
groups are homomorphic is tantamount to saying that the given groups are
groups. So the relation of homomorphism just introduced (not to be con-
fused with the standard notion of homomorphism as transformation) does
not make sense.

In order to see the reason for this failure, note that in the case of
homomorphism (unlike that of isomorphism) the difference between the
source and the target of the given transformation matters. But the relation
of homomorphism tentatively introduced above does not take this differ-
ence into account. It forgets the difference between isomorphic and non-
isomorphic groups, thus obscuring their structural properties and offering
no replacement.

A more reasonable choice of relation associated with a given homo-
morphism h: G1 → G2 would be that of a non-symmetrical relation >
such that G1 > G2 holds just in case there is a homomorphism of the form
h: G1 → G2. However, since > is asymmetric it is not an equivalence and
so does not allow one to proceed further with the structural abstraction or
anything similar.

We see that homomorphisms cannot do the same job as isomorphisms:
the reversibility condition stressed by Hilbert in the quotation in Section 2
turns out to be crucial for structural abstraction. One cannot reason ‘up
to homomorphism’ in anything like the same way in which people rea-
son up to isomorphism doing structural mathematics. Since ‘invariant’
in the given context is just another word for structure it is clear that
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CATEGORIES WITHOUT STRUCTURES 11

homomorphisms, generally, do not have invariants in anything like the
same sense in which isomorphisms and groups of isomorphisms do.6

6. Structuralist Motivations behind Category Theory

The emergence of category theory in the 1940s and its further develop-
ment in the context of structural mathematics were related to a growing
awareness of the role of general maps (not only isomorphisms). I shall
not explain here the precise mathematical context in which this theory first
proved useful but only mention that the notion of category generalizes such
examples as the class of all sets and all functions, all groups and all group
homomorphisms, all topological spaces and all continuous maps (not only
reversible ones!) between topological spaces. There is a simple theorem
[Mac Lane, 1996] that a class of structures of any fixed type provided with
an appropriate notion of general map forms a category. Generally, a cate-
gory comprises a class of objects and a class of composable maps (called
in category theory morphisms) for every ordered pair of objects, which are
subject to a few natural axioms. Given two different categories one defines
a map between them. Such maps are called functors; the usual definition
of functor is based on the same idea as the definition of group homomor-
phism given in the previous section: a functor sends each object of the
source category into an object of the target category and each morphism
of the source category into a morphism of the target category in such a
way that composition of morphisms is ‘preserved’ in the same sense in
which the group operation is said to be preserved by a group homomor-
phism. Using the notion of functor one may consider various categories
of categories, i.e., categories such that their objects are themselves cate-
gories. One may also consider categories whose objects are functors. The
above standard description of basic categorical concepts is structuralist in
spirit. In Section 8 I shall describe functors and categories anew from a
foundational and ‘more categorical’ viewpoint.7

6 I mention here groups of isomorphisms (not to be confused with isomorphisms of
groups!) because they are very important in geometry and physics. I mean groups of geo-
metrical transformations of a given space. Only reversible geometrical transformations,
i.e., geometrical isomorphisms, of a single object (the given space) form groups (with the
composition of transformations as group operation) because in this case the reversibil-
ity is equivalent to the existence of inverse elements. So the talk of invariants of groups,
which is so important for structural approaches in physics, concerns only reversible trans-
formations and does not apply to geometrical (or other) transformations in general. A non-
mathematical reader may skip the reference to groups of isomorphisms in this part of the
paper. I shall explain the idea of group of isomorphisms more clearly in categorical terms
in Section 7.

7 For a detailed historical account of early days of category theory see [Krömer, 2007].
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12 RODIN

The idea of categorical foundations as viewed from a structuralist per-
spective amounts to recovering all the relevant properties of a structure
of any given type through properties of the category of (all) structures of
this given type. In the case of the category of sets this provides an alterna-
tive (category-theoretic) set theory: one first conceives of sets as abstract
objects and stipulates that they form a category; then one stipulates desired
properties of this category, which make this category ‘into’ the intended
category of sets. This result (see [Lawvere, 1964]) shows that a reasonable
notion of collection (set) can be developed on the basis of that of transfor-
mation (morphism of sets) and not only the other way round.

The growing popularity of category theory as a common (though cer-
tainly not unique) ‘language’ of contemporary mathematics as well as the
continuing efforts at building categorical foundations of mathematics are
generally seen as a further step in the structuralist project briefly described
above. I agree with this view so far as it does not require preserving the
basic principles of mathematical structuralism (as specified above) in the
new categorical setting. In my understanding, these developments diverge
from mathematical structuralism and tend towards a very different view
of mathematics and science in general. Before I describe this new view,
let me explain reasons why categorical foundations appear to many as a
version of structural foundations. In the next section I shall show that this
impression is wrong.

As I explained in Section 4, the notion of set plays a special role in
structural mathematics. This explains why set theory itself is rarely seen
as a structural theory on equal footing with, say, group theory. As Hellman
[2006a] rightly remarks:

[D]espite the multiplicity of set theories (differing over axioms such
as wellfoundedness, choice, large cardinals, constructibility, and oth-
ers), the axioms are standardly read as assertions of truths about ‘the
real world of sets’ rather than receiving a structuralist treatment.

The structural notion of group explained above is usually construed as a
‘set with a structure’ or ‘structured set’ rather than a pure structure (what-
ever this might mean); the underlying set of a given group is thought of
as a background supporting the structure rather than a part of this struc-
ture. This way of thinking in mathematics is reminiscent of Aristotle’s
metaphysics of Matter and Form. The need for the set-theoretic Matter
to do structural mathematics becomes clear from our analysis given in
Section 4, but the presence of this ingredient does not fully comply with the
philosophy of mathematical structuralism, which purports to make math-
ematical objects into pure forms (structures) and to leave anything like
their ‘background’ outside mathematics. The desired ‘purely structural’
mathematics would deal only with the ‘invariant Form’ and require no
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CATEGORIES WITHOUT STRUCTURES 13

set-theoretic Matter. Historical evidence of such an attitude can be found
in what Dieudonné (under the name of Bourbaki) says in his structuralist
manifesto [Bourbaki, 1950] about set-theoretic difficulties:

[T]he difficulties did not disappear until the notion of set itself dis-
appeared ... in the light of the recent work on the logical formalism.
From this new point of view mathematical structures become, prop-
erly speaking, the only ‘objects’ of mathematics.

I do not believe that Dieudonné’s claim concerning the alleged ‘disappear-
ance’ of sets is justified, but the quotation clearly demonstrates such an
intention.

In this context the idea of accounting for relevant properties of math-
ematical structures only in terms of structure-preserving maps between
these structures independently of any set-theoretic background, i.e., the
idea of categorical foundations, indeed may look like a further step in the
structuralist direction. Hence the popular view according to which cate-
gorical mathematics is the desired purely structural mathematics.

Remarkably, category theory never did make it into Bourbaki’s
Elements [Bourbaki, 1939–1983], which is the most systematic attempt
to develop structural mathematics ever undertaken. This is in spite of the
fact that both founders of category theory, Eilenberg and Mac Lane, were
eventually involved in the Bourbaki group; so all the principal members
of this group were well aware of their work [McLarty, 2007]. This fact
is often seen as a historical puzzle but in my view it is not. For, as we
shall shortly see, categorical foundations of mathematics are not and can-
not be anything like the structural foundations developed by Bourbaki in
his fundamental work. So in order to incorporate category theory into their
Elements Bourbaki would need to abandon their basic structuralist princi-
ples and engage in a very different foundational project.

One may agree that Bourbaki’s version of structuralism is incompati-
ble with categorical foundations of mathematics but argue that some other
variety of structuralism is appropriate for building such foundations. For
this reason I would like to stress once again that the arguments that follow
concerning structuralism and category theory refer to the general notion of
structuralism described in Section 2 but not only to simple Bourbaki-like
examples of structures and maps between structures. One may also argue
that this notion of structuralism is in fact too restrictive and does not really
reflect the structural character of modern mathematics in full. Even if in
this case the issue may look merely terminological, I would stress the need
to define one’s general notions of structure and structuralism explicitly and
precisely. Distinguishing between multiple varieties of structuralism does
not help one to meet this requirement unless one addresses the question
what these different varieties are varieties of. What I want to stress in this
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14 RODIN

paper is a conceptual difference between the ‘classical’ structuralist think-
ing exemplified by Hilbert [1980] and Bourbaki [1939–1983] on the one
hand, and some developments in category theory on the other hand. Leav-
ing terms ‘structure’ and ‘structuralism’ without any precise definition and
using them in the broadest possible sense can hardly be helpful for showing
such a difference. If category theory indeed brings about a new philosophy
of mathematics this new philosophy needs a new vocabulary.8

7. Categories versus Structures; Embodiment of Mathematical
Concepts

Categories of structures like the categories of groups, topological spaces,
etc. capture the notion of type of structure, not the notion of singular struc-
ture. Particular structures (identified up to isomorphism) may often also
be rendered as categories, but in this case their morphisms are no longer
structure-preserving maps. For example, a particular group (like the infi-
nite cyclic group mentioned above) can be presented as a category with
just one object such that all of its morphisms (going from this object to
itself) are isomorphisms. The group operation is given by composition of
morphisms, the existence of a unit follows from the definition of a (gen-
eral) category, and the existence of inverse elements follows from the fact
that all morphisms of the given category are reversible.9

This simple example shows that categorical morphisms can, but should
not, be structure-preserving maps. Moreover, the above categorical pre-
sentation of a group, unlike its standard set-theoretic presentation, is
not structuralist in character. For the standard structuralist presentation
involves this idea: an abstract group can be ‘exemplified’ by what Hell-
man calls ‘particular systems’, like systems of numbers, systems of geo-
metrical motions, and so on. Of course, when one pictures elements of
a given group as loops rather than dots this does not produce any con-
ceptual change by itself. But given the above categorical presentation of
a group, and using standard category-theoretic means, one can do some-
thing other than continually saying that morphisms of the given category
(i.e., the given group) stand or may stand for something other than them-
selves. Namely, one may consider functors from the given group-category
into some other categories, which in their turn present (rings or fields of)

8 This paragraph was written after a very valuable discussion with Colin McLarty of an
earlier draft of this paper.

9 The categorical definition of isomorphism resembles the definition of reversible trans-
formation given at the end of Section 3. However, it does not involve a reference to ele-
ments. Think about groups G1, G2, as objects of a category and modify the definition of
Section 3 in this way: i ◦ j = 11 and j ◦ i = 12 where 11 is the identity morphism of G1
and 12 is the identity morphism of G2. The rest of the definition remains the same.
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numbers, geometrical spaces, etc. This provides a much more precise
idea of ‘standing for’ in each particular case than the general structuralist
rhetoric. In the structuralist setting, the notion of exemplification remains
meta-theoretical and escapes a precise mathematical treatment. But in the
categorical setting this notion becomes a proper part of the given mathe-
matical construction. Instead of saying that A stands for B one considers
functors of the form A → B and treats these functors on an equal footing
with ‘internal’ morphisms of A and B.10

In my understanding, this latter type of mathematical thinking has little
if anything to do with structural abstraction. A principal epistemic strategy
of structuralism is to capture what various ‘particular systems’ have in
common, namely their ‘shared structure’. The corresponding categorical
strategy can be described in this way: look how particular systems translate
into each other. Unlike the structuralist strategy, this categorical strategy
does not make the particular systems less important. Given a morphism
A → B there is, generally, no reason to think of A and B ‘up to’ some
equivalence and dispense with A and B in favor of their shared structure or
anything else. As I have already shown in Section 5 the notion of thinking
‘up to homomorphism’ is plainly unsound.

Let us now consider the case when a category presents a type of struc-
ture rather than a singular structure. To analyze this case I shall use the
notion of embodiment, which I have introduced elsewhere [Rodin, 2010].
As we have seen in Section 4, a mathematical structure cannot be identi-
fied with its corresponding abstract concept: something else is needed in
order to make a given concept into a mathematical object. Kant would call
this additional element an intuitive construction; I use the word ‘embod-
iment’ for a similar purpose but in a different mathematical context. We
have seen how the notion of structure allows for making a concept describ-
ing different particular systems into a single mathematical object (single
up to isomorphism, of course). As we have seen in Section 5 this struc-
turalist method of embodiment does not work for types of structure. While
the concept ‘infinite cyclic group’ can be embodied in a single structure,
the concept ‘group’ cannot; ‘the group’ unlike ‘the infinite cyclic group’
is not a name of a unique (up to isomorphism or otherwise) mathemati-
cal object. However the category of (all) groups is a single mathematical
object like the number 3, the infinite cyclic group, or, say, the Euclidean
plane. Each of these objects has a many-splendored existence (to use Mac
Lane’s phrase), and so its singleness must be understood appropriately.

10 A further step of such categorical analysis amounts to considering the full category
of functors of the given form; such a functor category provides precise information about
how A translates into B.
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16 RODIN

But I want now to stress a different point: the way in which all isomor-
phic cyclic groups are made into a single object with the notion of struc-
ture and the way in which all groups are made into a single object with
the notion of category are essentially different. While the former involves
structural abstraction the latter involves a different kind of abstraction,
which I shall call categorical. Roughly, categorical abstraction amounts
to the following: one forgets about the fact that groups have elements and
considers only how they map to (i.e., transform into) one another with
appropriate morphisms; a relevant notion of element is recovered in this
categorical setting only later on. Obviously the two kinds of abstraction
are quite different. I shall say more about categorical abstraction in the
Conclusion.

A category in which morphisms (including identity morphisms) form
a set (in the technical sense of the term) is called small. Small categories
can be thought of as structures on their own. The corresponding type of
structure is defined straightforwardly: one takes a set of elements called
morphisms, stipulates appropriate primitive relations among the elements
of this set, and spells out the necessary axioms (see the next section for
more details). Thus small categories like groups can be thought of as
structures of a specific type. Noticeably, this straightforward approach
does not work in the case of large categories corresponding to types of
structures — think again of the category of groups or the category of all
small categories. Since morphisms of such categories form proper classes
they cannot be described as structured sets. Although this may look like
a minor technical difficulty, which can be resolved by an appropriate gen-
eralization of the usual notion of structure, this difficulty provides addi-
tional evidence that the structural approach generally does not work in
category theory. Instead of thinking of categories as structures (or gen-
eralized structures) of a particular type, it seems to me more reason-
able to reverse the order of ideas and think of structures as categories
or categorial constructions of a particular type. An immediate sugges-
tion would be to identify structures with small categories. A more elab-
orate suggestion by Lawvere (in person) is to identify a structure with a
functor from a small category to a large ‘background’ category, say that
of sets.

To conclude this section, let me stress that categories do not always
represent particular structures or particular types of structure. Exam-
ples of this latter kind are today so popular only because they connect
the new categorical mathematics with the older structuralist mathemat-
ics. But categorical mathematics also involves concepts and construc-
tions that were first developed in a categorical setting, for example that
of Grothendieck topology. One may expect that the further development
of categorical mathematics will make such ‘purely categorical’ concepts
better known and more useful in various branches of mathematics; then
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CATEGORIES WITHOUT STRUCTURES 17

the link between the categorical mathematics and its structural prede-
cessor will become a historical and philosophical issue rather than a
mathematical one.

8. ‘The Category of Categories’

The idea of categorical foundations amounts to taking the notions of cat-
egory, functor, and/or some other related categorical notions as primitive
and recovering the rest of mathematics on this basis. What are possible
ways of realizing this project? In which precise sense can one consider
category-theoretic notions as primitive? A way to do this that immediately
suggests itself is to use in categorical foundations a modern version of
Hilbert-style axiomatic method after the example of standard set-theoretic
foundations.

Consider a class of things called morphisms and three primitive rela-
tions: one that associates with every given morphism its source, one that
associates with every given morphism its target, and, finally, one that asso-
ciates with some (ordered) pairs of morphisms a third morphism called
the composition of the given two morphisms. Then we need axioms to
ensure that sources and targets of morphisms behave as identity mor-
phisms (i.e., as objects), that two given morphisms are composable if
and only if the target of the first morphism coincides with the source of
the second morphism, and some other similar axioms. Finally we should
assume that the composition of morphisms is associative. For the full list
of such axioms I refer the reader to Lawvere’s paper [1966], where the
axiomatic theory just described is called the elementary theory of abstract
categories.

The paper begins as follows:

In the mathematical development of recent decades one sees clearly
the rise of the conviction that the relevant properties of mathemat-
ical objects are those which can be stated in terms of their abstract
structure rather than in terms of the elements which the objects were
thought to be made of. The question thus naturally arises whether
one can give a foundation for mathematics which expresses whole-
heartedly this conviction concerning what mathematics is about, and
in particular in which classes and membership in classes do not play
any role.

We see that Lawvere embraces mathematical structuralism here but at
the same time rejects set-theoretic (and even more general class-based)
foundations of mathematics. Since the Hilbert-style axiomatic method is
essentially structural (see Section 2) Lawvere’s method of building his
elementary theory of abstract categories perfectly fits his stated purpose.

 at W
ashington U

niversity in St. L
ouis on July 1, 2014

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


18 RODIN

After introducing the axioms of the elementary theory and providing some
definitions on their basis, Lawvere says:

By a category we of course understand (intuitively) any structure
which is an interpretation of the elementary theory of abstract cat-
egories, and by a functor we understand (intuitively) any triple
consisting of two categories and a rule T which assigns, to each
morphism x of the first category, a unique morphism xT of the sec-
ond category in such a way that [follows the conditions of being
structure-preserving].

A problematic aspect of this first part of the paper concerns May-
berry’s argument that Lawvere’s elementary theory, like any other the-
ory built with the Hilbert-style axiomatic method, requires some prim-
itive (non-axiomatic) notion of collection, which cannot be identified
with that of category [Mayberry, 2000]. The argument implies that the
elementary theory and the corresponding elementary notion of cate-
gory cannot be a genuine foundation. I agree with Mayberry on this
point (this follows from my understanding of the relationships between
structuralism and set theory explained in the beginning of Section 4),
but unlike Mayberry I think that such a primitive notion of col-
lection is dispensible in foundations of mathematics along with the
Hilbert-style structural axiomatic method itself. In what follows I shall
sketch a different version of the axiomatic method that seems to me
more appropriate for categorical foundations. Let me now return to
Lawvere’s [1966].

Lawvere’s elementary theory is a preparatory step towards another the-
ory of categories, which he calls the basic theory. My claim is that unlike
the elementary theory the basic theory is not structural, at least not in a
similar sense. If I am right, this shows that the main content of [Lawvere,
1966] in fact does not agree with the structuralist agenda announced by
the author at the beginning of his paper: Lawvere begins with structural
reasoning but then proceeds with a very different agenda, which can be
described as genuinely categorical.

The basic theory begins with a re-introduction of the notion of functor:

Of course, now that we are in the category of categories, the things
denoted by the capitals will be called categories rather than objects,
and we shall speak of functors rather than morphisms.

This may sound like a mere terminological convention (rather than an
alternative definition), but in fact it signifies a sharp change of per-
spective. The idea is now the following: given a preliminary notion of
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category (through the elementary theory), conceive of a category C of
all categories; then pick up from C an arbitrary object A (i.e., an arbi-
trary category) and finally specify A as a category by internal means
of C, stipulating additional properties of C when needed. More pre-
cisely, it goes as follows (I omit details and streamline the argument).
Stipulate the existence of a terminal object 1 in C, i.e., the object
with exactly one incoming functor from each object of C. Then iden-
tify objects (= identity functors) of A as functors in C of the form
1 → A. Stipulate also the existence of initial object 0, i.e., the object with
exactly one outgoing functor into each object of C. Then consider in C
object 2 of the form 0 → 1 and stipulate for it some additional prop-
erties among which is the following: 2 is a universal generator which
means that:
G (generator): for all f , g of the form:

A
f

��
g

�� B

and such that f �= g there exists x such that:

2
x �� A

f
��

g
�� B

and x f �= xg.
U (universal): if any other category N has the same property, then there
are y and z such that:

2
y

�� N
z

��

and yz = 2.
This allows Lawvere to identify functors (morphisms) of A as functors
of the form 2 → A in C. The fact that 2 is the universal generator (it is
unique up to isomorphism, as follows from the above definition) ensures
that categories are determined ‘arrow-wise’: two categories coincide if and
only if they coincide on all their arrows. This new definition of functor also
allows one to make sense of the notion of a component of a given functor
of the form h: A → B, which in the elementary theory is understood as a
map m sending a particular morphism f of A into a particular morphism
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g of B. In the basic theory, m turns into this commutative triangle:11

2

����
��

��
�

���
��

��
��

�

A �� B

This, once again, significantly changes the whole perspective: categories
and functors are no longer built ‘from their elements’ but rather ‘split
into’ their elements when appropriate. Although the notion of functor as a
structure-preserving map can be recovered in this new context, it no longer
serves for defining the very notion of functor. Rule T used by Lawvere for
defining functors in the elementary theory disappears in the basic theory
without leaving any trace.

Further consider this triangle which Lawvere denotes 3:

0

���
��

��
��

����
��

��
�

1 �� 2

(It should satisfy a universal property which I omit). 3 serves for defining
composition of morphisms in our ‘test-category’ A as a functor of the form

11 A categorical diagram is said to commute or be commutative when the compositions
of all morphisms shown in it produce other morphisms shown in the same diagram in
appropriate places, so that any ambiguity about results of the compositions is avoided. For
example, saying this triangle

B
g

���
��

��
��

A

f
���������

h

�� C

is commutative is simply tantamount to saying that f g = h. Morphisms resulting from
composition of shown morphisms can be omitted in a commutative diagram when this
does not lead to an ambiguity. For example, saying this square

A
g

�� B

C
h

��

f

		

D

i

		

is commutative is tantamount to saying that f g = hi .
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3 → A in C. Finally, in order to assure the associativity of the composition
Lawvere introduces category 4, which is pictured as follows:

3

0



�������
��

���
��

��
��

2

���������

1



�������

		

(The associativity concerns here the path 0 → 1 → 2 → 3.) This construc-
tion, provided with appropriate axioms, makes A into an ‘internal model’
of the elementary theory in the following precise sense: if F is any theorem
of the elementary theory, then ‘for all A, A satisfies F’ is a theorem of the
basic theory.12

The following analogy with set-theoretic mathematics helps to clarify
the role of categories of categories in foundations. As long as the notion
of set is not supposed to provide a foundation for mathematics, one thinks
of sets after examples of sets of numbers, sets of points, and the like. But
in a foundational axiomatic theory of sets like ZF there are no other sets
but sets of sets, and every mathematical object like a number or a point
is supposed to be a set. Similarly in a foundational axiomatic theory of
categories there are no other categories but categories of categories and
every mathematical object is ultimately a category.

9. Functorial Semantics, Sketch Theory, and Internal Language

In order to see that Lawvere’s basic theory, unlike his elementary theory,
is not based on structuralist principles, and then to get an idea of the non-
structuralist principles behind this theory, it is instructive to take into con-
sideration two similar approaches: functorial semantics developed by the
same author elsewhere [Lawvere, 1963–2004] and sketch theory founded
by Ch. Ehresmann in the 1960s and later developed by other people (see
[Wells, 1994] for an overview and further references).

Functorial semantics involves the presentation of mathematical theories
as categories of a special sort; models of a given theory are functors from
the theory to the background category of sets or another appropriate topos.
The very idea of ‘interpretation’ or ‘realization’ of a given theory in a set-
theoretic background obviously comes from the standard (due to Tarski)

12 Isbell, in his review [1967] of Lawvere’s [1966] points to a technical flaw in
Lawvere’s proof of this theorem. This flaw is fixed, in particular, in [McLarty, 1991].

 at W
ashington U

niversity in St. L
ouis on July 1, 2014

http://philm
at.oxfordjournals.org/

D
ow

nloaded from
 

http://philmat.oxfordjournals.org/


22 RODIN

model theory. Lawvere’s functorial semantics can be seen as a category-
theoretic version of the same basic construction. However, as we shall
now see, this technical update comes with a significant revision of the
structuralist background of Tarski’s model theory inherited from Hilbert’s
notion of axiomatic method.

In order to determine a theoretical structure, an axiomatic theory should
be categorical, i.e., have models that are all isomorphic. (Beware that this
older sense of the term ‘categorical’ has nothing to do with category the-
ory!) True, not all axiomatic theories built by the standard method satisfy
this requirement; also true, non-categorical theories are usually not dis-
qualified solely on this basis. Anyway, in the standard setting the categoric-
ity of an axiomatic theory is commonly (and usually as a matter of course)
viewed as an epistemic gain while the lack of categoricity is viewed as
a problem. As long as one commits oneself to structuralism such an atti-
tude is understandable: when a set of axioms fails to specify a model up
to isomorphism it fails to specify a structure. Saying that a non-categorical
theory determines many structures rather than one structure is somewhat
misleading because such a theory, strictly speaking, specifies no structure
at all (cf. Section 2).

In the case of Lawvere’s functorial semantics, the structuralist pursuit
of categoricity turns into an absurdity. For the purpose of this construction
is to produce a workable category of models rather than just one model up
to isomorphism. In the functorial setting a theory determines a category,
not a structure. This makes the structuralist thinking behind the axiomatic
method as expressed by Hilbert in the quotation in Section 2 irrelevant. In
the new setting:

The theory appears itself as a generic model. [Lawvere, 1963–2004]

This means that the older structuralist distinction between abstract ‘formal’
axiomatic theories, on the one hand, and their semantics, on the other hand,
does not apply; what distinguishes a theory from its (other) models is its
generic character rather than its formal or abstract character.

The setting of sketch theory is similar to that of Lawvere’s functo-
rial semantics but in the former case generic categories are designed as
‘generic shapes’ or ‘generic figures’ rather than axiomatic theories. Unlike
the case of functorial semantics such generic categories are not supposed
to have logical properties; in some approaches sketches are not even cat-
egories but directed graphs with an additional structure. It seems natural
to think of sketches as ‘proto-structures’ but this is somewhat misleading
insofar as the usual notion of structure is concerned. A sketch does not
represent a bunch of isomorphic systems but generates non-isomorphic
systems (its models). These systems do not share their generic shape in
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the same sense in which different systems are said to share the same
mathematical structure. In fact they share a shape in a more straightforward
sense: a given sketch is a common source of all of its models (i.e., specific
functors from this given sketch to a background category). To ‘have the
same source’ is obviously an equivalence relation but this equivalence
relation does not support anything like structural abstraction. Unlike a
shared structure a shared sketch is concrete (it is usually even supposed
to be finite and easily pictured) while things generated by a sketch can be
indeed described as abstract structures in the older sense because they are
usually distinguished only up to isomorphism! Thus sketch theory turns
structuralism upside down and in certain aspects is reminiscent of more
traditional ways of doing mathematics. Euclid’s geometrical universe is
generated by two generic figures, namely, the straight line and the cir-
cle, which is tantamount to saying that every geometrical object can be
constructed by ruler and compasses. The analogy seems to me straightfor-
ward.13

Whether or not the new categorical approach to theory-building — dif-
ferently realized in functorial semantics, sketch theory, and the basic the-
ory of [Lawvere, 1966] — can compete with the standard Hilbert-style
structural approach remains an open question. The constructions consid-
ered do not allow one to claim that this new approach can work indepen-
dently: we have seen that Lawvere’s basic theory depends on the structural
elementary theory, functorial semantics is developed by this author sim-
ilarly in two steps, and sketch theory in its existing form uses set the-
ory and usually does not make foundational claims at all. However there
is no reason either to claim that the pre-theoretic notion of collection
involved in the standard set-theoretic foundations is indispensible in foun-
dations of mathematics (cf. Mayberry’s argument in Section 8). It can be
replaced by a primitive pre-theoretic notion of category that involves com-
mon intuitions about processes (transformations) and their composition.
What remains a problem is how to upgrade this pre-theoretic notion of
category to a theoretical one without using other than properly categorical
means.

Which means and constructions may qualify as ‘properly categorical’
in a foundational context also remains an open question, but I think that the
standard machinery of first-order logic used in [Lawvere, 1966] and later
in [McLarty, 1991] for writing down axioms of category theory after the
example of set theory does not qualify as such. Category theory suggests
a change in the traditional conception of logic, which is analogous to the

13 Does this mean that Ehresmann misconceived his own invention when he thought of
sketch theory as a general theory of structure? I think not. A general theory of structure
should not necessarily be a structural theory and should not provide support for structural-
ism as a philosophical view about mathematics.
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change in the traditional conception of geometry that occurred in the nine-
teenth century when people stopped thinking about ‘the’ geometrical space
as a universal container of geometrical objects and learned to think about
spaces as objects and about objects as spaces with the notion of the intrin-
sic geometry of a given geometrical object. In the first half of the twentieth-
century people learned to think about systems of logic as objects living
in larger meta-logical frameworks. Category theory showed how one can
think about objects (i.e., appropriate categories) as systems of logic with
the notion of the internal language of a given category [Lambek and Scott,
1986]. This reciprocal move that allows one to avoid the bad infinity of
meta-meta-. . . -logics and meta-meta-. . . -mathematics in foundations of
mathematics has immense philosophical importance, and I think that it
has to be taken into account in categorical foundations. This is why the
presence of a free-standing system of logic representing alleged universal
laws of reasoning seems to me inappropriate in categorical foundations.
A candidate for replacement can be a version of sketch logic developed
in the vein of [Makkai, 1997a; 1997b; 1997c; Wells and Bagchi, 2008;
Diskin and Wolter, 2008]. I leave this issue for a further study.

10. Conclusion: A Categorical Perspective in and on Mathematics

I hope to have convinced the reader that the project of categorical foun-
dations requires a new philosophical view on mathematics, which the
traditional structuralism cannot possibly provide. Let me now try to sum-
marize this new categorical view by contrasting it with the structural-
ist view. What matters in categorical mathematics is how mathematical
objects and constructions transform into one another, not what (if any-
thing) remains invariant under these transformations. So categorical math-
ematics is a theory of abstract transformation, not a theory of abstract form.
A theory in categorical mathematics is a generic model (Lawvere) rather
than a scheme (Hilbert). In the end of his [1996] Awodey puts forward the
following structuralist slogan:

The subject matter of pure mathematics is invariant form, not a uni-
verse of mathematical objects consisting of logical atoms.

I suggest instead this alternative slogan:

The subject matter of pure mathematics is covariant and contravari-
ant transformation, not invariant form.

The categorical view of mathematics — as distinguished from categorical
foundations of mathematics in the sense articulated in the previous section
— suggests a new understanding of the role of history of mathematics
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in mathematics itself. Consider these two versions of the Pythagorean
theorem.

(1) In right-angled triangles the square on the side subtending the
right angle is equal to the squares on the sides containing the right
angle. (Proposition 1.47 of Euclid’s Elements)

(2) If two non-zero vectors x and y are orthogonal then (y − x)2 =
y2 + x2. ([Doneddu, 1965], slightly modified)14

What justifies saying that (1) and (2) express one and the same
theorem? A structuralist’s answer is: ‘Obviously the invariant content of
these two expressions!’ I claim that that answer is wrong. For there are
many ways in which Euclid’s geometry can be interpreted in modern terms
([Doneddu, 1965] is just one way of doing this among many others) but
there is no way to express modern geometry in Euclid’s terms. We rec-
ognize (2) as the old Pythagorean theorem (1) because the latter naturally
translates into the former. This translation is not just a matter of the glass-
bead game but it reflects the historical process of dialectical change of
foundations of geometry from Euclid’s times to the 1960s. Crucially this
translation does not work the other way round: our history in general and
our intellectual history in particular develops from the past to the future
but not from the future to the past. According to the argument given in
Section 5, this implies that no translation between (1) and (2) allows for
the identification of an invariant. Thus the existence of sound translations
between theories does not imply that these theories share anything like an
invariant content. There is no essence — no conceptual core — preserved
by the translation of (1) into (2). But why in this case should we count
them as different versions of the same theorem?

My answer is this. The Pythagorean theorem — as distinguished from
its particular formulations like (1) and (2) — is a conceptual entity per-
during over (rather than enduring through) the historical change of foun-
dations. The change of perspective that I suggest here is analogous to the
replacement of the traditional 3-dimensional ontology in physics by the
modern 4-dimensional ontology [McKinnon, 2002]. In this sense (1) and
(2) can be compared with points of a trajectory in a spacetime. Importantly
the Pythagorean theorem does not reduce to some set of such points, i.e., a
set of particular formulations of this theorem. For such a reduction leaves
out what from a categorical viewpoint is most important, namely trans-
lations between these different formulations. Instead of thinking in this

14 The original version reads

Two non-zero vectors x and y are orthogonal if and only if (y − x)2 = y2 + x2.
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context about a set of sentences like (1) and (2), I suggest that the reader
consider a category of such things. A coherent translation between them is
still possible even when no invariant structure is available.
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