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8. Computing in Space and Time

Andrei Rodin1 2

Abstract

The Turing machine adequately accounts for the temporal aspect of real com-
puting but fails to do so for certain spatial aspects of computing, in particular, 
in the case of distributed computing systems. This motivates a search for alter-
native models of computing, which could take such spatial aspects into account. 
I argue that a revision of the received views on the relationships between logic, 
computation and geometry may be helpful for coping with spatial issues arising 
in modern computing.

8.1 Introduction

Computing takes time. For practical reasons it is crucial how much time it takes. 
Processing speed (usually measured in FLOPS or more generically in cycles per 
second) is a basic measure of computer hardware performance. During the past 
several decades of continuing computer revolution the processing speed of hard-

1 Andrei Rodin is a senior researcher in the Institute of Philosophy of Russian Academy 
of Sciences in Moscow and an associated professor of philosophy and mathematics at 
Saint-Petersburg State University. His research interests include history and philos-
ophy of mathematics, philosophy of science and philosophical logic. He is the author 
of „Axiomatic Method and Category Theory” appeared in 2014 in Springer (Synthese 
Library vol. 364).

2 The work is supported by Russian Foundation for Basic Research, research grant number 
13-06-00515.
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194 Andrei Rodin

ware increased dramatically. Computation time (aka running time) is equally cru-
cial for evaluating the software performance: invention of faster algorithms is going 
along with building faster processors.

Computing also takes space. It equally matters how much space it takes. Today’s 
digital processors are smaller in size than their early prototypes by several orders of 
magnitude; the minimization of physical sizes of computing devices is a continuing 
technological trend. In order to see the role of space in computing more clearly it 
will be helpful to consider first a more traditional computing device like a set of 
pebbles (Latin calculi). Manipulating with pebbles requires a space. A basic trick of 
traditional computing is that this required computation space is more “handy” and 
usually significantly smaller than the space where live the counted objects. Suppose 
for example that one wants to count sheep in a herd. A reason for replacing sheep 
by pebbles is that one can manipulate with pebbles in space by far more easily and 
more effectively than one can do this with the real animals. Using pebbles one can 
even count stars and other objects on which one has no real control at all. Thus if 
we consider computing as a process applied to certain external objects rather than 
an abstract procedure on its own rights, then we can observe that scaling the system 
of objects under consideration down (or up in the case of a microscopic system) to 
the spatial and temporal scale where humans may possibly provide for an effective 
control, is an essential part of this process. A spatio-temporal scaling is equally at 
work when calculations are done symbolically.

If we now turn back to the modern electronic computing then we remark that 
the spatial issues enter into the picture in a number of new ways. Spatial issues are 
dealt with by hardware engineers who seek to make handy human-scale computing 
devices as powerful as possible. The distributed computing made possible by the 
web technology involves hardware scattered over the globe, so spatial issues (along 
with temporal ones) become in this case more pressing. The case of remote control 
of spacecrafts where the time of signals’ traveling between different parts of the 
same information system becomes an essential factor, makes a link (practical rather 
than only theoretical!) between computing and relativistic space-time. These are 
but the most apparent ways (randomly chosen) in which spatial and spatio-tempo-
ral issues can be relevant to modern computing; developers of information systems 
most certainly can specify more.

Theoretically spatial and spatiotemporal aspects of computing have been stud-
ied so far at least in the following two directions. In 1969 Konrad Zusse proposed a 
powerful metaphor of “computing space” [25] which gave rise to an area of research 
known as digital physics, which explores the heuristic idea according to which the 
physical universe can be described as a computing device. Reciprocally, the fact that 
computing proceeds in the real physical space and time led a number of authors to 
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reconsidering standard theoretical models of computation [12] and more recently 
gave rise to a new field of research named spatial computing [9].

8.2 Time and space estimations

A commonly used theoretical model of computation is the Turing machine, which 
can be described informally as follows. It consists of an infinite strip of tape divid-
ed into equal cells, which moves forward and backward with respect to a writing 
device. The device writes and rewrites symbols into the cells according to a table of 
rules. Thus the Turing machine presents computation as a discrete process divided 
into discrete atomic steps. According to this model every accomplished calcula-
tion is characterized by a certain finite number n of such steps. This apparently 
naive model (which can be given a more precise formal presentation) turns out 
to be surprisingly effective for theorizing about computing in the context of mod-
ern information technology. The Turing machine model allows one to estimate the 
computing time straightforwardly. Given that an algorithm A requires n Turing 
moves for accomplishing a given task T, and given that the CPU of one’s computer 
makes m operations per second, one can estimate the required running time t as 

 . Since the Turing machine is an ideal theoretical model but not a real computing 
hardware, the above calculation is by far too straightforward. In the real life the 
exact number n as above is undetermined, so one can only estimate how n varies 
with the variation of parameters T such as the number of elements in sorting. But 
notwithstanding these details the very fact that the Turing machine, theoretically 
described algorithms, algorithms realized in a software, and finally real CPUs all 
work step-by-step provides a firm ground for time estimations. The “internal time” 
of Turing machine measured in elementary moves of its tape turns out to be a good 
theoretical model for the running time of real computers.

The Turing machine also helps to estimate the space required for computing. 
This is done by the estimation of the number m of the required cells. If one knows 
how m depends on parameters of the given task, one can estimate the volume of 
required memory, which in its turn provides a reasonable estimation of size of the 
real computing device. In that respect the time estimation and the space estima-
tion are similar. However this very structural similarity between the temporal and 
the spatial sides of the Turing machine makes a big difference in how the Turing 
model of computation relates to computations made in the real world. Let me for 
the sake of the following argument assume that the physical time and space are 
classical (Newtonian). The elementary moves of the Turing machine can be iden-
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tified with ticks of physical clocks and its tape divided into equal cells can be used 
as a ruler. The number of ticks is all one needs for measuring a time span between 
two events and the number of cells is all one needs for measuring the distance be-
tween two points in space. What makes the two cases very different is this: while 
the arithmetic of natural numbers in a sense comprises the formal structure of clas-
sical time (as already Kant rightly acknowledged) this is not the case regarding the 
formal structure of classical Euclidean 3D space. A fundamental property of this 
space which remains unaccounted in this way is the number of its dimensions. The 
one-dimensional Turing tape may serve as a good instrument for testing various 
spatial structures—Euclidean and beyond—but it cannot, generally, represent such 
structures (including their global topological properties) in the same direct way 
in which it represents the running time in real computers. Thus one can remark a 
sharp difference between the temporal and the spatial relevance of the Turing mod-
el of computation: While this model adequately accounts for the temporal aspect 
of real computing (modulo usual reservations explaining the difference between a 
physical process and its theoretical model), it fails to do so with respect to certain 
spatial characteristics of modern computing devices.

Why this dissymmetry? Or perhaps it is more appropriate to ask why not? The 
success of the Turing machine and other related models of computing (such as 
the lambda calculus) suggests seeing the running time as an essential feature of 
computing and seeing all spatial aspects of computing as non-essential. Even if the 
Turing machine says nothing about spatial issues related to computing it is not ob-
vious whether these issues should be taken into account by a theory of computing 
at the fundamental level. Perhaps these spatial issues can be better accounted for 
separately after the basic model of computation is already fixed. The idea to unify 
spatial and temporal aspects of computing within the same fundamental theory 
may appear tempting (and natural from the point of view of today’s physics) but it 
certainly needs further arguments in its favor.

In what follows I shall try to provide such arguments. I shall start with some 
historical observations concerning the relationships between space, geometry and 
computing. Then I consider a recent theory, which reveals a deep link between 
computing and geometry in a modern mathematical context. Finally I discuss some 
related philosophical issues concerning the relationships between pure and applied 
mathematics.
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8.3 Historical Forms of Computing

Examining the history of a subject unavoidably involves projecting of the present 
state of this subject onto its past. These days by a computer one understands a digi-
tal electronic device, which inputs and outputs sequences of 0s and 1s; a peripheral 
hardware translates between the 0-1 sequences and data of different types includ-
ing the data that can be received and/or outputted by human users immediately 
(such as strings of symbols and imagery). Looking for a close historical analogue of 
modern computing one naturally points to arithmetical calculations in its various 
historical forms, some of which involve devices of abacus type [16]. However a 
closer examination shows that the historical forms of computing are more diverse. 
Suppose one needs to compute the height of an equilateral triangle knowing its 
side. Such geometrical problems are common in building construction and many 
other practical affairs. If one has an electronic calculator at hand then to compute a 
decimal fraction approximating  is a reasonable solution. Otherwise one may use 
a more traditional tool such as the ruler and the compass for solving the problem 
geometrically. If the size of the figure in question does not allow one to apply these 
instruments directly one first solves the problem on a sheet of paper or another ap-
propriate support, and then uses a scaling technique (which typically but not nec-
essarily involves arithmetical calculations) for applying this geometrical result in 
the given practical context.3 There is a tendency dating back to Plato to overlook or 
underestimate the computational aspect of the traditional elementary geometry as 
presented in Euclid’s Elements. Whatever may be the philosophical reasons behind 
it such an attitude is hardly appropriate when studying the history of computing.

The combination of ruler and compass works as a simple analogue computer. 
While modern digital computers use the idea of symbolic encoding, the analogue 
computers exploit the idea of analogy between different physical processes. This 
latter idea can be made more precise through the concept of mathematical form 
(which, of course, in its turn needs further specifications which I omit here). Dif-
ferent physical processes, including those having very different physical nature, 
happen to share the same mathematical form; in many cases, they may be ade-
quately described by the same mathematical tools such as differential equations. 

3 The Euclidean space is the only one among Riemannian spaces of constant curvature, 
which allows for a simple linear scaling. The importance of scaling in practical matters 
provides, in my view, a plausible explanation why the Euclidean geometry for many cen-
turies was considered as the only “true” theory of space. The fact that the linear scaling 
property implies Euclid’s Fifth Postulate (aka the Parallel Postulate) was first realized by 
Wallis in 1693 [2].
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Let P be a class of processes sharing the same mathematical form F. Now the idea 
of analogue computing can be formulated as follows: choose in P an appropriate 
process C (for “computation”), which is artificially reproducible, well-controllable 
and conceptually transparent; then use C as a standard representation for F. What 
one learns about F through C applies to all other processes in P disregarding their 
specific physical nature. As an example, F could be the geometrical form of equi-
lateral triangle and C the standard construction of such a triangle by the ruler and 
the compass.

Analogue computers have been largely superseded by their digital rivals at some 
time in the early 1960-ies (or earlier on some accounts [16]). A thorough discussion 
on digital and analogue computing is out of place here but I shall point to one ad-
vantage of digital computing which obviously contributed to its success. It consists 
in its universality. What we want to call a computer is not just a device that allows 
one to simulate physical processes and technological procedures of some particular 
type P as described above but rather a universal toolkit, which allows for simulating 
processes and procedures of many different sorts. The ruler and the compass meet 
this requirement only to a certain degree. These instruments can be used for solving 
a large class of geometrical problems but this class turns out to be limited in a way, 
which from the practical viewpoint may appear very strange and even arbitrary. 
Why the trisection of a given segment is doable by ruler and compass but the tri-
section of a given angle is not? Why a regular hexagon can be so easily computed 
but a regular heptagon cannot be computed by these means at all? Today we know 
good theoretical answers to these questions but they don’t make the ruler and the 
compass more useful than they are.

Now consider the claim according to which all relevant mathematical proce-
dures and mathematical structures serving as mathematical expressions of various 
physical “analogies” in the analogue computing as explained above, can in principle 
be encoded into (i.e., represented with) 0-1 sequences and operations with these 
things. This claim is problematic both from a theoretical and a practical point of 
view. Not all mathematical theories currently used in physics are constructive and 
moreover computable. A mathematical theory or structure, which is theoretical-
ly computable, may require unfeasible computations and thus be not computable 
in practice. The more computing power we get the more such limitations become 
visible. Nevertheless the idea of a single universal model of calculation appears so 
attractive and so promising that our technological development largely follows it 
anyway.
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8.4 Geometrical Characteristic

Let me now turn from the history of computing to the history of ideas about com-
puting. Leibniz is commonly and rightly seen as a forerunner of modern comput-
ing; his ideas about this subject he put under the title of Universal Characteristic, 
which he described as a hypothetical symbolic calculus for solving problems in all 
areas of human knowledge.

Although this idea sounds appealing in the modern context to reconstruct it 
precisely is a laborious historical task; moreover so since this idea never achieved in 
Leibniz’ work a stable and accomplished form. I shall discuss here only one specific 
aspect of this general idea, which is relevant to my argument, namely the notion of 
Geometrical Characteristic [10], for partial English translation see [11].

Leibniz builds his idea of Geometrical Characteristic upon Descartes’ Analytic 
Geometry. In its original form (unlike its usual modern presentations) this latter 
concept has little to do with the arithmetization of geometry through a coordinate 
system. It has been rather conceived by Descartes as a geometrical application of 
a general algebraic theory of magnitude. This general algebra of magnitudes was 
supposed to cover both arithmetic (the case of discrete magnitude) and geometry 
(the case of continuous magnitude). As Leibniz stresses in his Geometrical Charac-
teristic paper the general algebra of magnitudes cannot be a sufficient foundation 
of geometry because this general algebra treats only metrical properties of geomet-
rical objects while these objects also have relational positional properties (which 
we call today topological). Leibniz tries to push Descartes’ project further forward 
by mastering a more advanced algebraic theory capable to account for positional 
properties of geometrical configurations along with their metrical properties. He 
conceives here of a possibility of replacing traditional geometrical diagrams with 
appropriate symbolic expressions and appropriate syntactic procedures on such ex-
pressions, which would express the positional properties directly, without using the 
Cartesian algebra of magnitudes. For this end Leibniz observes that the traditional 
geometrical letter notation (as in Euclid) is not wholly arbitrary but has a certain 
syntactic structure, which reflects certain positional properties. For example when 
one denotes a given triangle ABC the syntactic rules require A, B, C to be the names 
of this triangle’s vertices, and AB, BC, AC be the names of its three sides. Leibniz’ 
idea is to develop this sort of syntax into a full-fledged symbolic calculus similar 
(on its syntactic side) to Descartes’ algebraic calculus.4

4 An attempt to develop geometry systematically on an algebraic basis (in the form of a 
general theory of magnitude) has been made by Descartes’ follower Antoine Arnauld [1]. 
This work of Arnauld was carefully studied by Leibniz and contributed to his thinking 
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Leibniz’s idea of Geometrical Characteristic is interesting because it directly 
links symbolic computation to geometrical reasoning on a fundamental theoretical 
level—while in the mainstream 20th-century theoretical works on computation by 
Church and others such a link appears to be wholly absent. However in the 19th 
century the idea of Geometrical Characteristic has a rich history, which involves 
works of Grassmann [5], Peano [17][18] and other important contributors. Even if 
in the 20th century this circle of ideas did not form the mainstream research in the 
theory of symbolic computing (which in this century was largely monopolized by 
logicians) it continued to develop during this century within other mathematical 
disciplines including algebraic geometry. Tracing this history of ideas continuously 
up to the present is a challenging historical task, which I leave for another occasion. 
In this paper I shall only briefly describe what I see as the latest episode of this 
history, which establishes a new surprising theoretical link between geometry and 
computing in today’s mathematical and logical setting.

8.5 Univalent Foundations

The Univalent Foundations of mathematics (UF) is an ongoing research project 
headed by Vladimir Voevodsky and his collaborators at the Princeton Institute 
for Advanced Study; this project is closely related to the recently emerged mathe-
matical discipline of Homotopy Type theory (HoTT). The backbone of UF/HoTT is 
a correspondence between a type calculus due to Martin-Löf (MLTT) [15] and a 
geometrical theory (in a broad sense of “geometrical”) known as Homotopy theory 
(HT); see [19] for a systematic introduction and further references. A role in the 
discovery of this correspondence was played by the concept of infinite-dimensional 
groupoid first introduced by Grothendieck in 1983 [6]; more historical details are 
found in [21], Ch. 7.

For my present argument it is essential to take into account the specific charac-
ter of correspondence between the type calculus MLTT and the geometrical theory 
HT, which gives rise to UF/HoTT. I leave now aside subtle model-theoretic issues of 
HoTT and disccuss only the semi-formal homotopical interpretation of MLTT as 
described in [19]. When one compares this  interpretation of MLTT with standard 

about geometrical matters. Another name for the same circle of Leibniz’ ideas, which 
connects them to Descartes’ work more directly, is Analysis Situs (Situational Analysis); 
under this latter name this circle of Leibniz’ ideas plays a prominent role in the early 
history of modern topology [3]
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examples of models such as Beltrami-Klein or Poincaré models of Hyperbolic ge-
ometry (HG), one immediately notices a striking difference. A standard axiomatic 
presentation of HG contains non-logical terms like “point”, “lies between”, etc, and 
certain logical terms like “and”, “if then”, “therefore” etc. As far as one thinks about 
formal axiomatic theories and their models along the pattern provided by Hilbert 
in his classical [7], one assumes that the meaning of logical terms is fixed (and 
commonly understood), while the non-logical terms are place-holders, which get 
definite semantic values only under this or that possible interpretation; when such 
an interpretation turns the axioms of the given theory into true statements this 
interpretation qualifies as a model of that theory. The distinction between logical 
and non-logical terms is of a major epistemic significance here because it usual-
ly (and certainly in Hilbert’s works) goes along with the assumption according to 
which logical concepts are more epistemically reliable than mathematical (and in 
particular geometrical) ones. The assumption about the epistemic primacy of logic 
provides a ground for the claim that a Hilbert-style formal axiomatic presentation 
of a given mathematical theory is a genuine epistemic gain rather than just one’s 
favorite style of writing mathematical textbooks.

In UF/HoTT the above familiar pattern of axiomatic thinking does not apply. 
For HoTT provides geometrical interpretations for those terms of MLTT, which by 
all usual accounts qualify as logical. The most interesting (both mathematically and 
philosophically) case in point is the concept of identity (as in MLTT without the 
additional axioms of extensionality which makes the identity concept in this theory 
trivial) and its homotopical interpretation. By all usual accounts (including Frege’s 
classic [4]) the concept of identity is logical. In HoTT it receives a highly non-trivial 
geometrical (homotopical) interpretation in the form of fundamental groupoid of 
a topological space, which is the groupoid of paths between points of this space. 
This construction of “flat” fundamental groupoid of paths is further extended onto 
that of infinite-dimensional higher homotopy groupoid, which accounts for higher 
identity types appearing in MLTT. This geometrical interpretation makes intelligi-
ble the complexity of the identity concept as in MLTT, which otherwise may appear 
as unnecessarily technically complicated and conceptually opaque. So in this case a 
logical concept is analyzed and clarified by geometrical means rather than the other 
way round. The reciprocal epistemic impact of logic onto geometry in UF/HoTT 
is also significant (see below) but it would be clearly wrong to see the impact as 
one-sided. What brings an epistemic gain in this case is a cross-fertilization of logic 
and geometry rather than a one-sided influence.

UF/HoTT has a special relevance to computing, which I am now going to 
describe. MLTT has been designed from the outset as a formal calculus apt for 
computer implementations. It is a constructive theory in the strong sense of being 
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Turing computable. The homotopical interpretation of MLTT makes possible to 
see MLTT (possibly with some additional axioms such as the Univalence Axiom) 
as a computable version of HT and use program languages based on MLTT for 
computing in HT. The fact that MLTT has been designed as a general formal con-
structive framework rather than a formal version of any particular mathematical 
theory suggests that UF/HoTT may serve as a foundation of all mathematics and 
that its computational capacities can be used also outside HT, ideally everywhere 
in mathematics and mathematically-laden sciences. The realization of this project 
remains a work in progress.

Like Leibniz’s Geometrical Characteristics UF/HoTT can be seen as a theoret-
ical means for reducing geometrical constructions to symbolic expressions, which 
can be managed by the Turing Machine. However the link between geometry and 
computing established in UF/HoTT can also be explored in the opposite direction 
and provide a theoretical ground for attributing to computations a geometrical (to-
pological) structure. I submit that such a notion of internal geometrical structure 
of computing may be used for designing distributed computing systems and coping 
with the other spatial aspects of modern computing mentioned above. This is, of 
course, nothing but a bold speculation à la Leibniz, which I cannot support by 
any specific technical argument. Instead I shall discuss certain related philosophical 
issues. One’s stance towards these issues can make the above guess appear more 
reasonable or, on the contrary, less reasonable and direct one’s technical efforts ac-
cordingly. Leibniz’s example demonstrates that in the past philosophical specula-
tions played a role in later technological developments. I cannot see a reason why 
this should not work today and in the future.

8.6 Geometrical thinking

Is it reasonable to expect that geometrical methods may help one to cope with spa-
tial issues arising in engineering (including IT engineering)? Two centuries ago the 
answer in positive would have been a matter of course. However today we live with 
a very different received view on the nature and the subject-matter of mathematics. 
This modern vision has been strongly influenced by Hilbert’s notion of axiomatic 
theory and stabilized at some point in the mid-20th century. A concise presentation 
of this received view is found in Professor Mainzer’s recent monograph [13], where 
he describes a “mathematical universe” of “proper worlds and structures the exis-
tence of which is thought of solely in terms of accepted axioms and logical proofs”, 
(op. cit., p. 280, my translation from German). I shall call this view the standard pic-
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ture (SP) for further references. It should be understood that SP is not a description 
of what mathematicians are doing in their everyday work but rather a judgement on 
what pure mathematics really is in the proper philosophical analysis. Elementary 
arithmetical calculations like 7 + 5 = 12 at the first glance do not look like logical 
inferences. In order to fit 7 + 5 = 12 into SP one needs to make a judgement like 
the following: this calculation is ultimately justified by a logical inference, which is 
made explicit by a logical reconstruction of arithmetic, i.e., by presenting this tradi-
tional mathematical discipline in the modern axiomatic form of Peano Arithmetic 
or similar. Such a gap between the current mathematical practice and SP exists in all 
areas of today’s mathematics including mathematical logic itself. It is a controversial 
matter among philosophers whether or not such a gap is tolerable.

SP implies that there is no direct connection between the “proper worlds” of 
mathematical structures and the material world in which we live, act and develop 
our technologies. How it happens that some of these structures play a significant 
role in natural sciences and technologies constitutes a philosophical puzzle famous-
ly called by Wigner [24] the “unreasonable effectiveness” of mathematics. This puz-
zle has a number of plausible solutions compatible with SP (including one explained 
in Professor Mainzer’s book, ch. 14), which I shall not discuss here. Instead I shall 
try to revise SP and briefly present a different understanding of modern mathemat-
ics, which establishes (or rather re-establishes) a stronger conceptual connection 
between mathematics, natural sciences and technology. Such a link was taken for 
granted by many philosophers, mathematicians and scientists in the past but was 
later lost of sight in popular 20th century accounts of the so-called “non-Euclidean 
revolution” [23] of the mid 19th century. Without going into a thorough historical 
discussion of this matter I shall try to show here that the results of this alleged rev-
olution have been largely misconceived and somewhat exaggerated.

SP comes with the following assumption, which at the first glance may look 
merely technical but in fact is epistemically important: an axiomatic presentation 
of mathematical (and in fact also all other) theories involves a definite symbolic syn-
tax. So in addition to the ideal existence “in terms of accepted axioms and logical 
proofs” all mathematical objects and structures enjoy within SP a more palpable 
form of existence, namely, the existence in the form of symbolic representations. 
Hilbert, who was a pioneer of formal axiomatic method, described this double form 
of mathematical existence explicitly. He qualified mathematical symbols as the only 
“real” mathematical objects, while the rest of mathematical objects on his account 
were merely “ideal” [8]. Accordingly, he exempted a part of mathematics from SP 
and called this special part metamathematics. Hilbert conceived of metamathemat-
ics as a foundational discipline, which allows one to develop the rest of mathematics 
safely using symbolic logical methods. Hilbert hoped that metamathematics would 
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reduce to a theoretically transparent and wholly unproblematic fragment of finitary 
mathematics.

Thanks to Gödel and others we know today that Hilbert was seriously mistaken 
here; for this reason mathematicians and logicians today usually feel free to apply 
in mathematical logic and in metamathematics any sort of mathematics that may 
prove useful, i.e., that may prove some non-trivial results. Yuri Manin expresses 
this changed attitude by saying that “good metamathematics is a good mathematics 
rather than shackles on good mathematics” ([14], p. 2). As we have seen HoTT 
applies the Homotopy theory (HT) for a similar purpose: it provides a new geomet-
rical semantics for a symbolic calculus (MLTT) the intended semantics of which 
is logical (in a broad sense of the word). A logical inference in HoTT is a different 
name for a geometrical construction. The “existence of mathematical structures” 
in HoTT is as much logical as it is geometrical. It is clear that this feature of HoTT 
does not square with SP.

As we have seen, Hilbert in 1927 believed that finite strings of symbols are priv-
ileged mathematical objects, which serve as a unique join between abstract math-
ematics and the concrete material world. Even if modern presentations of SP don’t 
make the same point explicitly, they need to use this assumption tacitly because it 
is enforced by the current standard of formal logical rigor, which requires using 
symbols. But since Hilbert’s project of building mathematical foundations on the 
basis of finitary mathematics is given up, I can see no further reason to justify the 
aforementioned assumption either. Mathematically speaking, the combinatorics of 
symbols is important but it does not play a distinguished role in mathematical mat-
ters—whether one provides it with one’s favorite logical semantics or not. Episte-
mologically speaking, there is no reason to consider symbols as the sole tool, which 
connects human cognition with the outer world. Geometrical intuition is another 
obvious candidate.

One should keep in mind that the implementation of mathematical ideas in 
physics and technology is never a straightforward matter. It is not straightforward 
even in the Euclidean case, and it is by far less straightforward in the case of modern 
geometry. Nevertheless I cannot see that modern geometry differ drastically in this 
respect from the traditional Euclidean geometry, as proponents of the non-Euclide-
an Revolution often tend to say. Mathematics in general and geometry in particular 
is a cognitive activity rooted in human material practices and experiences, which 
on this basis explores further theoretic possibilities by modeling them conceptually. 
Even if the testing of such newly discovered theoretic possibilities against new ex-
periences and new practices belongs not to pure mathematics but rather to science 
and technology, there is no reason, in my view, to think of mathematics as a genu-
inely independent discipline exploring its own “proper world”. Human experiences 
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and practices do not, generally, simply guide one’s “choice of axioms” for developing 
on this basis some useful mathematical theories, as SP suggests, but rather help one 
to build conceptual frameworks, in which certain axioms and certain inferences 
from these axioms can be later established.5

On this—admittedly merely speculative—ground I suggest that HoTT indeed 
qualifies as a reasonable candidate for a theory of spatial computing or at least for 
a fragment of such a theory. In fact, it appears as the only such candidate since no 
other mathematical theory treating the concept of computing geometrically, to the 
best of my knowledge, is presently known.

8.7 Conclusion

Computing is an old and very important channel, which connects the research in 
pure mathematics (when such an activity is practiced in a society) with the society’s 
economy, administration, political institutions, technology, and natural science. 
Professor Mainzer [13] provides a detailed account of how this channel functions in 
today’s information societies. In particular, he shows how today’s standard picture 
of mathematics fits contemporary ideas about computing and its implementation 
in the existing computing technology.

On my part, I tried to suggest a revision of this standard picture and offer a 
different view on mathematics and computing, which, as I believe, may help one to 
cope with some technological challenges related to the spatial aspect of computing 
technologies.

In this context I argued that Hilbert’s view on what is real and what is ideal 
in mathematics is biased. However important is the historical impact of symbolic 
writing techniques on mathematics, it is certainly not the only thing, which con-
nects mathematics to the material world and to human material practices. However 
impressive is the implementation of these techniques in modern digital comput-
ing it would be wrong to isolate these specific techniques from other mathemati-
cally-laden material practices and technologies and think of symbolic techniques 
(possibly providing it with one’s favorite logical semantics) as a unique and excep-
tional channel that links mathematics to the material world. Among other things 
such an ideological focus on symbolic processing and on the Turing model of com-
putation artificially isolates the temporal aspect of computing from the spatial one 

5 For the notion of geometrical intuition in modern mathematical contexts see [20]. For 
more details concerning the role of geometrical modeling in axiomatic theories see [22].
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and thus makes it more difficult to theorize mathematically about spatial aspects of 
computing.

As a possible remedy I pointed to the ongoing research in Univalent Founda-
tions and Homotopy Type theory, which provide a surprising conceptual link be-
tween geometry and computing. Whether or not this theory may indeed help one 
to cope with distributed information systems and long-distance control at the pres-
ent stage of research is wholly unclear, and in any event there would be a very long 
to go to it. However I tried to demonstrate using this example that contemporary 
mathematics—by which I here mean the very edge of the ongoing mathematical 
research—can be more friendly to technological implementations in general and to 
computer implementations in particular than suggests the popular picturing of this 
mathematics as exceedingly abstract and wholly detached from all other human 
affairs.
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